湿热环境下大漆涂饰竹材防潮机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹材装饰材料具有天然环保、纹理与众不同、调温调湿性能优异的特点,由于竹材材料本身易吸湿、易发霉、易变形特性,竹材装饰材料的应用空间受到限制。大漆是我国历史悠久的一种天然涂料,具有环保耐湿的特点。由于大漆涂饰工艺复杂、大漆干燥慢等特性的局限,大漆涂饰工艺没有在装饰材料上得到应用。如果把竹材和大漆结合起来,既能继承发扬大漆涂饰工艺,又能赋予竹质装饰材料新的内涵,研究意义深远。本论文采用耐湿的大漆涂饰竹材,对竹材进行防潮性能方面的研究。具体研究内容和结果如下:
     (1)湿热环境下大漆涂饰处理竹材的含水率变化规律
     大漆涂饰竹材的平衡含水率小于素材的平衡含水率,说明大漆涂饰处理使得竹材具备防潮能力。大漆涂饰竹材的吸湿含水率随着介质温度和湿度的改变而变化。在同一温度条件下,吸湿含水率随湿度的增大而增大;在同一湿度条件下,随着温度的增大而变小。
     大漆刷漆工艺处理的竹材的吸湿性小于擦漆工艺处理的竹材的吸湿性。随着刷漆及擦漆涂饰层数的增加,竹材的吸湿性越小,防潮能力越强。
     大漆涂饰竹材的防潮能力最强,水性漆涂饰竹材的防潮能力次之,桐油涂饰竹材的防潮能力最弱。
     大涂饰处理方法对毛竹的吸湿性影响最大,防潮能力最强,柞木次之,樟子松最差。
     大漆涂饰材料的吸湿率曲线与素材的吸湿率曲线完全不同,说明经过大漆涂饰处理的材料的吸湿机理发生了变化。大漆涂饰处理能够有效地降低竹材的吸湿性,降低竹材的吸湿速度,增强竹材的防潮能力。原因是经过大漆涂饰处理的竹材的吸湿机理发生了变化。生大漆涂饰处理使得竹材表面的孔隙率降低,竹材表面的自由能减少。同时,大漆浸入竹材,对竹材孔隙进行了填充,使得竹材内表面减小,从而大漆涂饰竹材的吸湿性得以降低。
     (2)大漆涂饰处理对竹材应用性能的影响
     材料尺寸稳定性研究表明,大漆涂饰竹材的尺寸稳定性显著提高,竹材素材及大漆涂饰竹材的吸湿膨胀随着湿度的增加而上升,其弦向吸湿膨胀率大于径向吸湿膨胀率。柞木及樟子松也有相似的结果。大漆涂饰竹材在25℃环境下与素材相比的吸湿膨胀率降低了23.2%、31.7%、17.5%,平均为25%;大漆涂饰竹材在35℃环境下与素材相比的吸湿膨胀率降低了42%、20%、13.7%,平均为25%。
     材料表面的水浸润性研究表明,大漆涂饰毛竹竹黄面的水接触角同毛竹竹黄面比可增大1.54倍,桐油涂饰处理的竹黄面的水接触角同毛竹竹黄面比可增大1.60倍。就毛竹、柞木及樟子松三种材料来说,大漆涂饰处理对柞木及毛竹的水接触角影响大,水性漆涂饰对三种材料的水接触角影响最小。
     材料表面自由能研究表明,大漆涂饰处理的毛竹竹青面的表面自由能由50.64mJ/m2降至32.71mJ/m2;毛竹竹黄面的表面自由能由59.82mJ/m2降至27.33mJ/m2。
     防治混合霉菌及蓝变菌实验结果表明,本研究实验样本的大漆涂饰量小、涂饰工艺简单,在防霉防蓝变效果方面并没有达到预期的防霉防蓝变的效果,原因在于涂饰的大漆漆膜没有把实验样本完全覆盖、与外界环境完全隔绝,霉菌、蓝变菌侵入竹材的通道没有被隔断。
     (3)大漆涂饰竹材的微观解剖结构变化
     通过ESEM显微观察,发现大漆漆液浸入毛竹结构明显,导管、薄壁细胞中均观察到大漆高聚物的存在。说明大漆可以通过导管、薄壁细胞的纹孔形成高聚物。
     利用XCT扫描毛竹素材及大漆涂饰毛竹材,观察大漆在竹材内部分布情况。保留竹材素材自身成分的图像,毛竹素材的导管及纤维束结构得以三维成像。去除竹材自身成分的图像,观察到的高聚物微乎及微;保留涂饰大漆竹材自身成分的图像显示,高聚物浸入到竹材的薄壁细胞。去除涂饰大漆竹材自身成分的图像显示,大漆在竹材中基本呈轴向分布。
     研究发现大漆成分可以浸入到薄壁组织细胞及导管,浸透量与大漆的浓度及涂饰量有关。
     (4)大漆涂饰竹材的化学结构的变化
     大漆涂饰竹材的表面增加了大漆漆膜中的亚甲基、联苯化合物,导致苯环总量的增加。大漆涂饰竹材愈创木基丙烷木质素及木质素碳骨架的C=O减弱,大漆涂饰竹材的半纤维素的乙酰基减弱,大漆涂饰竹材的纤维素及半纤维素的羟基含量减少,竹材的吸湿性降低。
