无机盐/陶瓷基复合储能材料制备、性能及其熔化传热过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热能储存技术可以解决能源供给与需求失配的矛盾,达到提高能源利用率和保护环境的目的。但是目前储能技术中应用较多的两大类储能材料——相变材料和显热材料,均存在一些缺点。如:相变材料存在释热时液.固两相界面处热阻大导致传热效果很差、化学稳定性不好、对容器腐蚀严重等缺点,显热材料存在蓄热密度小、蓄(释)热过程难控制、选材有限等缺点。因此,研制能够结合相变材料和显热材料二者优点,克服二者缺点的新型复合储能材料已经成为人们研究的热点和难点。
     本文提出了将无机盐和陶瓷材料进行复合的创新方法,采用混合-烧结法成功地制备出了新型无机盐/陶瓷基复合储能材料,克服现有无机盐相变材料和显热材料存在的缺点。在储能过程中,这种材料可与相容性流体直接接触换热,大大提高了换热效率。
     本文通过实验和理论分析选择相变潜热和比热大、高温蒸汽压小的Na_2SO_4作为相变材料;选择与Na_2SO_4具有良好化学相容性,且热震稳定性好和导热系数大的二氧化硅(SiO_2)作为载体基质。系统地研究了Na_2SO_4/SiO_2复合储能材料的制备工艺,讨论了原料配比、成型压力、烧结温度、保温时间和粘结剂用量等工艺参数对材料结构和力学性能及其显微组织的影响,从而获得Na_2SO_4/SiO_2复合储能材料的最佳制备工艺条件。在此基础上,通过XRD、SEM、偏光显微镜详细地研究了Na_2SO_4/SiO_2复合储能材料的物相组成和显微结构。XRD结果表明,Na_2SO_4和SiO_2之间没有新物质生成,二者仅仅是机械嵌合作用;SEM和偏光显微镜分析表明,Na_2SO_4和SiO_2之间结合良好,不存在相分离,而且SiO_2的显微粗糙表面有利于把持Na_2SO_4提高复合材料的强度,同时SiO_2微孔结构对Na_2SO_4的包覆作用提高了复合材料长期反复循环中的性能稳定性。
     本文通过差示扫描量热仪、激光热常数仪、Instron 8032材料试验机和自制温度采集系统等对制备出的Na_2SO_4/SiO_2复合储能材料热物理性能和热循环稳定性进行了详细的研究。其结果表明,Na_2SO_4/SiO_2复合储能材料具有较高的储能密度、良好的导热性和一定的高温强度,经过长期反复循环使用后性能稳定,能够经得
Heat energy storage technique can solve the inconsistency of energy supply and demand, improve utilization efficiency of energy and conserve environment. Phase change materials (PCMs) and sensible heat materials applied in the heat energy storage technique have some fatal disadvantages. The heat transfer effect of PCMs is very bad on the interface of solid and liquid, the chemical stability is very low, and it will erode the container. The heat storage density of sensible heat materials is very low, the process of energy storaging or releasing is very difficult to be controlled, and type of sensible heat materials is very limited to be selected. So it is the focus and difficulty to develop a new type of composite energy storage material what can integrate advantages of PCMs and sensible heat material and get rid of their disadvantages.An innovating technology is put forward in this paper and the new type salt /ceramic composite energy storage material (CESM) is fabricated successfully by mixing and sintering method. The CESM can solve problems of existing PCMs and sensible heat materials, and exchange heat in direct contact with compatible fluid in the process of energy storage, so the efficiency of exchanging heat is improved greatly.Sodium sulfate has bigger latent heat and specific heat, and lower vapor tension. Silicon dioxide has better thermal stability feature and high heat conductivity coefficient. And the chemical compatibility of them is very good. So sodium sulfate is selected as PCM and silicon dioxide as carrier material. The fabrication technology of salt/ceramic CESM is researched and the effect of the technology parameters including raw material percentage, forming pressure, sintering temperature, heat preservation time and binder percentage to structure and mechanical performances and microstructure is discussed. And the optimum technology conditions of fabricating Na_2SO_4/SiO_2 CESM are obtained. The components and microstructure of Na_2SO_4/SiO_2 CESM are researched in detail by XRD, SEM and POL.. The XRD results show no new substance appears other than sodium sulfate and silicon dioxide. The SEM and
引文
[1] 马宪国,王耀华.潜热蓄热技术概况研究与应用.能源研究与利用,1991年第6期,p13-16
    [2] P. Marliacy, R. Solimando, M. Bouroukba, L. Schuffenecker. Thermodynamics of crystallization of sodium sulfate decahydrate in H_2O-NaCl-Na_2SO_4: application to Na_2SO_4·10H_2O-based latent heat storage materials. Thermochimica Acta 344 (2000) 85-94
    [3] Garg H. P., S. C. Mullock, A. K. Bhargava. Solar Thermal Energy Storage. 1985, P1-9
    [4] Dincer, S. Dost and Xiangguo Li. Thermal Energy Storage Application from an Energy Saving Perspective. International Journal Global Energy Issues, 1997, 9(4-6): 351-364.
