电子束熔炼提纯冶金级硅工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源危机和环保压力双重作用下,21世纪以来光伏行业以平均每年37%的速度高速发展。目前,全球98%以上的太阳能电池是利用硅材料制备的,光伏行业基本是建立在高纯硅材料基础之上。随着光伏行业的快速增长,作为基础材料的高纯多晶硅需求日益紧张,传统的高纯多晶硅来源已不能满足光伏行业快速发展的需求,原料供应不足已经成为太阳能电池产业发展的瓶颈之一,这无疑限制了太阳能光电产业的更为广泛应用。为此,世界各国都在积极探索制备高纯硅材料的全新工艺方法,其中冶金法制备多晶硅由于具有生产周期短、污染小、成本低、工艺简单、规模大小可控等特点,被认为是最能有效地降低多晶硅生产成本的技术之一,目前已成为世界各国竞相研发的热点。冶金法是利用硅和硅中杂质物理性质的差异来使之分离,把定向凝固除杂、真空熔炼除杂、氧化除杂、酸浸除杂、造渣除杂、合金化除杂和电解还原除杂等方法中的一种或几种有机地组合起来形成一种工艺路线,达到提纯制备太阳能级硅的目的。在众多工艺方法中,电子束熔炼由于具有高温、高真空、无污染等特点,被认为可以用于出去硅中挥发性杂质元素。但由于相关基本问题及理论解释仍然存在不足,使得该技术目前还仅仅停留在学术研究或试运行阶段。
     本文使用60 kW的电子束熔炼炉进行系列实验,研究硅中各种杂质元素的挥发去除行为及去除机理,以期为该工艺实现大规模工业化生产提供基本理论支持。实验结果表明电子束熔炼可以有效去除硅中挥发性杂质元素(P、Ca、Al);非挥发性杂质元素(Fe、B)不但不会被去除,由于硅自身的挥发损失反而会在熔炼过程中浓缩。硅中重要杂质元素P的去除反应速率随电子束功率、熔炼时间增加而增大;21 kW下熔炼30 min后,P含量可以降至0.1×10-4 wt%以下,达到太阳能级硅要求的水平。除磷反应遵循一阶反应速率方程,即P以单原子形式挥发出硅熔体,且反应速率由气/液界面层的挥发反应控制。Ca、Al的含量随熔炼时间延长呈指数衰减形式逐渐降低;熔炼30 min后,Ca含量由7.8×10-3wt%降至1.5×10-4 wt%、Al含量由3.1×10-3wt%降至8.5×10-5wt%;Ca、Al的挥发去除遵循一阶反应方程,气/液界面层的挥发反应是其反应的速率控制步骤。
     断面组织观测结果表明电子束熔炼制备的多晶硅铸锭是由大量柱状晶组成,同时在柱状晶间伴随生长很多孪晶。金属杂质Ca、Al、Fe在整个铸锭中并不是均匀分布,而是呈现出由底部到顶部、由边缘向中心的富集趋势;非金属杂质P、B由于平衡分凝系数较大,其在铸锭轴向上会向顶部做一定富集,但并不明显,径向分布则十分均匀。
The photovoltaic (PV) industry passed the 100 MW per year production milestone during 1997 and has been growing rapidly toward GW per year production at an annual growth rate of approximately 37%. At present, more than 98%of commercial PV modules are made from crystalline silicon, and predicted growth of PV market is very dynamic and entirely depends on polycrystalline silicon feedstock. Currently, the off spec, pot-scrap, re-melt, tops and tails and "out of spec" crystals are the born feedstock materials for the PV industry. The rapid growth of the solar cell market, however, predicts the lack of availability of low-cost solar grade silicon feedstock in the near future. To tackle this shortage problem, novel purification techniques for low-quality Si feedstock material have recently been investigated all of the world, and are meant to open alternative routes towards a solar grade silicon feedstock, exclusively destined for the PV market.
     Among the different routes that are being explored, upgrading metallurgical grade silicon (MG-Si) was considered as the most attractive approach for its short production cycle, little pollution, low cost, simple process. However, this approach involves reduction of several impurities from high levels so that each impurity is reduced to less than 0.1 ppm level.