     在氧气存在的情况下大漆中漆酶可以对竹材中愈创木基丙烷木质素进行催化氧化反应。漆酶催化氧化愈创木酚,脱去该木酚羟基上的氢离子,导致竹材的木质素裂解,形成苯氧醌,同时分子氧被还原为水。生成的酚氧游离基中间体一方面歧化成醌,另一方面迅速重排为芳基碳游离基,最终生成以碳碳偶联为主的复杂氧化产物。在愈创木酚被漆酶催化氧化过程中,产生了氢离子。而纤维素及半纤维素的游离羟基外面有7个电子包围,具有极强的得电子能力,这意味着氢离子还原游离羟基为水。结果为纤维素及半纤维素上的羟基含量降低,以致大漆涂饰后的竹材吸湿性降低。
     竹材经大漆涂饰处理后表面元素氧碳比由O/C比降低,竹材竹青面素材的O/C比为0.31,处理后为0.18;竹材竹黄面素材的O/C比为0.28,处理后为0.17。O/C比下降表明试样表面润湿性能降低,大漆涂饰竹材具有良好的防潮能力。
Bamboo decorative material with natural environmental protection, special texture, canadjust the temperature and humidity in the indoor environment control. But the bamboomaterial itself easily absorb moisture, mildew and easy to deform.So application space ofbamboo decoration material are limited. Raw lacquer is a natural paint which has a long historyin China.It has the characteristics of environmental protection and proofing humidity. Becausethe raw lacquer, limited by complex painting process and slow drying properties, lacquerpainting technology has not been used in the decoration materials widely. If the bamboo andlacquer combined, can inherit and carry forward the Chinese lacquer painting process, but alsocan give the connotation of bamboo decorative material new, far-reaching significance. Thispaper adopts lacquer to coat bamboo and study on the moisture-proof mechanism of bamboocoated by raw lacquer.The concrete research contents and results are as follows:
     (1) The hygroscopic variation of lacquer painting bamboo
     The equilibrium moisture content of lacquer painting bamboo is less than the equilibriummoisture content of bamboo, the lacquer coating treatment makes bamboo have moistureproofability.The moisture absorption rate of bamboo coated by lacquer increases with the changes oftemperature and humidity. In the same temperature, moisture content increases with increasinghumidity; in the same humidity conditions, decreases with the increase of temperature.