    [5] Yagi J. and T. Akiyama. Storage of thermal energy for effective use of waste heat form industries. Journal of Materials Processing Technolgy. 1995, Vol48, PP793-804
    [6] Brahim Dincer. On thermal energy storage systems and applications in buildings. Energy and Buildings 34 (2002) 377-388
    [7] S. M. Hasnain. Review on Sustainable Thermal Energy Storage Technology, Part 1: Heat Storage Materials and Techniques. Energy Conversion and Management, 39(11): 1127-1138, 1998.
    [8] 刘玲,叶红卫.国内外蓄热材料发展概况.兰州科技[J].1998年9月,168-171.
    [9] 戴彧,唐黎明.相变储热材料研究进展.化学世界.2001年第12期P662-665
    [10] 余晓福,张正国,王世平.复合蓄热材料研究进展.新能源.1999.21(9).P35-38
    [11] 林怡辉.有机-无机纳米复合相变蓄热材料的研究(华南理工大学博士学位论文),2001
    [12] 邢玉明,崔海亭,袁修干.高温熔盐相变蓄热系统的数值模拟.北京航空航天大学学报.Vol.28(3):295-295,2002.
    [13] 袁群,沈学祥.温控储热相变材料及其应用前景.化学世界.1994年第4期, pp173-175
    [14] 张寅平,胡汉平,孔祥东等.相变储能-理论和应用.中国科学技术大学出版社,1996:18-21.
    [15] 林文贤,李云苍.无机水合盐潜热贮存材料综述.中国太阳能学会热利用年会[C].深圳.1986.P1-24.
    [16] 张丽芝,张庆.相变贮热材料.化工新型材料.Vol.27(2):19-21
    [17] Aceves S M, Nakamura H and Reistard G M. The Effects of Freezing and Melting on the Efficiency of Latent Heat Storage System. J. of Chemical Engineering of Japan, 1994, 27(6): 779-784.
    [18] Adebiyi G A, Hodge B K, Steele W G. Computer Simulation of a High-temperature Thermal Energy Storage System Employing Multiple Families of Phase Change Storage Materials. J. of Energy Resources Technology, ASME, 1996, (18): 102-111.
    [19] Ernest Birchenall, Alanf Biechman. Heat Storage in Eutectic Alloys. Metallurgical Transaction A, 1980, (11A): 1415-1420.
    [20] 张仁元,柯秀芳.相变材料及相变储能技术专题报告.中科院广州分院学术报告会,广东广州,2001年.
    [21] 邹向,仝兆丰,赵锡伟.铝硅合金用作相变储能材料的研究.新能源,1996,18(18):1-3.
    [22] 邹向,王良焱.液态铝硅合金的浸蚀研究.腐蚀与防护.1995,(5):214-216.
    [23] 姜勇,丁恩勇,戴国康.一种新型的相变储能功能高分子材料.高分子材料科学与工程,2001,17(3):173-175.
    [24] 姜勇,丁恩勇,戴国康.相变储能材料的研究进展.广州化学,1999,(3):48-54.
