金丽假交替单胞菌JG1抑菌机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
假交替单胞菌(Pseudoalteromonas)广泛分布于世界各地的海洋环境中,可分为产色素或不产色素两大类,其中产色素菌株的显著特征是能够形成具有多种不同生物活性的代谢产物,如抗细菌、抗真菌、溶藻等活性。目前已从该属菌株中分离纯化出多种具有抑菌活性的小分子化合物、蛋白质、多糖等物质,而对该属菌株基因组的分析也已成为研究其多种生物活性物质产生机制及对不同海洋环境适应性的重要手段。因此,对该属菌株抑菌机理的研究有助于开发新型的有益菌制剂和海洋药物,从而广泛应用于水产养殖病害、生物污损及赤潮等的防治中。本论文分离纯化了金丽假交替单胞菌(Pseudoalteromonas flavipulchra)JG1所产生的多种抑菌物质并对其抑菌机理进行了初步探讨,完成了该菌株的全基因组测序及分析,并对其适应复杂的海洋环境并形成生存优势的能力进行了阐释,为后续对该菌株及其代谢产物的开发利用奠定了理论基础。
     金丽假交替单胞菌JG1分离自健康大菱鲆养殖海水,对多个种属的菌株具有较强的抑菌活性,如弧菌属、芽孢杆菌属等。通过石油醚﹑乙酸乙酯﹑正丁醇对JG1发酵液上清和菌体样品进行分步萃取,发现菌株JG1发酵液的石油醚层、乙酸乙酯层萃取样品及水层样品均具有抑菌活性。这表明JG1的抑菌物质中既含有某些小分子物质如脂类、糖类、色素类化合物,也包含有大分子蛋白类物质,这两类物质协同作用产生更好的抑菌效果。
     采用硫酸铵沉淀法、SDS-PAGE及电洗脱法对JG1的胞外蛋白进行了分离纯化,在SDS-PAGE中可见单一条带,且胶内活性检测表明该蛋白对鳗弧菌有较强的抑菌活性。将此抑菌蛋白经De novo测序得到的两条肽段的氨基酸序列与菌株JG1的蛋白质组序列进行比对,获得其基因及氨基酸序列全长,并将其命名为PfaP。PfaP蛋白共由694个氨基酸组成,理论分子量为77.0kDa,理论等电点为4.63,Signal P预测其不含有信号肽序列。氨基酸序列比对结果显示,PfaP蛋白与被囊假交替单胞菌(P. tunicata)D2的L-赖氨酸氧化酶AlpP具有58%的一致性,与地中海海洋单胞菌(Marinomonas mediterranea)MMB-1的抗微生物蛋白marinocine具有54%的一致性。由此推测PfaP蛋白为一种L-氨基酸氧化酶,其抑菌活性是由过氧化氢介导的,过氧化氢酶能够抑制其抑菌活性的产生。
     对PfaP蛋白的基因序列进行克隆,并分别与表达载体pET24a(+)、pET26b(+)、pET32a(+)、pBAD/Myc-HisB及pRSFDuet-1连接,构建了重组表达菌株Escherichia coli BL21/pET24a(+)/PfaP、E. coli BL21/pET26b(+)/PfaP、E. coliBL21/pET32a(+)/PfaP、E. coli BL21/pBAD/Myc-HisB/PfaP以及E. coli BL21/pRSFDuet-1/PfaP,并在体外诱导表达。PfaP蛋白能够在大肠杆菌中得到异源表达,但可能由于在大肠杆菌中无法对该蛋白进行正确的翻译后修饰,其异源表达产物不能够形成有活性的成熟蛋白。
     菌株JG1的乙酸乙酯萃取物经多步硅胶柱层析及半制备反相高效液相色谱分析,共分离得到5种具有抑菌活性的单体小分子化合物,分别为对羟基苯甲酸(1)、反式桂皮酸(2)、6-溴吲哚-3-乙酸(3)、N-羟基苯并异恶唑酮(4)和2'-脱氧腺苷(5)。其中,仅带有一个溴原子的化合物3为黄褐色,稀释后呈鲜艳黄色,推测其为菌株JG1形成的一种色素分子,使菌落呈现金黄色。这5种小分子化合物对鳗弧菌均具有抑菌活性,微量稀释法检测最小抑菌浓度分别为1.25、1.25、0.25、0.25和5mg/ml。化合物3的抑菌活性最强,抑菌范围也最广,对革兰氏阳性菌和阴性菌均具有抑菌活性。由此可见,色素分子与抑菌蛋白的协同作用使菌株JG1表现出良好的抑菌活性。这5种小分子化合物均首次发现能对海水养殖病原菌产生抑制活性。
     采用Illumina高通量测序技术对JG1的全基因组进行了测序及分析,共预测得到4913个基因,总长度为4,828,917bp,占基因组的87.71%。同时,在JG1基因组中发现预测的104个tRNA编码基因和4个rRNA操纵子。与已知基因组序列的被囊假交替单胞菌(P. tunicata)D2、游海假交替单胞菌(P. haloplanktis)TAC125、大西洋假交替单胞菌(P. atlantica)T6c、2株假交替单胞菌TW-7和SM9913的COG注释基因分布比较显示,菌株JG1中参与次级代谢产物生物合成、转运和分解,氨基酸转运和代谢以及翻译、核糖体结构与起源的相关基因的丰度均为最高,与其能合成丰富的代谢产物的特征相一致。JG1中参与防御机制的基因丰度也较高,表明其具有良好的环境适应能力。
     通过对JG1基因组的分析,发现了参与合成5种抑菌小分子化合物的相关基因,并预测了这些小分子化合物在JG1中的代谢途径,而抑菌蛋白PfaP也参与了抑菌小分子物质6-溴吲哚-3-乙酸的生物合成过程,进一步表明JG1中的各种抑菌机制是紧密联系的。在JG1的基因组中还发现有大量的多肽类次级代谢产物的编码基因,几丁质酶、密度感应信号分子降解酶等与抗微生物相关的编码基因,以及对氧化压力的抵抗、重金属的抵抗、抗生素及其他药物抵抗的相关基因,表明JG1既能够形成多种拮抗机制以抑制其他微生物的生长,也能够形成良好的自我保护机制,从而适应多变的海洋环境,在微生物群落中形成生长优势。
The genus Pseudoalteromonas is ubiquitous in marine environment and could bedivided clearly into pigmented and non-pigmented species clades, and the pigmentedspecies have been shown to synthesize a range of extracellular compounds withantibacterial, antifungal and algicidal activities. A great number of antimicrobialcompounds such as small molecular compounds, proteins and polysaccharides wereisolated from Pseudoalteromonas spp., and the analysis of the Pseudoalteromonasgenomes has been an important way to study the biosynthesis of its variousmetabolites and the adaption to fluctuating marine environments. Studies which focuson the antibacterial mechanisms of Pseudoalteromonas spp. might be conducive tothe discovery of new probiotics or marine drugs and provide extensively applicationson the biocontrol in aquaculture, anti-fouling and red tides. In this study, theantibacterial components have been isolated and purified from Pseudoalteromonasflavipulchra, and their activities also have been explored. Furthermore, we havesequenced and analyzed the genome of P. flavipulchra and expounded the geneticcapabilities which enable the bacterium to reveal a survival advantage in variedmarine environments. This could provide further insight into the synthesis andapplications of the bacterium or its antimicrobial agents.