     The hygroscopicity of bamboo treated to brush paint is better than bamboo treated to rubpaint. Along with the increase of rub paint and brush paint coating layer, moisture absorption ofbamboo is small, the moisture-proof ability is more excellent.
     The proffing-moisture capacity of bamboo coated with raw lacquer is strongest, witchcoated by water-based paint is the second,witch coated by tung oil is the weakest.
     The impact of painting with raw lacquer on the hygroscopicity of bamboo is the greatest,witch of Oak (Quercus mongolica) is the second,witch of pine (Mongolica litv) is the least.
     The moisture absorption curve of bamboo and bamboo coated by lacquer has nosimilarities, suggesting that the moisture absorption mechanism of bamboo changes afterpainting lacquer. Lacquer painting can effectively reduce the moisture absorption of bamboo,reducing the moisture rate, the proffing-moisture ability enhancement. The moisture absorptionmechanism of lacquer painting of bamboo changed. Lacquer painting made the surfaceporosity decreases, the surface free energy decrease. At the same time, lacquer immerse inbamboo, bamboo pores were filled, the bamboo inner surface is reduced, thus thehygroscopicity of lacquer painting of bamboo can be reduced.
     (2) Effects of lacquer painting bamboo’s application performance
     The dimensional stability of lacquer painting bamboo is enhanced, the tate of moistureexpansion increases with increasing humidity, the tangential moisture expansion rate is greaterthan the radial moisture expansion rate. Oak (Quercus mongolica) and pine (Mongolica litv)have similar results. The moisture expansion rate lacquer painting bamboo in the above25℃environment compared with bamboo without painting decreased by23.2%,31.7%,17.5%, theaverage was25%; The moisture expansion rate lacquer painting bamboo in the above35℃environment compared with bamboo without painting decreased by42%,20%,13.7%, theaverage was25%. Lacquer painting bamboo has better dimensional stability.
     By measuring water contact angle, the water contact angle with bamboo coated by lacquerincreased1.54times than bamboo withount painting, the water contact angle with bamboocoated by tung oil increased1.60times than bamboo withount painting. For bamboo, Oak(Quercus mongolica) and pine (Mongolica litv), the reduction of water contact angle of coatedby lacquer is the biggest, the impact of water-based paint coating is the least.
     Determination of the surface free energy sugess that, the surface free energy of bamboo’soutside surface can be reduced from50.64mJ/m2to32.71mJ/m2; the surface free energy ofinside surface can be reduced from59.82mJ/m2to27.33mJ/m2.
     Prevention and treatment of mixed mould and blue stain fungi experimental results showthat the protective effect of bamboo coated by lacquer did not reach the expected result.Lacquer paiting did not completely cover all experimental samples, bamboo did not be isolated from the external environment, and blue mold, the bamboo channel witch can be invaded bymould and blue stain fungi has not been cut off.
     (3) Physical microstructure changes of lacquer painting bamboo
     Through the ESEM microscope observation, found that lacquer immersion bamboostructure obviously, catheter and parenchyma cells were observed in the presence of lacquerpolymer. The lacquer can form polymers by pitting, parenchyma cells.
     Bamboo coated with lacquer was scaned by XCT to observe the existence of lacquer inbamboo. To preserve the3D image of bamboo’s components and catheter,remove the image ofbamboo’s components.The3D image observe that the polymer are existed in the parenchymacell of bamboo coated by lacquer. The image of lacquer bamboo wictch is removed itscomponents suggeste that raw lacquer is axial distribution in bamboo basicly.
     The study found that lacquer components can be immersed into the bamboo’s parenchymacells and catheter.The amount of immersece is concented with the thickness and the Coatingweight of lacquer.
     (4)The changes of chemical structure of bamboo coated by raw lacquer
     The functional group of methane and biphenyl compounds is increased on the lacquerpaiting bamboo’s surface,and the total amount of benzene ring is increased.The guaiacyl ligninof lacquer painting bamboo and C=O of lignin carbon skeleton is weakened,the acetyl group ofhemicelluloses of bamboo coated by lacquer is weakened, the hydroxyl content of celluloseand hemicelluloses in bamboo coated by lacquer. The moisture absorption of paiting lacquerbamboo reduced.