     It is well known that electron beam melting (EBM) process has an excellent metallurgical characteristic in producing high-purity materials. Impurities with high vapor pressure under the condition of high vacuum can be evaporated effectively, because of the high local temperature near the beam impingement zone. Casenave firstly used EBM process to purify polycrystalline silicon and confirmed the technical feasibility of removing some impurities, such as phosphorus and calcium. Several investigations in EBM process have been reported. However, the process still has not resulted in a commercially viable product by now for the lack of the fundamental studies on the basic problems. In this paper, the effects of various melting condition on the impurities removal behavior were investigated, the impurity removal process during EBM process was also studied theoretically in thermodynamic and kinetics considerations.
     It is found that the contents of phosphorus, calcium and aluminum decreased significantly after EBM process. However, no significant change was found in content for boron and iron. The content of phosphorus decreased by evaporation with the increase of melting time and evaporation rate increased with raising electron beam (EB) power density. The content of phosphorus decreased below 0.1 ppm by EBM traetment at 21 kW for 30 minutes. The dephosphorization reaction was analyzed to follow the first order rate law, and the dephosphorization rate was was considered to be controlled by free evaporation. The content of aluminum and calcium gradually decreased with the increase of melting time, and the lowest content of both the above impurities were 1.5 ppm and 0.85 ppm respectively obtained during EBM process at 15 kW for 30 minutes. The removal rates of these elements were also expressed by the first order rate law.
     Metallic impurities including iron, calcium and aluminum was dragged from the bottom to the top and from the edge to the center of the ingot, following the direction and characteric of solidification. The purest area existed on the edge followed by the central area, coming from the bottom to the top with maximum concentration at the top of the sample. As for phosphorus and boron, the segregation effect is not siginificant due to the large segregation coefficient of phosphorus and boron.
引文
[1]梁骏吾.光伏产业面临多晶硅瓶颈及对策.科技导报,2006,24(06):4-7.
    [2]国际能源署,2008世界能源展望,2008.
    [3]雷永泉.新能源材料[M].天津:天津大学出版社,2001.
    [4]《中国新能源和可再生能源》1999白皮书[M].北京:中国计划出版社,2000.
    [5]杨德仁.太阳能电池材料[M].北京:化学工业出版社,2006.
    [6]Markvart T. Solar Electricity [M]. New York:John Wiley& Sons Publication,1995.
    [7]Chapin D M, Fuller C S, Pearson G L. A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power [J].Appl. Phys,1954,25:676-677.
    [8]Green M A, Emery K, King D L, et al. Solar Cell Efficiency Tables (Version 33) [J]. Progress in Photovoltaics:Research and Application,2009,17:85-94.
    [9]沈辉,舒碧芬,闻立时.我国太阳能光伏产业的发展机遇与战略对策.电池,2005,35:430-432.
    [10]杨金焕,邹乾林,谈蓓月,等.各国光伏路线图与光伏发电的进展[J].光伏与工程,2007:51-54.
    [11]梁骏吾.电子级多晶硅的生产工艺[J].中国工程科学,2000,2(12):29-34.
    [12]Flamant G, Kurtcuoglu V, Murry J, et al. Purification of Metallurgical Grade Silicon by a Solar Process [J]. Solar Energy Materials and Solar Cells,2006,90:2099-2106.
    [13]Sarti D, Einhaus R. Silicon Feedstock for the Multi-crystalline Photovoltaic Industry [J]. Solar Energy Materials and Solar Cells,2002,72:27-40.
    [14]刘向阳.多晶硅:我国光伏产业的瓶颈[J].太阳能,2006,3:15-17.
    [15]魏奎先,戴永年,马文会,等.太阳能电池硅转换材料现状及发展趋势[J].轻金属,2006,2:52-56.
    [16]李红波,俞善庆.太阳能光伏技术及产业发展[J].上海电力,2006,4:331-337.
    [17]温雅,胡仰栋,单延亮.改良西门子法多晶硅生产中分离工艺的改进[J].化学工艺与工程,2008,25(2):154-159.
    [18]徐云飞.冶金法制备太阳能级多晶硅工艺研究[D].大连:大连理工大学,2008.