     The marine antagonistic bacterium Pseudoalteromonas flavipulchra JG1with agolden-yellow color was isolated from rearing water of healthy turbot (Scophthalmusmaximus) in Qingdao, China. JG1was confirmed to show excellent antibacterialactivities against many fish pathogens, such as Vibrio spp.. After the extraction withpetroleum ether, EtOAc and n-BuOH, the supernatant and the cells of JG1wasseparated into four fractions, petroleum ether, EtOAc, n-BuOH and water extracts.The antibacterial activities against Vibrio anguillarum were observed in the extractsof petroleum ether, EtOAc and water, indicating that the antibacterial substances ofJG1may include small molecular compounds and macromolecules such asantibacterial protein.
     The antibacterial protein was purified from the extracellular products (ECPs) ofJG1through ammonium sulfate precipitation, SDS-PAGE and electroelution. Afterelectroelution of the gel band with antibacterial activity, the protein was purified toapparent homogeneity, and the antibacterial activity of the single band was alsoobserved by the in-gel antibacterial assay against V. anguillarum. Sequences of twopeptide-fragments from the antibacterial protein were obtained through De novopeptide sequencing. After sequence alignment with the proteome sequence of JG1, acomplete protein sequence and an open reading frame (ORF) were achieved. The ORF,named pfaP, was2,085bases in length. The deduced translation product of pfaP wasa protein of694amino acids with a predicted molecular mass of77.0kDa and atheoretical pI value of4.63. No putative signal peptide was detected with either theSignal P server or the Secretome P server. The PfaP protein was shown to be58%identical to L-lysine oxidase AlpP of Pseudoalteromonas tunicata D2(GenBankAAP73876.1) and54%identical to marinocine antimicrobial protein of Marinomonasmediterranea MMB-1(GenBank AAY33849.1). The inhibitory activity ofextracellular proteins of JG1against V. anguillarum could be abolished in thepresence of catalase, suggesting that the inhibitory effect was mediated by the actionof hydrogen peroxide.
     The gene pfaP was cloned from the genomic DNA of JG1, inserted into prokaryoticexpression plasmids pET24a(+), pET26b(+), pET32a(+), pBAD/Myc-HisB andpRSFDuet-1, and expressed in Escherichia coli BL21(DE3). However, theantibacterial activities were not observed, which may attribute to the absence ofposttranslational modification of the protein in E. coli BL21(DE3).
     The EtOAc extract of the P. flavipulchra JG1was subjected to repeated columnchromatography over silica gel, Sephadex LH-20and RP-18to yield five knowncompounds (15). They were identified as p-hydroxybenzoic acid (1), trans-cinnamicacid (2),6-bromoindolyl-3-acetic acid (3), N-hydroxybenzo isoxazolone (4) and2′-deoxyadenosine (5), respectively, by detailed spectroscopic analysis and these datacomparing with the literatures. The antibacterial activities against V. anguillarum ofthe five compounds were measured through TLC bioautography overlay assay.Inhibition zone of each compound was observed, which showed different effectagainst the target strain. MIC values of compounds15were1.25,1.25,0.25,0.25and5mg/ml, respectively. Compound3isolated from JG1was the only brominated compound with a brown color while the other four compounds were non-halogenatedand almost achromatous. In addition, compound3exhibited a yellow color when itwas diluted, so it probably contributes to the yellow colonies of JG1on marine agar2216plate. Compound3showed the greatest antibacterial activity against both Grampositive and Gram negative bacteria, indicating that this pigment could be associatedwith the antibacterial activity of JG1.
     The genome of P. flavipulchra JG1was sequenced using the Illumina HiSeq2000,and a total of4,913protein encoding genes (4,828,917bp),104tRNA-encoding genesand4rRNA operons were predicted in the draft genome of JG1. Comparing with thegenomes of P. tunicata D2, P. haloplanktis TAC125, P. atlantica T6c and twoPseudoalteromonas strains TW-7and SM9913, a number of COG categories that areoverrepresented in P. flavipulchra JG1, including those for secondary metabolitesbiosynthesis, transport and catabolism, amino acid transport and metabolism as wellas translation, ribosomal structure and biogenesis. The abundance of genes involvedin expression and transport of potential primary and secondary metabolites could beconsistent with the capability of P. flavipulchra to produce various bioactivecompounds. P. flavipulchra shows the second highest proportion of genes assigned todefense mechanisms among Pseudoalteromonas species, giving a hint that JG1could better adapt to the marine environment fluctuation.
     The genome of P. flavipulchra JG1unveils significant genetic advantages againstother microorganisms, encoding antimicrobial agents as well as abilities to adapt tovarious adverse environments. The antibacterial protein PfaP not only catalyticallyproduces hydrogen peroxide as a bacteriostat but likely also participates in thebiosynthesis of small molecular antibacterial compound (6-bromoindolyl-3-aceticacid). Both the macromolecule and small molecules contribute to the antibacterialactivities of JG1. Besides these already identified chemical structures produced bystrain JG1, a large number of peptide-based secondary metabolites encoded in thegenome still awaits discovery. The identification of various antimicrobial enzymessuch as chitinases, AHL acylases enriches the antagonistic mechanisms of P.flavipulchra JG1and affords several admissible biocontrol procedures in aquaculture.Furthermore, JG1also evolved a range of mechanisms such as genes involved inoxidative and heavy metal stress, antibiotics and other drug resistances to adapt theadverse marine environments or multidrug rearing conditions. The analysis of the genome of P. flavipulchra JG1presented here provides a better understanding of itssurvival advantages against other microorganisms and also an extensive applicationprospect.