     In the presence of oxygen, lacquer laccase can catalyze and oxidize guaiacyl lignin ofbamboo. Laccase catalyze and oxidize guaiacol which is removed hydrogen electronic in thehydroxyl, lead to the bamboo lignin is degraded and form phenoxy quinone, the oxygenmolecular is returned to water. On the hand,the phenolic oxygen free radical is disproportionateto chinone,and on the other hand,rearranged into aryl carbon free radical to become complexcompound with Carbon carbon coupling. Hydrogen electrons are gived birth in the process ofcatalytic oxidation. And the free hydroxyl of cellulose and hemicelluloses which is surrounded by seven electrons have the strong ablity of obtain electrons.The results show that the freehydroxyl is restored to water by hydrogen electrons,the amount of the free hydroxyl ofcellulose and hemicelluloses reduce witch lead to the moisture content of bamboo coated bylacquer.
     The O/C ratio of bamboo’s outside surface after lacquer paiting decend from0.31to0.18,the O/C ratio of bamboo’s inside surface after lacquer paiting decend from0.28to0.17. Thedecreasing O/C ratio show that the ability of surface wettability of bamboo coated by lacquerreduce, lacquer coating bamboo has good proff-moisture capacity.
引文
[1]江泽慧.中国林业工程.济南:济南出版社,2002
    [2]江泽慧.世界竹藤.沈阳:辽宁科学技术出版社,2002
    [3]江泽慧,陈绪和等.世界木材利用发展态势.木材工业,2010,24(1):1~4
    [4]江泽慧,于文吉,余养伦.竹材表面润性研究.竹子研究汇刊.2005,24(4):31~38
    [5] Jiang Zehui,Wang Hankun,Yuyan,Hygroscopic behavior of bamboo and its blocking units.NanjingForestry University(Natural Sciences Edition),2012,(2)
    [6]张齐生.中国竹材工业化利用.北京:中国林业出版社,1995,20~40
    [7]马尔妮等.木材物理学专论.北京:中国林业出版社,2012,12~35
    [8]山本慎二.Hailwood and Horrobin理论及木材吸湿解析.木材学会志,2005:372~379
    [9]孙照斌.龙竹竹材的热压干燥及传热传质特性.南京林业大学博士论文,2005
    [11]孙丰文,关明杰.毛竹尺寸稳定性处理的研究.竹子研究汇刊,2006,25(4)
    [12]宋烨,吴义强,余雁.二氧化钛对竹材颜色稳定性和防霉性能的影响.竹子研究汇刊,2009,1
    [13]关明杰,高婕,朱一辛.湿热环境下丛生竹与毛竹地板的尺寸稳定性.南京林业大学学报(自然科学版),2009,33(2):90~94.
