人群拥挤踩踏事故风险理论及其在体育赛场中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,大型社会活动日益增多,人群大量聚集导致的拥挤踩踏事故风险也显著提高。近年来的事故灾害统计分析也表明人群拥挤踩踏事故逐步上升为大型公共聚集场所的主要人为事故灾害类型之一。与火灾等常见事故灾害不同,人群拥挤踩踏事故的发生极其突然,社会影响重大。但各种事故灾害都有其成因机制及发生发展规律,为了防止人群中这种潜在的能量以灾难性的方式释放,需要从理论高度开展对人群拥挤踩踏事故的承载体人群的运动规律及事故致因机理等方面的研究。
     人群拥挤踩踏事故风险理论研究对于大型建筑性能化设计,人群疏散及管理等有重要应用意义。目前该研究处于起步阶段,仅仅停留在现象表面。本文的研究目的就是通过对人群拥挤踩踏事故风险特征分析提出人群拥挤踩踏事故风险理论并建立相关模型,从而为解释事故成因机制及形成演变规律提供一些有益的尝试及参考。
     论文着眼于大型人群聚集场所(以体育赛场为例)紧急状况(原发事故已经发生)下的人群疏散过程。依据事故数据及现实观测对疏散人群中的个体移动规律进行深入研究分析,指出在此过程中人群移动经过四个阶段,即人群自由移动、滞留、拥挤及疏散,而事故发生需要经过自由移动、滞留、拥挤和踩踏四阶段,据此从风险的角度提出了人群拥挤踩踏事故风险(四阶段)理论并建立了事故风险理论模型。
     人群拥挤踩踏事故风险理论模型的求解涉及因素众多,目前对于理论模型中的滞留阶段基于人群流量与人群密度关系建立了时间维变量的滞留人数定量模型(SCM),用于计算人群疏散过程中“瓶颈”区域内随时间变化的滞留人数,并通过滞留人数与总的容纳人数之比来预测人群拥挤踩踏事故发生概率。但对于事故风险的后果即人群伤亡很难利用数学定量方法求解,因此本文针对理论模型中的拥挤阶段建立了人群拥挤微观模拟模型。人群拥挤微观模拟模型是在经典“社会力”模型基础上,根据对人群拥挤踩踏事故特征分析,引入“拥挤力”的概念来解释拥挤踩踏伤亡后果致因,即个体“拥挤力”积累到设定阈值并持续一段时间个体即死亡。研究分析表明“拥挤力”与“心理排斥力”不同属于真正力学意义上的作用力,并依据动量定理结合“磁场力”模型对个体“拥挤力”进行建模分析。
     微观模拟模型的实施需要计算机模拟技术,本文依据多智能体(MAS)整体建模方法构建了人群拥挤踩踏事故模型系统的层次结构,目前设定了赛场环境和观众两类智能体(Agent),并给出人群拥挤踩踏事故模拟机理。结合人群拥挤微观模拟模型在多智能体模拟平台NetLogo上开发了大型赛场出口人群拥挤踩踏事故模拟系统(CroC&Ts-Egress)。
     论文实例选取天津奥林匹克中心体育场某看台出口,从以下三个方面进行应用研究:一是针对人群拥挤踩踏事故风险四阶段理论中滞留阶段,应用本文提出的滞留人数定量模型(SCM)对体育赛场看台不同宽度出口人群疏散实例计算;二是基于人群流动理论和离散计算方法对传统疏散时间计算公式进行了改进,并提出了疏散离散时间计算模型(EDTM),运用此改进模型对天津奥林匹克中心体育场某看台出口人群疏散时间计算,并与BuildingEXODUS计算机模拟、传统公式计算结果对比分析;三是利用本论文开发的人群拥挤踩踏事故模拟系统(CroC&Ts-Egress)通过设定不同的方案主要针对不同赛场出口宽度进行模拟,通过模拟结果分析表明,CroC&Ts-Egress可以很好的解决SCM不能计算事故风险后果的问题,并通过模拟结果对SCM计算结果推理进行了验证分析,表明SCM定量计算推理与CroC&Ts-Egress模拟结果是一致的。
In many large crowd, there is a potential for injury and even loss of life rusulting from the dynamics of the crowd’s behavior. Given the increasing number of large-scale sporting events, religious gathering, and rock concerts with time, the issue of crowd safety is of growing importance following the society development. The many crowd-related disasters (that is, fatal accident) over the past decade have demonstrated the possible lethal consequences of large gatherings of people. The happen all at once and the consequence is serious with crowd crushing and trampling accident contrast to fire. But every accidents and disasters have the interior law, we must develop the study for the crowd crushing and trampling in theory to avoid the potential energy release in the gathering people.