引文
[1] Skovhus, T. L., Ramsing, N. B., Holmstrom, C. et al. Real-time quantitative PCR forassessment of abundance of Pseudoalteromonas species in marine samples. Appl EnvironMicrobiol,2004.70(4),2373~2382
    [2]王树杉,于敏,张晓华.海洋细菌素的研究进展.海洋科学,2012,36(1),125~131
    [3] Gauthier, G., Gauthier, M.,&Christen, R. Phylogenetic analysis of the genera Alteromonas,Shewanella, and Moritella using genes coding for small-subunit rRNA sequences anddivision of the genus Alteromonas into two genera, Alteromonas (emended) andPseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J SystBacteriol,1995.45(4),755~761
    [4]王树杉.海洋有益菌JG1的分类鉴定及其抑菌活性物质的分离纯化与性质研究:[硕士学位论文].青岛:中国海洋大学,2009
    [5] Bowman, J. P. Bioactive compound synthetic capacity and ecological significance of marinebacterial genus Pseudoalteromonas. Mar Drugs,2007.5(4),220~241
    [6] Ivanova, E. P., Shevchenko, L. S., Sawabe, T. et al. Pseudoalteromonas maricaloris sp. nov.,isolated from an Australian sponge, and reclassification of [Pseudoalteromonas aurantia]NCIMB2033as Pseudoalteromonas flavipulchra sp. nov. Int J Syst Evol Microbiol,2002.52(1),263~271.
    [7] Chen, W., Lin, C., Chen, C. et al. Involvement of an l-amino acid oxidase in the activity of themarine bacterium Pseudoalteromonas flavipulchra against methicillin-resistantStaphylococcus aureus. Enz Microbial Technol,2010.47(1-2),52~58
    [8] Muldoon, J., Perepelov, A. V., Shashkov, A. S. et al. Structure of an acidic polysaccharidefrom the marine bacterium Pseudoalteromonas flavipulchra NCIMB2033(T). CarbohydrRes,2003.338(5),459~462
    [9]李丹,陈丽,李富超,王淑军,李华钟.一株产低温碱性蛋白酶海洋细菌Pseudoalteromonasflavipulchra HH407的筛选与生长特性.食品与生物技术学报,2007,26(6),74~80
    [10]吕明生,王淑军,李华钟,李丹,陈丽,房耀维.海洋细菌Pseudoalteromonas flavipulchraHH407产低温碱性蛋白酶的发酵条件和酶学性质研究.食品科学,2010,31(21),298~303
    [11] Austin, B.,&Austin, D. A. Bacterial fish pathogens: disease of farmed and wild fish (4th ed.):Springer Verlag.2007
    [12] Holmstr m, C.,&Kjelleberg, S. Marine Pseudoalteromonas species are associated withhigher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol,1999.30(4),285~293
    [13] Alcaide, E., Blasco, M. D.,&Esteve, C. Occurrence of drug-resistant bacteria in twoEuropean eel farms. Appl Environ Microbiol,2005.71(6),3348~3350
    [14] Maeda, M., Nogami, K., Kanematsu, M. et al. The concept of biological control methods inaquaculture. Hydrobiologia,1997.358(1),285~290
    [15] Dobretsov, S. V., Dahms, H.U.,&Qian, P.Y. Inhibition of biofouling by marinemicroorganisms and their metabolites. Biofouling,2006.22(1),43~54
    [16] Qian, P. Y., Lau, S. C., Dahms, H. U. et al. Marine biofilms as mediators of colonization bymarine macroorganisms: implications for antifouling and aquaculture. Mar Biotechnol,2007.9(4),399~410
    [17] Wieczorek, S. K.,&Todd, C. D. Inhibition and facilitation of settlement of epifaunal marineinvertebrate larvae by microbial biofilm cues. Biofouling,1998.12(1-3),81~118
    [18] Holmstr m, C., Egan, S., Franks, A. et al. Antifouling activities expressed by marine surfaceassociated Pseudoalteromonas species. FEMS Microbiol Ecol,2002.41(1),47~58
    [19] Burm lle, M., Webb, J. S., Rao, D. et al. Enhanced biofilm formation and increasedresistance to antimicrobial agents and bacterial invasion are caused by synergisticinteractions in multispecies biofilms. Appl Environ Microbiol,2006.72(6),3916~3923
    [20] O'Toole, G., Kaplan, H. B.,&Kolter, R. Biofilm formation as microbial development. AnnuRev Microbiol,2000.54(1),49~79
    [21] Huang, Y. L., Dobretsov, S., Ki, J. S. et al. Presence of acyl-homoserine lactone in subtidalbiofilm and the implication in larval behavioral response in the polychaete Hydroides elegans.Microb Ecol,2007.54(2),384~392
    [22] Dobretsov, S. V.,&Qian, P.Y. Effect of bacteria associated with the green alga Ulvareticulata on marine micro-and macrofouling. Biofouling,2002.18(3),217~228
    [23] Long, R. A., Qureshi, A., Faulkner, D. J. et al.2-n-Pentyl-4-quinolinol produced by a marineAlteromonas sp. and its potential ecological and biogeochemical roles. Appl EnvironMicrobiol,2003.69(1),568~576
    [24] Wigglesworth-Cooksey, B.,&Cooksey, K. E. Use of fluorophore-conjugated lectins to studycell-cell interactions in model marine biofilms. Appl Environ Microbiol,2005.71(1),428~435
    [25] Lovejoy, C., Bowman, J. P.,&Hallegraeff, G. M. Algicidal Effects of a Novel MarinePseudoalteromonas Isolate (Class Proteobacteria, Gamma Subdivision) on Harmful AlgalBloom Species of the Genera Chattonella, Gymnodinium and Heterosigma. Appl EnvironMicrobiol,1998.64(8),2806~2813
    [26] Skerratt, J., Bowman, J., Hallegraeff, G. et al. Algicidal bacteria associated with blooms of atoxic dinoflagellate in a temperate Australian estuary. Mar Ecol Prog Ser,2002.244(1),15
    [27] Burkholder, P. R., Pfister, R. M.,&Leitz, F. H. Production of a pyrrole antibiotic by a marinebacterium. Appl Microbiol,1966.14(4),649~653
    [28] Sakata, T., Sakaguchi, K.,&Kakimoto, D. Antiobiotic production by marine pigmentedbacteria. I. Antibacterial effect of Alteromonas luteoviolaceus. Mem Fac Fish KagoshimaUniv,1982.31,243-250