    [14]孙照斌,田芸,张晓燕.热压干燥对竹材吸湿膨胀性的影响.林业科技,2006,31(5)
    [15]方群,沙存龙,槐敏等.提高竹丝板尺寸稳定性的研究.木材工业,2010,24(1)
    [16]刘秀清,章铁,张双燕等.Co-γ射线辐照处理对毛竹防霉性能和尺寸稳定性的影响.中国农学通报,2010,26(20):150-153
    [17]高婕.丛生竹地板湿热性能的研究.南京林业大学硕士论文,2008
    [18]包永洁,蒋身学,程大莉等.热处理对竹材物理力学性能的影响.竹子研究汇刊,2009,4
    [19]许斌,张齐生.竹材通过端部压注处理进行防裂及防蛀的研究.竹子研究汇刊,2002,21(4)
    [20]田根林,余雁,王戈等.竹材表面超疏水改性的初步研究.北京林业大学学报,2010
    [21]刘正添,邢善香.木材液相乙酰化处理及处理才尺寸稳定性和耐腐性的研究.木材工业,1991,5(1):20-24
    [22]李筱莉,岳翠云.聚乙二醇处理的木材尺寸稳定性研究.安徽农业大学学报,1993,20(4):353-358
    [23] Subiyanto B.乙酰化南洋楹木材刨花板酰化率对刨花板机械性能和尺寸稳定性的影响.广东林业科技,1991,(3):41~44
    [24]任娜娜.环境友好型水性涂料的研究与制备.湖南大学硕士论文,2011
    [25]马庆丽,孙岩,曹海波.高级家具透明涂饰工艺.林业科技,2000,11(6)
    [26]漆啸.对涂料王生漆地位的思考.中国生漆,2002,(2):35~36
    [27]孟祥玲.发展漆器艺术的社会价值.价值工程,2010
    [28]何豪亮.奥运漆艺对中华漆艺继承与创新.中国生漆,2012
    [29]长北.“绿色漆艺”——中国漆艺的守望.美术观察,2008
    [30]邓红梅,孙吉祥.材质审美特性在漆艺中的表现.装饰,2003
    [31]蔡奋.生漆化学.贵州:贵州人民出版社,1987
    [32]季立才,胡培植.漆酶催化氧化反应研究进展.林产化学与工业,1997,(1):81~86
    [33]雷福厚,蓝虹云.漆树漆酶和真菌漆酶的异同研究.中国生漆,2003,(1):4~8
    [34]卢蓉,夏黎明.漆酶氧化还原介质系统的作用机理及其应用.纤维素科学与技术,2004,3(12):36~40
    [35]光辉,江涛.漆树漆酶的催化氧化作用.高等学校化学学报,1995,(11):1731~1736
    [36]蓝虹云,雷福厚,黄道战.多酚氧化酶催化单宁的氧化聚合反应研究.湖北化工,2002,(2):12~14
    [37]王鹏,顾正彪,程力等.漆酶处理对木材性能的影响.食品与生物技术学报,2012,31(9):991~995
    [38]YaropolovAI.Laccase:properties,catalytic mechanism and applicability.ApplBiochenBiotechnol.1994,49(3):257~280
    [39] Ohmae.Water adsorption properties of bamboo in the longitudinalDirection. Wood Science andTechnology,2008,43(6):415~422
    [40] Miyazaki, J. Analysis of water adsorption of bamboos on the basis of Hailwood and Horrobin theory.Faculty of Science and Engineering,2005
    [41] Hamdan.Equilibrium moisture content and volumertric changes of gigantochloa scortechinii. TropicalForest Science,2007,19(1),18~24
    [42]孙照斌,田芸,曲保雪.龙竹竹材吸湿膨胀特性研究.林业机械与木工设备,2006,34(9):7~9
    [43]涂道伍,许斌.竹材湿热膨胀特性研究.安徽农业大学学报,2008,35(2):178~180
    [44]关明杰,洪斌,蔡志勇.竹材及杨木单板在湿热环境下的湿膨胀性能差异.南京林业大学学报(自然科学版),2010,34(1):91~95
    [45]唐兴平.白蜡木干缩和湿胀性能的研究.福建农林大学学报(自然科学版),2007,36(7):381-383
    [46]DeMeijerM.Sorption behavior and dimensional changes of wood-coating composites.Holzforschung,1999,53(5):553~560
    [47]BoydJD.Relationship betweenfiber morphologyandshrinkageofwood.WoodSciT echnol,1977,11(1):3~22
    [48] TjeerdamaBF.Chemical changes in hydrothermal treated wood:FTIR analysis of combined hydrothermal and dry heat-treated wood.Holzals,2005,63(2):102~111
    [49] Hillis W E.High temperature and chemical effects on wood stability. Part.General considerations.Wood Science and Technology,1984,18(4):281~293