     The mechanics of human crowds is complex. The theory study for the crowd crushing and trampling accident is very significance for the building performance-design, crowd evacuation and management. The aim of this study is putting forward the crowd crushing and trampling acciednt risk theory and establish the risk model.
     Through the accident data and observation in scene we have a in-depth study to the individual move rule. And indicating the individual move pass four phases in emergency: free move, stranded, crushing and trampling if accident happen. And if crowd evacuation safely four phases of individual move including free move, stranded, crushing and evacuation. The stranded and crushing are the important phases for the crowd crushing and evacuation accident. Hereby crowd crushing and trampling accident risk (four phase) theory was put forward and the relational risk theory model was modelled.
     The risk theory model isn’t able to solve in current phase. A Stranded Crowd number quantitative Model (SCM) was put forward based on the relation of crowd flow and density. We can calculated the probability of crowd crushing and trampling risk through the SCM calculated results divided by total design people number. But the consequence of risk couldn’t resolve with the mathematic method, so the crowd crushing microscopic simulation model was found based on the‘society force’model. The‘crushing force’was put forward to explain the cause of crowd casualty during the evacuation process, and we can solve the‘crushing force’model through the momentum theorem with“magnetic force”model.
     The implement of microscopic simulation model need the computer simulation technology. We construct the hiberarchy of crowd crushing and trampling simulation system through the technology of MAS. Combine the crushing micrososmic simulation model develop the Crowd Crushing and Trampling Simulation system for Egress (CroC&Ts-Egress) with cross-platform multi-agent programmable modeling environment‘NetLogo’.
     The application of all the models is the egress of Tianjin Olympic Center Stadium, and three parts are included in this paper. First, we calculated the stranded crowd number with SCM in the egress area; Second, a computational Evacuation Discrete Time Model (EDTM) has been presented to analyze the building egress evacuation time problem with previous works, and a comparison of EDTM, previous model and computer simulation indicates that both the EDTM and the simulation curves were found to give better predictions than the previous model; Third, a simulation was utilized with CroC&Ts-Egress for the different width egress, the simulation results contrast to the SCM calculation results indicate there are the same.