    [29] Sakata, T., Sakaguchi, K.,&Kakimoto, D. Antiobiotic production by marine pigmentedbacteria. II. Purification and characterization of antibiotic substances of Alteromonasluteoviolacea. Mem Fac Fish Kagoshima Univ,1986.35,29~37
    [30] Gauthier, M. J.,&Flatau, G. N. Antibacterial activity of marine violet-pigmentedAlteromonas with special reference to the production of brominated compounds. Can JMicrobiol,1976.22(11),1612~1619
    [31] Isnansetyo, A.,&Kamei, Y. MC21-A, a bactericidal antibiotic produced by a new marinebacterium, Pseudoalteromonas phenolica sp. nov. O-BC30(T), against methicillin-resistantStaphylococcus aureus. Antimicrob Agents Chemother,2003.47(2),480~488
    [32] Bein, S. J. A study of certain chromogenic bacteria isolated from red tide water with adescription of a new species. Bull Mar Sci,1954.4(2),110~119
    [33] Sobolevskaya, M., Smetanina, O., Speitling, M. et al. Controlling production of brominatedcyclic depsipeptides by Pseudoalteromonas maricaloris KMM636T. Lett Appl Microbiol,2005.40(4),243~248
    [34] Franks, A., Haywood, P., Holmstr m, C. et al. Isolation and structure elucidation of a novelyellow pigment from the marine bacterium Pseudoalteromonas tunicata. Molecules,2005.10(10),1286~1291
    [35] Kawauchi, K., Shibutani, K., Yagisawa, H. et al. A possible immunosuppressant,cycloprodigiosin hydrochloride, obtained from Pseudoalteromonas denitrificans. BiochemBiophys Res Commun,1997.237(3),543~547
    [36] Gerber, N. N.,&Gauthier, M. J. New prodigiosin-like pigment from Alteromonas rubra.Appl Environ Microbiol,1979.37(6),1176~1179
    [37] Yoshikawa, K., Takadera, T., Adachi, K. et al. Korormicin, a novel antibiotic specificallyactive against marine gram-negative bacteria, produced by a marine bacterium. J Antibiot(Tokyo),1997.50(11),949~953
    [38] Yoshikawa, K., Nakayama, Y., Hayashi, M. et al. Korormicin, an antibiotic specific forgram-negative marine bacteria, strongly inhibits the respiratory chain-linkedNa+-translocating NADH: quinone reductase from the marine Vibrio alginolyticus. J Antibiot(Tokyo),1999.52(2),182~185
    [39] Kalinovskaya, N. I., Ivanova, E. P., Alexeeva, Y. V. et al. Low-molecular-weight,biologically active compounds from marine Pseudoalteromonas species. Curr Microbiol,2004.48(6),441~446
    [40] Zheng, L., Chen, H., Han, X. et al. Antimicrobial screening and active compound isolationfrom marine bacterium NJ6-3-1associated with the sponge Hymeniacidon perleve. World JMicrobiol Biotechnol,2005.21(2),201~206
    [41]郭秀春,郑立,田黎,崔志松,韩平,王小如.二酮哌嗪类化合物诱导海洋共栖细菌NJ6-3-1产生抗菌活性的研究.中国海洋药物杂志,2008,27(5),1~7
    [42] Jiang, Z., Boyd, K. G., Mearns-Spragg, A. et al. Two diketopiperazines and one halogenatedphenol from cultures of the marine bacterium, Pseudoalteromonas luteoviolacea. Nat ProdLett,2000.14(6),435~440
    [43] James, S. G., Holmstr m, C.,&Kjelleberg, S. Purification and characterization of a novelantibacterial protein from the marine bacterium D2. Appl Environ Microbiol,1996.62(8),2783-2788
    [44] Mai-Prochnow, A., Lucas-Elio, P., Egan, S. et al. Hydrogen peroxide linked to lysine oxidaseactivity facilitates biofilm differentiation and dispersal in several gram-negative bacteria. JBacteriol,2008.190(15),5493~5501
    [45] McCarthy, S. A., Johnson, R. M.,&Kakimoto, D. Characterization of an antibiotic producedby Alteromonas luteoviolacea Gauthier1982,85isolated from Kinko Bay, Japan. J ApplBacteriol,1994.77(4),426~432
    [46] Gomez, D., Espinosa, E., Bertazzo, M. et al. The macromolecule with antimicrobial activitysynthesized by Pseudoalteromonas luteoviolacea strains is an L-amino acid oxidase. ApplMicrobiol Biotechnol,2008.79(6),925~930
    [47] Gauthier, M. J. Modification of bacterial respiration by a macromolecular polyanionicantibiotic produced by a marine Alteromonas. Antimicrob Agents Chemother,1976.9(3),361~366
    [48] Longeon, A., Peduzzi, J., Barthelemy, M. et al. Purification and partial identification of novelantimicrobial protein from marine bacterium Pseudoalteromonas species strain X153. MarBiotechnol (NY),2004.6(6),633~641
    [49] Thomas, T., Evans, F. F., Schleheck, D. et al. Analysis of the Pseudoalteromonas tunicatagenome reveals properties of a surface-associated life style in the marine environment. PLoSOne,2008.3(9), e3252
    [50] Medigue, C., Krin, E., Pascal, G. et al. Coping with cold: the genome of the versatile marineAntarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res,2005.15(10),1325~1335
    [51] Qin, Q. L., Li, Y., Zhang, Y. J. et al. Comparative genomics reveals a deep-seasediment-adapted life style of Pseudoalteromonas sp. SM9913. ISME J,2011.5(2),274~284
    [52] Holmstr m, C., Rittschof, D.,&Kjelleberg, S. Inhibition of Settlement by Larvae of Balanusamphitrite and Ciona intestinalis by a Surface-Colonizing Marine Bacterium. Appl EnvironMicrobiol,1992.58(7),2111~2115
    [53] Egan, S., James, S., Holmstr m, C. et al. Inhibition of algal spore germination by the marinebacterium Pseudoalteromonas tunicata. FEMS Microbiol Ecol,2001.35(1),67~73
    [54] Matz, C., Webb, J. S., Schupp, P. J. et al. Marine biofilm bacteria evade eukaryotic predationby targeted chemical defense. PLoS One,2008.3(7), e2744