    [19]Braga A F B, Moreira S P, Zampieri P R, et al. New Process for the Production of Solar Grade Polycrystalline Silicon [J]. Solar Energy Materials and Solar Cells,2008,92: 1-7.
    [20]吕东,马文会,伍继君,等.冶金法制备太阳能级多晶硅新工艺原理及研究进展[J].材料导报,23(3),2009:30-33.
    [21]De Wolf S, Szlufcik J, Delannoy Y et al. Solar Cells from Upgraded Metallurgical Grade (UMG) and Plasma-purified UMG Multicrystalline Silicon Substrates[J]. Solar Energy Materials and Solar Cells,2008,72:49-58.
    [22]Woditsch P, Koch W. Solar Grade Silicon Feedstock Supply for PV Industry [J]. Solar Energy Materials and Solar Cells,2002,72:11-26.
    [23]Pichel W J, Yang M R. Solar powered:An Emerging Growth Industry Facing Severe Supply Constraints [M]. Piper Jaffray,2005.
    [24]马文会.冶金法制备太阳能级多晶硅技术发展动态[J].应用科技,17(2),2009,17(2):16-18.
    [25]Yuge N, Abe M, Hanazawa K, et al. Purification of Metallurgical Grade Silicon up to Solar Grade [J]. Progress in Photovoltaics:Research and Applications,2001,9: 203-209.
    [26]Smith J. Silicon refining process [P]. US Patent,5820842, October 1998.
    [27]Ceccaroli B. Refining of metallurgical grade silicon [P].US patent,6861040, March 2005.
    [28]Zahedi C, Enebakk E, Friestad K, et al. Solar Grade Silicon from Metallurgical Route [C]. Technical Digest of the International PVSEC-14, Thailand,2004:673-676.
    [29]Geerligs L J. Solar-grade Silicon by a Direct Route Based on Carbothermic Reduction of Silica:Requirements and Production Technology, ECN Report, The Netherlands,2002.
    [30]郑淞生,陈朝,罗学涛.多晶硅冶金法除磷的研究进展[J].材料导报,2009,19:11-14.
    [31]庞爱锁,潘淼,郭生士,等.金属硅的酸洗和氧化提纯[J].厦门大学学报(自然科学版),2009,48:543-546.
    [32]Wu J J, Ma W H, Yang B, et al. Boron Removal from Metallurgical Grade Silicon by Oxidizing Refining [J]. Trans. Nonferrous Met. Soc. China,2009,19:463-467.
    [33]徐云飞,姜大川,许富民,谭毅.冶金法制备多晶硅杂质去除效果研究[J].特种铸造及有色合金,2007,27(9):730-732.
    [34]魏奎先,马文会,戴永年,等.工业硅除钛研究[J].有色金属,2008,1:46-51.
    [35]王宇,尹盛,肖成章,等.硅材料湿法提纯理论分析及工艺优化[J].太阳能学报,1995,16:174-180.
    [36]廖勇,张胜涛,白晨光,等:熔盐电脱氧制多晶硅过程电流效率的影响因素[J].材料导报,2009,23:81-83.
    [37]张剑,高学鹏.多晶硅的真空熔炼及定向凝固研究[J].特种铸造及有色合金,2006,26(12):792-795.
    [38]戴永年,马文会,杨斌,等.粗硅精炼制多晶硅[J].世界有色金属,2009,12:29-35.
    [39]尹盛,何笑明.用冷等离子体结合湿法冶金制备太阳级硅材料[J].功能材料,2002,3:3-5.
    [40]Trumbore F A. Solid Solubility of Impurity Elements in Germanium and Silicon [J]. Bell. Syst. Tech. J.,1960,39:205-233.
    [41]Yuge N, Sakaguchi Y, Terhshima H. Purification of Silicon by Directional Solidification [J]. J. Japan Inst. Metals,1997,61 (10):1094-1100.
    [42]Morita K, Miki T. Thermodynamics of Solar-Grade-Silicon Refining [J]. Intermetallics, 2003,11:1111-1117.