引文
[1] 南开大学城市公共安全研究中心. 国家“十五”科技攻关滚动项目“重大工业事故与大城市火灾防范及应急技术研究”子课题“城市典型公共场所与设施风险评价及安全规划关键技术研究”[R]. 天津, 2004
    [2] Hoskin K. Fire Protection and Evacuation Procedures of Stadia Venues in New Zealand [D]. New Zealand: University of Canterbury 2004
    [3] Crowd Dynamics Ltd. Crowd disasters, http://www.crowddynamics.com/Main/Crowddisasters.html, 2002
    [4] 第 29 届奥林匹克运动会组织委员会. 场馆建设, http://www.beijing2008.cn/, 2005
    [5] Lee R C, Hughes R L. Exploring trampling and crushing in a crowd, Journal of transportation engineering [J]. Journal of transportation engineering, 2005, 131, (8): 575-582
    [6] Helbing D. Traffic and related self-driven many-particle sysetms [J]. Reviews of modern physics, 2001, 73, 1067-1141
    [7] Helbing D, Farkas I, Vicsek. T. Simulating dynamical features of escape panic [J]. Nature, 2000, 407, 487-490
    [8] Henein C M, White T. Macroscopic effects of microscopic forces between agents in crowd models [J]. Physica A: Statistical Mechanics and its Applications, 2007, 373, 694-712
    [9] Kirchner A, Schadschneider A. Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics [J]. Physica A: Statistical Mechanics and its Applications, 2002, 312, 260-276
    [10] Heigeas L, Luciani A, Thollot J. A physically-based particle model of emergent crowd behaviors [R]. Moscow: International Conference on Computer Graphics & Vision, 2003
    [11] Teknomo K. Microscopic Pedestrian Flow Characteristics: Development of an Image Processing Data Collection and Simulation Model [D]. Sendai: Tohoku University, 2002
    [12] Valach L, Young R A, Lynam M J. A primer for applied research in the social science [M]. Praeger: Westport,Conn, 2002
    [13] Canetti E. Crowds and Power [M]. London: Phoenix Press, 2000
    [14] Mcphail C. The myth of the madding crowd [M]. New York: Walter de Gruyter, 1991
    [15] 卢春霞. 人群流动的波动性分析 [J]. 中国安全科学学报, 2006, 16, (2): 30-34
    [16] 张培红,黄晓燕,万欢欢等. 基于智能体技术的人员群集流动动力学模型 [J]. 沈阳建筑大学学报(自然科学版). 2005, 21, (4): 358-362
    [17] 张培红,黄晓燕,万欢欢等. 人员群集流动自适应元胞自动机模型研究 [J]. 沈阳建筑大学学报(自然科学版). 2006, 22, (2): 289-293
    [18] Zhang Q S, Liu M, Wu C H. A stranded-crowd model (SCM) for performance-based design of stadium egress [J]. Building and Environment, 2007, 42, (7): 2630-2636
    [19] 张青松,刘茂,赵国敏. 体育赛场人群疏散过程滞留人数定量模型研究 [J]. 安全与环境学报, 2006, 6, (3): 21-23
    [20] 任常兴,吴宗之,刘茂. 城市公共场所人群拥挤踩踏事故分析 [J]. 中国安全科学学报, 2005, 15, (12): 102-106
    [21] Qingsong Zhang, Mao Liu, Zhao G. A modify of evacuation time computational model for stadium crowd risk analysis [J]. Trans IChemE, Part B, Process Safety and Environmental Protection, 2007, 85, (B4): 1-9
    [22] 刘茂,王振. 行人和疏散动力学研究现状及进展 [J]. 安全与环境学报, 2006, 6, (Sup): 121-125
    [23] 胡志莹,叶明海. 大型社会活动人群拥挤事故防范系统研究 [J]. 灾害学, 2003, 21, (1): 108-112
    [24] 寇丽平. 群体性挤踏事件原因分析与预防研究 [J]. 中国人民公安大学学报(社会科学版), 2005, 4, (4): 16-22
    [25] Fruin J J. Pedestrian Planning and Design. Metropolitan Association of Urban Designers and Environmental Planners [M]. New York: Inc, 1971
    [26] Fruin J J. Designing for pedestrians: A level of service concept [R]. Washington: Transportation Research Board Business Office, 1971, 355: 1-15
    [27] Yuhaski S, Smith J M. Modeling circulation systems in buildings using state dependent queuing models [J]. Queueing System, 1989, 4, (4): 319-338