    [55] Burke, C., Thomas, T., Egan, S. et al. The use of functional genomics for the identification ofa gene cluster encoding for the biosynthesis of an antifungal tambjamine in the marinebacterium Pseudoalteromonas tunicata. Environ Microbiol,2007.9(3),814~818
    [56] Williamson, N. R., Simonsen, H. T., Ahmed, R. A. et al. Biosynthesis of the red antibiotic,prodigiosin, in Serratia: identification of a novel2-methyl-3-n-amyl-pyrrole (MAP)assembly pathway, definition of the terminal condensing enzyme, and implications forundecylprodigiosin biosynthesis in Streptomyces. Mol Microbiol,2005.56(4),971~989
    [57] Balibar, C. J.,&Walsh, C. T. In vitro biosynthesis of violacein from L-tryptophan by theenzymes VioA-E from Chromobacterium violaceum. Biochemistry,2006.45(51),15444~15457
    [58] Putman, M., van Veen, H. W.,&Konings, W. N. Molecular properties of bacterial multidrugtransporters. Microbiol Mol Biol Rev,2000.64(4),672~693
    [59] Finking, R.,&Marahiel, M. A. Biosynthesis of Nonribosomal Peptides. Annu Rev Microbiol,2004.58(1),453~488
    [60] Barnhart, M. M.,&Chapman, M. R. Curli biogenesis and function. Annu Rev Microbiol,2006.60,131~147
    [61] Barak, J. D., Gorski, L., Naraghi-Arani, P. et al. Salmonella enterica virulence genes arerequired for bacterial attachment to plant tissue. Appl Environ Microbiol,2005.71(10),5685~5691
    [62] Jeter, C.,&Matthysse, A. G. Characterization of the binding of diarrheagenic strains of E.coli to plant surfaces and the role of curli in the interaction of the bacteria with alfalfa sprouts.Mol Plant Microbe Interact,2005.18(11),1235~1242
    [63] Dalisay, D. S., Webb, J. S., Scheffel, A. et al. A mannose-sensitive haemagglutinin(MSHA)-like pilus promotes attachment of Pseudoalteromonas tunicata cells to the surfaceof the green alga Ulva australis. Microbiology,2006.152(10),2875~2883
    [64] Russell, M. A.,&Darzins, A. The pilE gene product of Pseudomonas aeruginosa, requiredfor pilus biogenesis, shares amino acid sequence identity with the N-termini of type4prepilin proteins. Mol Microbiol,1994.13(6),973~985
    [65] Spangenberg, C., Fislage, R., Sierralta, W. et al. Comparison of type IV-pilin genes ofPseudomonas aeruginosa of various habitats has uncovered a novel unusual sequence. FEMSMicrobiol Lett,1995.125,265~273
    [66] Baynham, P. J., Ramsey, D. M., Gvozdyev, B. V. et al. The Pseudomonas aeruginosaribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility andbiogenesis of type IV pili. J Bacteriol,2006.188(1),132~140
    [67] Ling, J. M., Moore, R. A., Surette, M. G. et al. The mviN homolog in Burkholderiapseudomallei is essential for viability and virulence. Can J Microbiol,2006.52(9),831~842
    [68] Hoke, D. E., Egan, S., Cullen, P. A. et al. LipL32is an extracellular matrix-interactingprotein of Leptospira spp. and Pseudoalteromonas tunicata. Infect Immun,2008.76(5),2063~2069
    [69] Franco, A. V., Liu, D.,&Reeves, P. R. The wzz (cld) protein in Escherichia coli: amino acidsequence variation determines O-antigen chain length specificity. J Bacteriol,1998.180(10),2670~2675
    [70] Fong, S. T., Camakaris, J.,&Lee, B. T. Molecular genetics of a chromosomal locus involvedin copper tolerance in Escherichia coli K-12. Mol Microbiol,1995.15(6),1127~1137
    [71] Silver, S. Bacterial resistances to toxic metal ions--a review. Gene,1996.179(1),9~19
    [72] Benitez-Nelson, C. R. The biogeochemical cycling of phosphorus in marine systems.Earth-Science Reviews,2000.51,109~135
    [73] Kolowith, L. C., Ingall, E. D.,&Benner, R. Composition and cycling of marine organicphosphorus. Limnol Oceanogr,2001.46,309~320
    [74] Suzumura, M., Ishikawa, K.,&Ogawa, H. Characterization of dissolved organic phosphorusin coastal seawater using ultrafiltration and phosphohydrolytic enzymes.. Limnol Oceanogr,1998.43,1553~1564
    [75] Stelzer, S., Egan, S., Larsen, M. R. et al. Unravelling the role of the ToxR-like transcriptionalregulator WmpR in the marine antifouling bacterium Pseudoalteromonas tunicata.Microbiology,2006.152(5),1385~1394
    [76] Stock, J. B., Ninfa, A. J.,&Stock, A. M. Protein phosphorylation and regulation of adaptiveresponses in bacteria. Microbiol Rev,1989.53(4),450~490
    [77] Smith, D. C., Simon, M., Alldredge, A. L. et al. Intense hydrolytic enzymeactivity on marineaggregates and implications for rapid particle dissolution. Nature,1992.359,139~142
    [78] Techkarnjanaruk, S.,&Goodman, A. E. Multiple genes involved in chitin degradation fromthe marine bacterium Pseudoalteromonas sp. strain S91. Microbiology,1999.145(4),925~934
    [79] Hunt, D. E., Gevers, D., Vahora, N. M. et al. Conservation of the chitin utilization pathway inthe Vibrionaceae. Appl Environ Microbiol,2008.74(1),44~51
    [80] Robertus, J. D.,&Monzingo, A. F. The structure and action of chitinases. EXS,1999.87,125~135.
    [81] Piette, F., D'Amico, S., Struvay, C., et al. Proteomics of life at low temperatures: triggerfactor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktisTAC125. Mol microbiol,2010.76(1),120~132.