    [50] PetrissansM.Wettability of heat-treated wood.Holzforschung,200,57(30):301~307
    [51] Bhuiyan MT R.Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions.Journal of Wood Science,2000,46(6):431~436
    [52] Hon DNS.WeatheringCharacteristics of Hardwood Surface.Wood Sci.Tech,1986,20(2):169~183
    [53]木材湿涨性测定方法.国家标准.GB1934.2-91
    [54] HakkouM.Wettabilitychanges and massloaa during heat treatment of wood.Holzforschung,2005,59:35~37
    [55] Kishino M.Artificial weathering of tropical wood.Holzforschung,2004,58:552~557
    [56] HouZQ.Watersorption of moso bamboo in a cycling vacuum-pressure process.Holzforschung,2004,62:147~148
    [57] Mohammed H.Wettability changes and mass loss during heat trdatmengt of wood.Holzforschung,2005,59:35~37
    [58] Mathieu P.Wettability of heat-treated wood.Holzforschung,2003,57:301~307
    [59]于红卫,槐敏,文桂锋.提高木材尺寸稳定性的方法.林业科技,2002,27(5):43~45
    [60]丁涛,顾练百,江宁.高温热处理实木地板的尺寸稳定性.木材工业,2008,22(6):37~40
    [61]涂登云,王明俊,顾练百等.超高温热处理对水曲柳板材尺寸稳定性的影响.南京林业大学学报,2010,34(2):112~116
    [62] Borthakur.Studies of Dimensional Stability, Thermal Stability and Biodegradation Resistance Capacityof Chemically Treated Bamboo. Asian Journal of Biochemistry,2014,9(1):16~29
    [63] Roger M. Dimensional Stability of Bamboo Particleboards.Made from Acetylated Particles. MokuzaiGakkaishi,1988,34(7):627~629
    [64] Ragil Widyorini.Some of the Properties of Binderless Particleboard Manufactured from Bamboo. WoodResearch Journal,2011,2(2)
    [65]于文吉.竹材表面性能和力学性能变异规律的研究.中国林业科学研究院博士论文,2001
    [66]王戈.毛竹杉木层级复合材料及其性能.中国林业科学研究院博士论文,2003
    [67] Yali Li.Effect of woody biomass surface free energy on the mechanical properties and interfaceof wood/polypropylene composites. Journal of Adhesion Science and Technology,2014,28(2)
    [68] Jun Lu.A method for determining surface free energy of bamboo fiber materials by applying Fowkes theory and using computer aided machine vision based measurement technique. ShanghaiJiaotong University (Science),2012,17(5):593~597
    [69] C.A. Fuentes. Wetting behaviour and surface properties of technical bamboo fibres. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,380(1):89~99
    [70] Chun Gui Du.Study on Gluing Properties and Surface Wettability of Radial Bamboo Strips. Advanced Materials Research,2013,1774:671~674
    [71] Laukkanen, Antti. Hydrophobic coating and a method for producing hydrophobic surface.2014