    [28] Borgers A W J, Timmermans H J P. A Model of Pedestrian Route Choice and Demand for Retail Facilities within Inner-City Shopping Areas [J]. Geographical Analysis, 1986, 18, 115-128
    [29] Mayne A J. Some further results in the theory of pedestrians and road traffic [J]. Biometrica, 1954, 41, 375-389
    [30] Henderson L F. The statistic of crowd fluids [J]. Nature, 1971, 229, 381-383
    [31] Henderson L F. On the fluid mechanics of human crowd motion [J]. Transportation Research, 1974, 8, 509-515
    [32] Hebing D. A fluid-dynamic model for the movement of pedestrians [J]. Complex System, 1992, 6, 391-415
    [33] Hughes R L. A continuum theory for the flow of pedestrians [J]. Transportation Research Part B, 2002, 36, 507-535
    [34] Neumann J V. Theory of Self-Reproducing Automata [M]. Champaign: University of Illinois Press, 1966
    [35] Gipps P G, Marksjo B. A micro-simulation model for pedestrian flows [J]. Mathematics and Computers in Simulation, 1985, 27, 95-105
    [36] Blue V J, Adler J L. Using cellular automata microsimulation to model pedestrian movement [C]. New York: Proceeding of the 14th international symposium on transportation and traffic theory,A. Ceder(ed) Elsevier Science Ltd, 1999: 235-254
    [37] Blue V J, Adler J L. Cellular automata microsimulation of bidirectional pedestrian flows [J].Transportation Research Board, 2000, 1678, 135-141
    [38] Muramatsu M T, Nagatani T. Jamming transition in pedestrian counter flow [J]. Physica A: Statistical mechanics and its applications, 1999, 267, 487-498
    [39] Klüpfel H. A Cellular Automaton Model for Crowd Movement and Egress Simulation [D]. Standort Duisburg: University Duisburg-Essen, 2003
    [40] 徐高. 地铁车站人员疏散的计算机仿真方法 [J]. 现代隧道技术, 2003, 40, (2): 32-35
    [41] 徐高. 人群疏散的仿真研究 [D]. 成都: 西南交通大学, 2003
    [42] 杨立中,李健,赵道亮等. 基于个体行为的人员疏散微观离散模型 [J]. 中国科学 E 辑 工程科学 材料科学, 2004, 34, (11): 1264-1270
    [43] 方伟峰,杨立中,黄锐. 基于元胞自动机的多自主体人员行为模型及其在性能化设计中的应用 [J]. 中国工程科学, 2003, 5, (3): 67-71
    [44] 宋卫国,于彦飞,范维澄等. 一种考虑摩擦和排斥的人员疏散元胞自动机模型 [J]. 中国科学 E 辑 工程科学 材料科学, 2005, 35, (7): 725-736
    [45] Helbing D, Buzna L, Johansson A. Self-organized pedestrian crowd dynamics: experiments, simulations and design solutions [J]. Transportation Science, 2005, 39, (1): 1-24
    [46] Okazaki S, Matsushita S. A Study of Simulation Model for Pedestrian Movement with Evacuation and Queuing [C]. London: Proceeding of the International Conference on Engineering for Crowd Safety,1993: 271-280
    [47] Matsushita S, Okazaki S. A study of sumulation model for way finding behavior by experments in mazes [J]. Journal of Architecture, Planning. Environment Engineering. AIJ, 1991, 429, 51-59
    [48] Bomarius F. A multi-agent approach towards modeling urban traffic scenarios [R]. PR-92-47,Deutches Forschungszentrum far Ktlnstliche Intelligenz, 1992
    [49] Rossetti R J F, Bampi S. An agent-based framework for the assessment of drivers' decision-making [C]. Dearborn: IEEE Intelligent Transportation Systems Conference Proceedings,2000: 387-392
    [50] Ehlert P A M, Rothkrantz L J M. Microscopic traffic simulation with reactive driving agents [C]. Oakland: IEEE Intelligent Transportation Systems Proceedings,2001