    [82] Okada, K., Iida, T., Kita-Tsukamoto, K. et al. Vibrios commonly possess two chromosomes. JBacteriol,2005.187(2),752~757
    [83] Daniel, R. M., Dines, M.,&Petach, H. H. The denaturation and degradation of stableenzymes at high temperatures. Biochem J,1996.317(1),1~11
    [84] Weintraub, S. J.,&Manson, S. R. Asparagine deamidation: a regulatory hourglass. MechAgeing Dev,2004.125(4),255~257
    [85] Riemann, L.,&Azam, F. Widespread N-acetyl-D-glucosamine uptake among pelagic marinebacteria and its ecological implications. Appl Environ Microbiol,2002.68(11),5554~5562
    [86] Loschi, L., Brokx, S. J., Hills, T. L. et al. Structural and biochemical identification of a novelbacterial oxidoreductase. J Biol Chem,2004.279(48),50391~50400
    [87] Brunneg rd, J., Grandel, S., St hl, H. et al. Nitrogen cycling in deep-sea sediments of thePorcupine Abyssal Plain, NE Atlantic. Prog Oceanogr,2004.63(4),159~181
    [88] Jorgensen, B. B.,&Boetius, A. Feast and famine--microbial life in the deep-sea bed. Nat RevMicrobiol,2007.5(10),770~781
    [89] Whitman, W. B., Coleman, D. C.,&Wiebe, W. J. Prokaryotes: the unseen majority. ProcNatl Acad Sci U S A,1998.95(12),6578~6583
    [90] Turley, C. Bacteria in the cold deep-sea benthic boundary layer and sediment-water interfaceof the NE Atlantic. FEMS Microbiol Ecol,2000.33(2),89~99
    [91] Ivars-Martinez, E., Martin-Cuadrado, A. B., D'Auria, G. et al. Comparative genomics of twoecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternativelifestyles associated with different kinds of particulate organic matter. ISME J,2008.2(12),1194~1212
    [92] Lauro, F. M., Tran, K., Vezzi, A. et al. Large-scale transposon mutagenesis ofPhotobacterium profundum SS9reveals new genetic loci important for growth at lowtemperature and high pressure. J Bacteriol,2008.190(5),1699~1709
    [93] Chen, X. L., Zhang, Y. Z., Gao, P. J. et al. Two different proteases produced by a deep-seapsychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913. Mar Biol,2003.143(5),989~993
    [94] Qin, G. K., Zhu, L., Chen, X. et al. Structural characterization and ecological roles of a novelexopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp.SM9913. Microbiology,2007.153(5),1566~1572
    [95] Kim, O.S., Cho, Y.J., Lee, K.. et al. Introducing EzTaxon-e: a prokaryotic16S rRNA Genesequence database with phylotypes that represent uncultured species. Int J Syst EvolMicrobiol,2012.62,716~721
    [96] Konstantinidis, K. T., Braff, J., Karl, D. M. et al. Comparative metagenomic analysis of amicrobial community residing at a depth of4,000meters at station ALOHA in the NorthPacific subtropical gyre. Appl Environ Microbiol,2009.75(16),5345~5355
    [97] Brown, M. V., Philip, G. K., Bunge, J. A. et al. Microbial community structure in the NorthPacific ocean. ISME J,2009.3(12),1374~1386
    [98] Glud, R. N. Oxygen dynamics of marine sediments. Mar Biol Res,2008.4(4),243~289
    [99] Nishino, K.,&Yamaguchi, A. Analysis of a complete library of putative drug transportergenes in Escherichia coli. J Bacteriol,2001.183(20),5803~5812
    [100] Eloe, E. A., Lauro, F. M., Vogel, R. F. et al. The deep-sea bacterium Photobacteriumprofundum SS9utilizes separate flagellar systems for swimming and swarming underhigh-pressure conditions. Appl Environ Microbiol,2008.74(20),6298~6305
    [101]张晓华.海洋微生物学.青岛:中国海洋大学出版社,2007.
    [102] Jaruchoktaweechai, C., Suwanborirux, K., Tanasupawatt, S. et al. New macrolactins from amarine Bacillus sp. Sc026. J Nat Prod,2000.63(7),984~986
    [103] Vijayan, K., Bright Singh, I., Jayaprakash, N. et al. A brackishwater isolate ofPseudomonas PS-102, a potential antagonistic bacterium against pathogenic vibrios inpenaeid and non-penaeid rearing systems. Aquaculture,2006.251(2),192~200
    [104] Sugita, H., Matsuo, N., Hirose, Y. et al. Vibrio sp. strain NM10, isolated from the intestineof a Japanese coastal fish, has an inhibitory effect against Pasteurella piscicida. ApplEnviron Microbiol,1997.63(12),4986~4989
    [105] Agger, W. A., McCormick, J. D.,&Gurwith, M. J. Clinical and microbiological features ofAeromonas hydrophila-associated diarrhea. J Clin Microbiol,1985.21(6),909~913
    [106] Messi, P., Guerrieri, E.,&Bondi, M. Bacteriocin-like substance (BLS) production inAeromonas hydrophila water isolates. FEMS Microbiol Lett,2003.220(1),121~125
    [107] Lucas-Elio, P., Hernandez, P., Sanchez-Amat, A. et al. Purification and partialcharacterization of marinocine, a new broad-spectrum antibacterial protein produced byMarinomonas mediterranea. Biochim Biophys Acta,2005.1721(1-3),193~203
    [108] Planas, M., Pérez-Lorenzo, M., Hjelm, M. et al. Probiotic effect in vivo of Roseobacterstrain27-4against Vibrio (Listonella) anguillarum infections in turbot (Scophthalmusmaximus L.) larvae. Aquaculture,2006.255(1),323~333
    [109] Jin, G., Wang, S., Yu, M. et al. Identification of a marine antagonistic strain JG1andestablishment of a polymerase chain reaction detection technique based on the gyrB gene.Aquac Res,2010.41(12),1867~1874
    [110]刘瑞.副溶血弧菌丝氨酸蛋白酶及溶血素的表达、纯化、定点突变及弧菌多联DNA疫苗的研制:[博士学位论文].青岛:中国海洋大学,2011
    [111] Mai-Prochnow, A., Evans, F., Dalisay-Saludes, D. et al. Biofilm development and cell deathin the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol,2004.70(6),3232~3238
    [112] Lovett Jr, C.,&Roberts, J. Purification of a RecA protein analogue from Bacillus subtilis. JBiol Chem,1985.260(6),3305~3313