    [72] Fuentes C.A. Interfaces in Natural Fibre Composites: Effect of Surface Energy and Physical Adhesion.Biobased Materials and Bioenergy,2012,6:4
    [73]秦特夫,闫昊鹏.木材酯化和接枝共聚处理对木材表面自由能影响的研究.林业科学,2001,37(2):97~100
    [74] Milojka Gindl.Wood surface energy and time dependence of wettability:A comparision of differentwood surface using anacid-base approach. Holzforchung,2001,55(4):433~440
    [75]腰希申.中国主要竹材的微观构造.大连:大连出版社,1992
    [76]腰希申.竹秆表面的微形态扫描电镜观察大连:大连出版社,.1990
    [77] Satish Kunmar.Treatability and flow path studies in bamboo partl.Wood fiber and science,1992,24(2):113~117
    [78] Walter Liese.Structural research on Bamboo and Rattan for their wider utilization.Journal of Bamboo Resewrch,1996,15(2):1~14
    [79]李建平.扫描电子显微镜对样品的要求及样品的制备.分析测试技术与仪器,2007,13(1):75~76
    [80]于雷,戚大伟.计算机断层扫描技术检测木材缺陷的研究.森林工程,2006,22(5):13~15
    [81]今村博之.木材利用の化学.东京:共立出版株式会社,1983:51~68
    [82]刘力等.竹材化学与利用.杭州:浙江大学出版社,2006:6~82
    [83]成俊卿.木材学.北京:中国林业出版社,1985:393~495
    [84]李坚.木材科学研究.北京:科学出版社,2009:197-216
    [85]杨校生.国内外竹子化学利用及其研究概况.林业科技通讯,1997,(5):29~30
    [86]汤宜庄.木材工业使用大全木材保护卷.北京:中国林业出版社,2002
    [87]孙存普等.自由基生物学导论.合肥:中国科技大学出版社,1999
    [88]刘玉鑫.波谱分析.成都:四川大学出版社,2004
    [89]谢晶曦.红外光谱.北京:科学出版社,2001
    [90]李坚.木材波谱学.北京:科学出版社,2003
    [91] K.彼得等.有机化学机构与功能.北京:化学工业出版社,2006
    [92]宁永成.有机波谱学谱图解析.北京:科学出版社,2010
    [93]甘景镐.生漆的化学.北京:科学出版社,1997
    [94]张广仁.木材涂饰原理.哈尔滨:东北林业大学出版社,1990
    [95]杨孔章.界面与膜及其应用.北京:科学出版社,1990
    [96]颜肖慈.界面化学.北京:化学工业出版社,2005
    [97]沈德言.红外光谱法在高分子研究中的应用.北京:科学出版社,1982
    [98]中西香尔.红外光谱分析100例.北京:科学出版社,1984
    [99]钟海庆.红外光谱法入门.北京:化学工业出版社,1984
    [100] D.布里格斯.聚合物表面分析:X射线光电子谱(XPS)和静态次级离子质谱(SSIMS)北京:化学工业出版社,2001
    [101]斯耶斯特勒姆.木材化学.北京:中国林业出版社,1985
    [102]龚厚杰.生漆工艺.北京:中国林业出版社,1984
    [103]胡玉康.大漆与中国文化.北京:中国社会科学出版社,2013
    [104]杨和永.大漆施工经验.北京:化学工业出版社,1986
    [105]雷骏志.大漆涂装技术.北京:北京航空学院出版社,1988
    [106]孙兵,石淑兰,刘娜等.漆酶/丁香酸甲酯处理未漂KP浆的SEM和GPC分析.中国造纸学报,2007,22(3),30~35
    [107]彭涛.马尾松化学热磨机械浆酶法改性研究.纤维素科学与技术,2008,16(1):39~44
    [108]郑佳宝.古代漆器的红外光谱.复旦学报,1992,31(3):346~347
    [109]胡克良.徐州西汉陶漆的红外光谱分析.光谱学与光谱分析,1994,14(5);31~34
    [110]金普军.安徽巢湖放王岗出土西汉漆器漆膜测试分析.文物保护与考古科学,2007,19(3):4~47
    [111]覃道春.铜唑类防腐剂在竹材防腐中的应用基础研究.中国林业科学研究院博士论文,2004
    [112]张飞龙.生漆成膜的分子基础——生漆成膜的物质基础.中国生漆,2010,1
    [113]张飞龙,李钢.生漆的组成结构与其性能的关系研究.中国生漆,2000,19(3):31~37
    [114]张飞龙.生漆成膜聚合过程.涂料工业,1993,40~45
    [115]廉鹏.生漆的化学组成及成膜机理.陕西师范大学学报,2004,32:100~101
    [116]赵慧香.生漆漆酚组成和漆膜性能关系的研究.林产化学与工业,1985,5(2)
    [117]缪静.漆酶的最新研究进展.烟台师范学院学报,2001,17(2):146~150
    [118]季立才.漆酶中铜的研究.武汉大学学报,1889
    [119]季立才.漆酶的结构、功能及其应用.氨基酸和生物资源,1996,18(1):25~29