    [43]Juneja J M, Mukherjee T K. A Study of the Purification of Metallurgical Grade Silicon [J]. Hydrometallurgy,1986,16:69-75.
    [44]Voos W. Production of Pure Silicon [P]. US Patent,2972521, February 1961
    [45]Hunt L P, Dosaj V D, McCormick J R, et al. Production of Solar Grade Silicon from Purified Metallurgical Silicon [C]. Record of the 12th IEEE Photovoltaic Specialists Conference, Louisiana,1976:125.
    [46]Chu T L, Chu S S. Partial Purification of Metallurgical Silicon by Acid Extraction [J]. J. Electrochem Soc.,1983,130:455-457.
    [47]Shimpo T, Yoshikawa T, Morita K. Thermodynamic Study of the Effect of Calcium on Removal of Phosphorus from Silicon by Acid Leaching Treatment [J]. Metall. Mater. Trans. B, 2004,35 (2):277-284.
    [48]蔡靖,陈朝,罗学涛.高纯冶金硅除硼的研究进展[J].材料导报,2009,23(12):81-84.
    [49]Suzuki K, Sakaguchi K, Nakagiri, et al. Gaseous Removal of Phosphorus and Boron from Molten Silicon [J]. J. Japan Inst. Metals,1990,54(2):161-167.
    [50]Khattack C P, Joyce D B, Schmid F. Production of solar grade silicon by refining liquid metallurgical grade silicon[R]. Massachusetts Salem,2001.
    [51]Nobuaki I. Method for Producing High Purity Silicon[P]. US Patent,20080241045. December 2008.
    [52]Yoshikawa T, Morita K. Refining of Si by the Solidification of Si-Al Melt with Electromagnetic Force [J]. ISIJ International,2005,45(7):967-971.
    [53]Yoshikawa T, Morita K. Refining of Silicon during its Solidification from a Si-Al Melt [J]. Journal of Crystal Growth,2009,311(3):776-779.
    [54]Yoshikawa T, Morita K. Removal of Phosphorus by the Solidification Refining with Si-Al Melts [J]. Science and Technology of Advanced Materials,2003,4:531-537.
    [55]Yoshikawa T, Morita K. Removal of B from Si by Solidification Refining with Si-Al Melts [J]. Metallurgical and Materials Transactions B,2005,36B:731-736.
    [56]Mitrasinovic A M, Utigard T A. Refining Silicon for Solar Cell Application by Copper Alloying [J]. Silicon,2009,1:239-248.
    [57]Pires J C S, Otubo J, Braga A F B, et al. The Purification of Metallurgical Grade Silicon by Electron Beam Melting[J]. Journal of Materials Processing Technology,2005, 169:21-25.
    [58]Yuge N, Hanazawa K, Nishikawa, et al. Remaval of Phosphorus, Aluminum and Calcium by Evaporation in Molten Silicon [J]. J. Japan Inst. Metals,1997,61(10):1086-1093.
    [59]von Pirani M. Production of Homogeneous Bodies from Tantalum or Other Metals[P]. US patent,848600. March 1907.
    [60]Bakish R. The Substance of a Technology:Electron-Beam Melting and Refining [J]. Industrial Insight,1998:28-30.
    [61]马立蒲,刘为超.电子束熔炼技术及其应用[J].有色金属加工,2008,37(6):28-31.
    [62]韩明臣,周义刚,赵铁夫,等.电子束冷床熔炼参数对熔池表面温度的影响[J].稀有金属,2006,30:55-58.
    [63]Choudhury A, Hengsberger E. Electron Beam Melting and Refining of Metals and Alloys [J]. ISIJ International,1992,32(6):673-681.
    [64]史青,谷洪刚,宋月清,等.电子束熔炼法钼电极的特性分析[J].有色金属(冶炼部分),2000,6:43-45.
    [65]王华森.铪的电子束熔炼[J].稀有金属材料与工程,1981,2:16-19.
    [66]Nakao R, Fukumoto S, Fuji M, et al. Evaporation of Alloying Elements and Behavior of Degassing Reactions of High Chromium Steel in Electron Beam Melting [J]. ISIJ International,1992,32(6):685-692.