    [113] Kusakabe, H., Sugi, M., Kodama, K. et al. Antibacterial activity of L-lysine α-oxidaseagainst rec+and rec-strains of Bacillus subtilis. Agricul Biological Chem,1979.43(6),1371~1373
    [114] Mai-Prochnow, A., Webb, J. S., Ferrari, B. C. et al. Ecological advantages of autolysisduring the development and dispersal of Pseudoalteromonas tunicata biofilms. Appl EnvironMicrobiol,2006.72(8),5414~5420
    [115] Lucas-Elio, P., Gomez, D., Solano, F. et al. The antimicrobial activity of marinocine,synthesized by Marinomonas mediterranea, is due to hydrogen peroxide generated by itslysine oxidase activity. J Bacteriol,2006.188(7),2493~2501
    [116] Stumpf, P.,&Green, D. L-amino acid oxidase of Proteus vulgaris. J Biol Chem,1944.153(2),387-399
    [117] Pawelek, P. D., Cheah, J., Coulombe, R. et al. The structure of L-amino acid oxidase revealsthe substrate trajectory into an enantiomerically conserved active site. EMBO J,2000.19(16),4204~4215
    [118]余志良,周宁,乔华. L-氨基酸氧化酶的研究进展.中国生物工程杂志,2012,32(3),125~135
    [119] Geueke, B.,&Hummel, W. Heterologous expression of Rhodococcus opacus L-amino acidoxidase in Streptomyces lividans. Protein Expr Purif,2003.28(2),303~309
    [120] Yang, H., Johnson, P. M., Ko, K. C. et al. Cloning, characterization and expression ofescapin, a broadly antimicrobial FAD-containing L-amino acid oxidase from ink of the seahare Aplysia californica. J Exp Biol,2005.208(18),3609~3622
    [121] Egan, S., James, S., Holmstr m, C. et al. Correlation between pigmentation and antifoulingcompounds produced by Pseudoalteromonas tunicata. Environ Microbiol,2002.4(8),433~442
    [122]王峻锋.三株海洋真菌活性次生代谢产物及其碱调节研究:[博士学位论文].青岛:中国海洋大学,2012
    [123] Aalto, T., Firman, M.,&Rigler, N. p-hydroxybenzoic acid esters as preservatives. I. Uses,antibacterial and antifungal studies, properties and determination. J Am Pharm Assoc,1953.42(8),449-457
    [124] Zaldivar, J.,&Ingram, L. O. Effect of organic acids on the growth and fermentation ofethanologenic Escherichia coli LY01. Biotechnol Bioeng,1999.66(4),203~210
    [125] Andersen, R., Wolfe, M.,&Faulkner, D. Autotoxic antibiotic production by a marineChromobacterium. Marine Biology,1974.27(4),281~285
    [126] Chalabaev, S., Turlin, E., Bay, S. et al. Cinnamic acid, an autoinducer of its ownbiosynthesis, is processed via Hca enzymes in Photorhabdus luminescens. Appl EnvironMicrobiol,2008.74(6),1717~1725
    [127] Burt, S. Essential oils: their antibacterial properties and potential applications in foods-areview. Int J Food Microbiol,2004.94(3),223~253
    [128] Chen, Y. L., Huang, S. T., Sun, F. M. et al. Transformation of cinnamic acid from trans-tocis-form raises a notable bactericidal and synergistic activity against multiple-drug resistantMycobacterium tuberculosis. Eur J Pharm Sci,2011.43(3),188~194
    [129] Pearson, J. P., Gray, K. M., Passador, L. et al. Structure of the autoinducer required forexpression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A,1994.91(1),197~201
    [130] Whitehead, N. A., Barnard, A. M., Slater, H. et al. Quorum-sensing in Gram-negativebacteria. FEMS Microbiol Rev,2001.25(4),365~404
    [131] Eberhard, A., Burlingame, A. L., Eberhard, C. et al. Structural identification of autoinducerof Photobacterium fischeri luciferase. Biochemistry,1981.20(9),2444~2449
    [132] Uroz, S., Dessaux, Y.,&Oger, P. Quorum sensing and quorum quenching: the yin and yangof bacterial communication. Chembiochem,2009.10(2),205~216
    [133] Ogata, H., Goto, S., Sato, K. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes.Nucleic Acids Res,1999.27(1),29~34
    [134] Tatusov, R. L., Koonin, E. V.,&Lipman, D. J. A genomic perspective on protein families.Science,1997.278(5338),631~637
    [135] Pruitt, K. D., Tatusova, T.,&Maglott, D. R. NCBI reference sequences (RefSeq): a curatednon-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res,2007.35(Database issue), D61~65
    [136] Markowitz, V. M.,&Kyrpides, N. C. Comparative genome analysis in the integratedmicrobial genomes (IMG) system. Methods Mol Biol,2007.395,35~56
    [137] Thompson, J. D., Higgins, D. G.,&Gibson, T. J. CLUSTAL W: improving the sensitivityof progressive multiple sequence alignment through sequence weighting, position-specificgap penalties and weight matrix choice. Nucleic acids research,1994.22(22),4673~4680
    [138] Petersen, T. N., Brunak, S., von Heijne, G. et al. SignalP4.0: discriminating signal peptidesfrom transmembrane regions. Nat Methods,2011.8(10),785~786
    [139] Medema, M. H., Blin, K., Cimermancic, P. et al. AntiSMASH: rapid identification,annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial andfungal genome sequences. Nucleic Acids Res,2011.39(Web Server issue), W339~346
    [140] Letunic, I., Doerks, T.,&Bork, P. SMART7: recent updates to the protein domainannotation resource. Nucleic Acids Res,2012.40(Database issue), D302~305
    [141] Marchler-Bauer, A., Lu, S., Anderson, J. B. et al. CDD: a Conserved Domain Database forthe functional annotation of proteins. Nucleic Acids Res,2011.39(Database issue),D225~229
    [142] Faust, A., Niefind, K., Hummel, W. et al. The structure of a bacterial L-amino acid oxidasefrom Rhodococcus opacus gives new evidence for the hydride mechanism fordehydrogenation. J Mol Biol,2007.367(1),234~248
    [143] Nichols, B. P.,&Green, J. M. Cloning and sequencing of Escherichia coli ubiC andpurification of chorismate lyase. J Bacteriol,1992.174(16),5309~5316
    [144] Soballe, B.,&Poole, R. K. Ubiquinone limits oxidative stress in Escherichia coli.Microbiology,2000.146(4),787~796