    [51] F.Bousquet, Page C L. Multi-agent simulations and ecosystem management [J]. a review, Ecological Modelling, 2004, 176, 313-332
    [52] Castelfranchi C. Modelling social action for AI agents [J]. Artificial Intelligence, 1998, 103, 157-182
    [53] Langston P A, Masling R, Asmar B N. Crowd dynamics discrete element multi-circle model [J]. Safety Science 2006, 44, (5): 395-417
    [54] Antonini G, Bierlaire M, Weber M. Discrete choice models of pedestrian walking behavior [J]. Transportation Research Part B, 2006, 40, 667-687
    [55] Pan X. Computational Modeling of Human and Social Behaviors for Emergency Egress Analysis [D]. Stanford: Stanford University, 2006
    [56] 张晋. 基于元胞自动机的城域混合交通流建模方法研究 [D]. 杭州: 浙江大学, 2004
    [57] 邓宏钟. 基于多智能体的整体建模仿真方法及其应用研究 [D]. 长沙: 国防科学技术大学, 2002
    [58] Sandberg A. Unannounced evacuation of large retail-stores——An evaluation of human behaviour and the computer model Simulex [R]. Lund: Department of Fire Safety Engineering, 1997
    [59] Graat E, Midden C, Bockholts P. Complex evacuation; effects of motivation level and slope of stairs on emergency egress time in a sports stadium [J]. Safety Science 1999, 33, 127-141
    [60] Simth R A, Dickie J F. Engineering for Crowd Safety [M]. Amsterdam: Elsevier Science, 1993
    [61] 曾涛. 体育建筑设计手册 [M]. 北京: 中国建筑工业出版社, 2001
    [62] 化彬,江见鲸. 人群拥挤事故与避灾心理分析 [J]. 灾害学, 1996, 11, (4): 89-93
    [63] Fell A. Study of modeling Crowd Dynamics [R]. Ottawa: Carleton University, 2003
    [64] 刘强,杨浩,陆化普,石京. 运动场馆人流疏散及其模型探讨 [J]. 土木工程学报, 2004, 37, (10): 92-98
    [65] 张青松. 北京奥林匹克公园风险分析与管理 [D]. 天津: 南开大学, 2004
    [66] Togawa K. Study of Fire Escapes Basing on the Observations of Multiple Currents [R]. Tokyo: Report No. 14, Building Research Institute, Ministry of Construction, Japan, 1995
    [67] 温丽敏,陈全,陈宝智. 火灾中群集疏散的设计方法及计算机仿真 [J]. 东北大学学报: 自然科学版, 1998, 19, (5): 445-447
    [68] 马莉莉. 建筑消防过程中人员安全疏散问题的计算机模拟研究 [D]. 武汉: 武汉大学, 2004
    [69] Wertheimer P. Presentation to the Danish Committee on Concert and Festival Safety [R]. Denmark: Copenhagen, 2000
    [70] 张晋,李平,王慧. 基于多智能体的城域混合交通仿真系统的体系结构 [J]. 复杂系统与复杂性科学, 2004, 1, (3): 82-88
    [71] Vassalos G C. Critical Review of Data Available as input to Evacuation Simulation Tools [R]. 2004, MCA Research Project 490, Task 3.1a: 16-18
    [72] Purser D A, Bensilum M. Quantification of behaviour for engineering design standards and escape time calculations [J]. Safety Science, 2001, 38, (2): 157-182
    [73] 霍然,袁宏勇. 性能化防火分析与设计 [M]. 合肥: 安徽科学技术出版社, 2003
    [74] Kyligowski E D. The evaluation of a performance-based design process for a hotel building: The comparison of two egress models [D]. College Park: University of Maryland, 2003
    [75] Relley H H, Condry J C. Collective behavior in a simulated panic situation [J]. Journal of Experimental and Social Psychology, 1965, 1, 20-54
    [76] Bruzzone A G, Signorile R. Crowd Control Simulation in Java Based Environment [C]. San Francisco: WEBSIM,1999: 23-28
    [77] Zarboutis N, Marmaras N. Design of formative evacuation plans using agent-based simulation [J]. Safety Science, 2006, doi:10.1016/j.ssci.2006.08.029
    [78] 王利. 基于主体的仿真建模工具 [J]. 计算机教育, 2005, 2, 48-51