    [67]Watakabe S, Suzuki K, Nishikawa K. Control of Chemical Compositions of Ti-6A1-4V Alloy during Melting by Electron Beam Melting [J]. ISIJ International,1992,32(6):625-629.
    [68]Casenave D, Gauthier R E, Pinard P. A Study of Purification Process during the Elaboration by Electron Bombardment of Polysilicon Ribbons Designed for Photovoltaic Conversion [J]. Sol. Energy Mater,1981,5:417.
    [69]Ikeda T, Maeda M. Purification of Metallurgical Silicon for Solar-grade Silicon by Electron Beam Button Melting [J]. ISIJ Intentional,1992,32(5):635-642.
    [70]Hanazawa K, Yuge N, Kato Y. Evaporation of Phosphorus in Molten Silicon by an Electron Beam Irradiation Method [J]. Materials Transactions,2004,45(3):844-849.
    [71]Pires J C S, Braga A F B, Mei P R. Profile of Impurities in Polycrystalline Silicon Samples Purified in an Electron Beam Melting Furnace [J]. Solar Energy Materials and Solar Cells,2003,79:347-355.
    [72]Miyake M, Hiramatsu, Maeda M. Removal of Phosphorus and Antimony in Silicon by Electron Beam Melting at Low Vacuum [J]. J. Japan Inst. Metals,2006,70(1):43-46.
    [73]Osokin V A, Shpak P A, Ishchenko V V, et al. Electron Beam Technology for Refining Polycrystalline Silicon to be Used in Solar Power Application [J]. Metallurgist,2008, 52(1-2):121-127.
    [74]刘恩科,朱秉升,罗晋升.半导体物理学[M].北京:国防工业出版社,1994.
    [75]何允平.冶金法太阳能级多晶硅的制取[J].应用科技,2009,17(2):19-21.
    [76].Istratov A A, Buonassisi T, McDonald R J, et al. Metal Content of Multicrystalline Silicon for Solar Cells and its Impact on Minority Carrier Diffusion Length [J].Appl. Phys.,2003,94:6552-6559.
    [77]Hopkins R H, Seidensticker R G, Davis J R, et al. Crystal Growth Considerations in the Use of "Solar Grade" Silicon [J]. Journal of Crystal Growth,1977,42:493-498.
    [78]Fally J, Fabre E, Chabot B. The Polyx photovoltaic technology:progress and prospects [J]. Revue Phys. Appl.,1987,22:529-534.
    [79]韩其勇.冶金过程动力学[M].北京:冶金工业出版社,1983.
    [80]Beer S Z. Liquid Metals-Chemistry and Physics [M]. New York:Marcel Dekker Inc.,1972.
    [81]胡赓祥,蔡殉,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2006.
    [82]Machlin E S. Trans TMS-AIME [J].1960,218:314-326.
    [83]Glazov V M, Chizhevskaya S N. Liquid Semiconductors [M].New York:Plenum,1969.
    [84]Noguchi R, Suzuki K, Tsukihashi F, et al. Thermodynamic of Boron in a Silicon Melt [J]. Metallurgical and Materials Transactions B,1994,25B:903-907.
    [85]Miki T, Morita K, Sano N. Thermodynamic Properties of Aluminum, Magnesium and Calcium in Molten Silicon [J]. Metallurgical and Materials Transactions B,1998,29B: 1043-1049.
    [86]Miki T, Morita K, Sano N. Thermodynamic of Phosphorus in Silicon Melt [J]. Metallurgical and Materials Transactions B,1996,27B:937-941.
    [87]Kubachewski O, Alock C B. Metallurgical Thermo chemistry 5th Edition [M]. New York: Pergamon Press,1979.
    [88]Fukumoto S, Nakao R, Fuji M, et al. Composition Control of Refractory and Reactive Metals in Electron Beam Melting [J]. ISIJ Intentional,1992,32(5):664-672.
    [89]程兰征.物理化学[M].上海:上海科学技术出版社,1997.
    [90]Ozberk E, Guthrie R I L. A Kinetic Model for the Vacuum Refining of Inductively Stirred Copper Melts [J]. Metallurgical and Materials Transactions B,1986,17B:87-103.