    [145] Watts, K. T., Mijts, B. N., Lee, P. C. et al. Discovery of a substrate selectivity switch intyrosine ammonia-lyase, a member of the aromatic amino acid lyase family. Chem Biol,2006.13(12),1317~1326
    [146] Xiang, L.,&Moore, B. S. Inactivation, complementation, and heterologous expression ofencP, a novel bacterial phenylalanine ammonia-lyase gene. J Biol Chem,2002.277(36),32505~32509
    [147] Rastogi, N., Goh, K. S., Horgen, L. et al. Synergistic activities of antituberculous drugs withcerulenin and trans-cinnamic acid against Mycobacterium tuberculosis. FEMS Immunol MedMicrobiol,1998.21(2),149~157
    [148] Patten, C. L.,&Glick, B. R. Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol,1996.42(3),207~220
    [149] Hoster, F., Schmitz, J. E.,&Daniel, R. Enrichment of chitinolytic microorganisms: isolationand characterization of a chitinase exhibiting antifungal activity against phytopathogenicfungi from a novel Streptomyces strain. Appl Microbiol Biotechnol,2005.66(4),434~442
    [150] Lam, Y. W., Wang, H. X.,&Ng, T. B. A robust cysteine-deficient chitinase-like antifungalprotein from inner shoots of the edible chive Allium tuberosum. Biochem Biophys ResCommun,2000.279(1),74~80
    [151] Funkhouser, J. D.,&Aronson, N. N., Jr. Chitinase family GH18: evolutionary insights fromthe genomic history of a diverse protein family. BMC Evol Biol,2007.7,96
    [152] Kawase, T., Saito, A., Sato, T. et al. Distribution and phylogenetic analysis of family19chitinases in Actinobacteria. Appl Environ Microbiol,2004.70(2),1135~1144
    [153] Chang, W. T., Chen, C. S.,&Wang, S. L. An antifungal chitinase produced by Bacilluscereus with shrimp and crab shell powder as a carbon source. Curr Microbiol,2003.47(2),102~108
    [154] Wang, S. L.,&Chang, W. T. Purification and characterization of two bifunctionalchitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187in ashrimp and crab shell powder medium. Appl Environ Microbiol,1997.63(2),380~386
    [155] Blodgett, J. A., Oh, D. C., Cao, S. et al. Common biosynthetic origins for polycyclictetramate macrolactams from phylogenetically diverse bacteria. Proc Natl Acad Sci U S A,2010.107(26),11692~11697
    [156] Ji, G., Beavis, R. C.,&Novick, R. P. Cell density control of staphylococcal virulencemediated by an octapeptide pheromone. Proc Natl Acad Sci U S A,1995.92(26),12055~12059
    [157] Flavier, A. B., Clough, S. J., Schell, M. A. et al. Identification of3-hydroxypalmitic acidmethyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. MolMicrobiol,1997.26(2),251~259
    [158] Chen, X., Schauder, S., Potier, N. et al. Structural identification of a bacterialquorum-sensing signal containing boron. Nature,2002.415(6871),545~549
    [159] Wang, L. H., Weng, L. X., Dong, Y. H. et al. Specificity and enzyme kinetics of thequorum-quenching N-Acyl homoserine lactone lactonase (AHL-lactonase). J Biol Chem,2004.279(14),13645~13651
    [160] Tommonaro, G., Abbamondi, G. R., Iodice, C. et al. Diketopiperazines produced by thehalophilic archaeon, Haloterrigena hispanica, activate AHL bioreporters. Microb Ecol,2012.63(3),490-495
    [161] Sperandio, V., Torres, A. G.,&Kaper, J. B. Quorum sensing Escherichia coli regulators Band C (QseBC): a novel two-component regulatory system involved in the regulation offlagella and motility by quorum sensing in E. coli. Mol Microbiol,2002.43(3),809~21
    [162] Huang, J. J., Petersen, A., Whiteley, M. et al. Identification of QuiP, the product of genePA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1.Appl Environ Microbiol,2006.72(2),1190~1197
    [163] Sio, C. F., Otten, L. G., Cool, R. H. et al. Quorum quenching by an N-acyl-homoserinelactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun,2006.74(3),1673~1682
    [164] Sola-Landa, A., Moura, R. S.,&Martin, J. F. The two-component PhoR-PhoP systemcontrols both primary metabolism and secondary metabolite biosynthesis in Streptomyceslividans. Proc Natl Acad Sci U S A,2003.100(10),6133~6138
    [165] Gillen, K. L.,&Hughes, K. T. Molecular characterization of flgM, a gene encoding anegative regulator of flagellin synthesis in Salmonella typhimurium. J Bacteriol,1991.173(20),6453~6459
    [166] Liu, X.,&Matsumura, P. The FlhD/FlhC complex, a transcriptional activator of theEscherichia coli flagellar class II operons. J Bacteriol,1994.176(23),7345~7351
    [167] Pruss, B. M.,&Matsumura, P. A regulator of the flagellar regulon of Escherichia coli, flhD,also affects cell division. J Bacteriol,1996.178(3),668~674
    [168] Jani, A. J.,&Cotter, P. A. Type VI secretion: not just for pathogenesis anymore. Cell HostMicrobe,2010.8(1),2~6
    [169] Hayes, J. D.,&Wolf, C. R. Molecular mechanisms of drug resistance. Biochem J,1990.272(2),281-295
    [170] Davies, J. Inactivation of antibiotics and the dissemination of resistance genes. Science,1994.264(5157),375~382
    [171] Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. MicrobiolMol Biol Rev,2003.67(4),593~656
    [172] Levy, S. B. Active efflux mechanisms for antimicrobial resistance. Antimicrob AgentsChemother,1992.36(4),695~703
    [173] Nikaido, H. Prevention of drug access to bacterial targets: permeability barriers and activeefflux. Science,1994.264(5157),382~388
    [174] Linton, K. J., Cooper, H. N., Hunter, I. S. et al. An ABC-transporter from Streptomyceslongisporoflavus confers resistance to the polyether-ionophore antibiotic tetronasin. MolMicrobiol,1994.11(4),777~785