    [79] Wilensky, U, NetLogo, http://ccl.northwestern.edu/netlogo. Center for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston, IL, 1999
    [80] Thompson P A, Marchant. E W. A computer model for the evacuation of large building populations [J]. Fire Safety Fournal, 1995, 24, 131-148
    [81] Thompson P, Lindstrom H, Ohlsson P. Simulex: Analysis and Changes for IMO Compliance [C]. London: Proceedings of 2nd International Conference: Pedestrian and Evacuation Dynamics,2003
    [82] MacLennan H A, Regan M A, Ware R. An Engineering Model for the Estimation of Occupant Pre-evacuation and/or Response Times and the Probability of their Occurrence [C]. Belfast: Human Behaviour in Fire -Proc. of the 1st International Symposium,1999: 13-29
    [83] Spearpoint M. The effect of pre-evacuation distributions on evacuation times in the Simulex Model [J]. Journal of Fire Protection Engineering, 2004, 14, 12-14
    [84] Sutherland D, Kaufman K, Moitoza J. Kinematics of normal human walking [R]. in Rose J, Gamble JG (eds): Human Walking, ed 2. Baltimore, MD: Williams and Wilkins, 1994, 23-44
    [85] 蔡镇钰. 建筑设计资料集第 7 册 [M]. 北京: 中国建筑工业出版社, 1997
    [86] 熊瑛. 城市公共场所风险分析与减缓 [D]. 天津: 南开大学, 2004
    [87] 戎明彦. 奥运会体育场馆聚集人群及其疏散风险的研究 [D]. 天津: 南开大学, 2004
    [88] 北京市建筑设计研究院. 奥林匹克与体育建筑 [M]. 天津: 天津大学出版社, 2002
    [89] Predtechenskii V M, Milinskii A I. Planning for Foot Traffic Flow in Buildings [M]. New Delhi: Amerind Publishing, 1978
    [90] Paul J L. Effective Width Model for Evacuation Flow in Buildings [C]. Washington: Proceedings of Workshop on Engineering Applications of Fire Technology, National Bureau of Standards,1980: 215-232
    [91] Stahl F B. Fires II: A Behavior-Based Computer Simulation of Emergency Egress During Fires [J]. Fire Technology, 1982, 18, (1): 49-65
    [92] Nelson H E, MacLennan H A. Emergency movement, SFPE Handbook of fire protection engineering [M]. NFPA Quincy MA, USA, 1988
    [93] Poyner B, Robinson D, Hughes N. Safety in Football Stadia: a Method of Assessment [R]. London: SCICON, Scientific Control Systems Limited, 1972
    [94] Daamen W, Hoogendoom. Controlled experiments to derive walking behaviour [J]. European Journal of Transport and Infrastructure Research, 2003, 3, (1): 39-59
    [95] Lo S M, Fang Z, Lin P. An evacuation model: the SGEM package [J]. Fire Safety Journal, 2004, 39, 169-190
    [96] Purser D A, Bensilum M. Quantification of behaviour for engineering design standards and escape time calculationsm [J]. Safety Science, 2001, 26, 157-182
    [97] Still G K. Crowd Dynamics [D]. Coventry: University of Warwick, 2000
    [98] US National Fire Protection Association, SFPE Handbook of Fire Protection Engineering[S], Quincy, Massachusetts,Third edition, 2002, 3-13
    [99] 刘禹,林威,李德志. 奥运场馆人群疏散定量模型 [R]. 哈尔滨: 哈尔滨工业大学奥林匹克数学竞赛, 2002
    [100] 袁理明,范维澄. 建筑火灾中人员安全疏散时间的预测 [J]. 自然灾害学报, 1977, 6, (2): 28-33
    [101] Stationery Office/ DCMS/The Scottish Office, Guide to Safety at Sports Grounds (the Green Guide) [S], Fourth Edition, 1997
    [102] Owen M, Galea E, Lawrence P. The EXODUS evacuation model applied to building evacuation scenarios [J]. Journal of Fire Protection Engineering 1996, 8, (2): 65-86