    [120]王光辉,江涛.漆树漆酶的催化氧化作用.武汉大学学报,1989,(4):59~66
    [121]蓝虹云,雷福厚,韦景春.漆树漆酶催化甘蔗渣纸浆漂白的研究.纤维素科学与技术.2004,12(4):33~36
    [122]朱圣光.三种速生松木—樟子松、火炬松和湿地松用于纸浆造纸的评价.中国造纸,1988,(5):15~23
    [123]杨汝男,张运展,牛梅红.东北硬杂木的纤维形态及化学组成.中国造纸,2002(5):79~80
    [124]李阳根,刘顺熙,李继功等.东北重要木材化学组成的成分研究.东北林学院学报,1984,12(3):150~151
    [125]杜官本.表面光电子能(XPS)及其在木材科学与技术领域的应用.木材工业,1999,13(3):17~20
    [126] Drew Myers.Surface Interface and Colloid:principlis and application.北京:化学工业出版社,2005
    [127] Kajita.H.Wettability of the surface of some Amercan softwoods species.Mokuzai Gakk,38
    [128] SheldonQ.Dynamic adhesive wettability of wood.Wood and Fiber Sc,2001,33(1):58~68
    [129] AholaP.Water protection of wooden window joinery painted with low organic solvent contentpaints with known composition.Holzals Roh-und Werkstoff,1999,57:45~50
    [130]孙润洲,李雨红,姜培植.水曲柳木材涂饰界面特性的研究.东北林业大学学报,1995,23(5):77~79
    [131]张新艳,苏润州,赵达等.XPS在木质材料研究领域中的应用.黑龙江八一农垦大学学报,2007,19(2):79~84
    [132]杜官本,杨忠,邱坚.微波等离子体处理西南恺木表面的ESR和XPS分析.林业科学,2004,40(2):148~151
    [133]杨忠,杜官本,黄林荣等.微波等离子体处理木材表面接枝甲基丙烯酸甲酯的XPS分析.林产化学与工业,2003,23(3):28~32
    [134]于雷.计算机断层扫描技术在木材科学领域的应用.森林工程,2006,22(5):13~16
    [135] Anne-Solenn Le H. Alteration of Asian lacquer: in-depth insight using a physico-chemical multiscale approach. Analyst,2013
    [136] Dandolo,C.L.K.Characterization of European lacquers by terahertz (THz) reflectometric imaging.Digital Heritage International Congress (DigitalHeritage),2013(1)
    [137] Takayuki Honda. Applied analysis and identification of ancient lacquer based on pyrolysis-gaschromatography/mass spectrometry. Applied Polymer Science,2010,118(2):897~901
    [138] XM Ma. Application of Pyrolysis Gas Chromatography/Mass Spectrometry in Lacquer Research.Polymers,2014
    [139] Meili Yang. Using optical coherence tomography to characterize thick-glaze structure: ChineseSouthern Song Guan glaze case study. Science and Technology of Archaeological Research,2012,57(2):67~75
    [140] Shuya Wei. Analytical characterization of lacquer objects excavated from a Chu tomb in China. Journal of Archaeological Science,2011,38(10):2667~2674
    [141] Kaori Fukunaga.Techniques innovantes d'analyse non invasive du patrimoine culturel basées sur les technologies terahertz. Comptes Rendus Physique,2010,11(7):519~526
    [142] Yali Li. Characterization of acetylated eucalyptus wood fibers and its effect on the interface of eucalyptus wood/polypropylene composites.International Journal of Adhesion and Adhesives,2014,(50):96~101