    [25] 姜勇,丁恩勇,杨玉芹等.化学法和共混法制备PEG/CDA相变材料的性能比较.纤维素科学与技术,2000,8(2):36-41.
    [26] 叶宏.新型相变贮热材料.太阳能,2000(3),P10-11
    [27] 邢登清,迟广山,阮德水等.多元醇二元体系固-固相变贮热的研究.太阳能学报.Vol.16,No.2:131-137
    [28] Xiaowu Wang, Enrong Lu, Wenxian Lin, et al. Heat storage performance of the binary systems neopentyl glycol/pentaerythritol and neopentyl glycol/trihydroxy methyl-aminomethane as solid-solid phase change materials. Energy Conversion & Management 41 (2000): 129-134
    [29] 阮德水,张太平等.相变材料的DSC研究.太阳能学报,Vol.15,No1:19-24.
    [30] 秦鹏华,杨睿,张寅平,林坤平.定形相变材料的热性能.清华大学学报(自然科学版),Vol.43,No.6:833-835
    [31] Xu Ruyun. Studies of Solid-solid Phase Transition for (n-C_(18)H_(37)NH_3)_2MCl_4. Thermo-chemical Acta, 1990, 164: 307-314
    [32] 秦培煜,周世权.能源材料的研究现状及发展前景.节能,2002年第5期,pp5-7
    [33] 冒东奎.一种蓄存低温潜热的新型复合材料[J].新能源.1998,20(6):8-14.
    [34] 庄斌舵,陈兴华.蓄热(冷)器.能源研究与利用.2000(3):31-34.
    [35] 肖敏,龚克成.良导热、形状保持相变蓄热材料的制备及性能.太阳能学报,Vol.22(4):427-430
    [36] Olfat M. Sadek, Wafaa K. Mekhamer. Ca-montmorillonite clay as thermal energy storage material. Thermochimica Acta, 2000, 363: 47-54
    [37] 叶宏,葛新石.一种定形相变材料的结构和理化分析.太阳能学报,Vol.21(4):417-421,2000
    [38] 张萍丽,刘静伟.相变材料在纺织服装中的应用.北京纺织,Vol.23(4):50-53.
    [39] Tao X M. Smart Fibres, Fabrics and Clothing: Fundamentals and Applications. Cabridge, England: Wood-head publishing limite, 2001
    [40] 石海峰,张兴祥.蓄热调温纺织品的研究与开发现状,纺织学报 2001(5):335-337
    [41] Inaba H, TU P. Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material[J]. Heat and Mass Transfer, 1997, 32 (4): 307-312
    [42] 林怡辉,张正国,王世平.硬脂酸.二氧化硅复合相变材料的制备.广州化工,Vol.30(1):18-21,2002
    [43] Xavier Py, Pegis Olives, Sylvain Mauran. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Heat and Mass transfer, 2001, 44(14): 2727-2737
    [44] Min Xiao, Bo Feng, Kecheng Gong. Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity. energy conversion and Management, 43 (2002) 103-108
    [45] M. Hadjieva, et al. Composite salt-hydrate concrete system for building energy storage. Renewable Energy 19(2000) 111-115
    [46] Randy J. petri, Estela T Ong and Terry D Claar. High-temperature salt/ceramic thermal storage phase-change. Proceedings 18th IECEC Meeting, 1983, pp1796-1774
    [47] A. Gluck, R. Tamme, H. Kalfa, et al. Development and Testing of Advanced TES materials for Solar Thermal Central Receier Plants, Proceedings, Solar World Congress, 1991, Vol. 2 Part Ⅱ, pp. 1943-1948
    [48] E. Hahne, U. Taut and Y. Grob. Salt Ceramic Thermal Energy Storage for Solar Thermal Central Receiver Plants. Proceedings, Solar World Congress, 1991, Vol. 2. pp. 1937-1942
    [49] D. Steiner, M. Wierse, M. Groll. Development and Investigation of Thermal Energy Storage Systems for the Media Temperature Range. Proceedings 30th IECEC, Edited by D. Yogi Goswami, Landis Kannberg, (New York, American Society of Mechanical Engineers united Engineering Center, 1995)pp. 193-198
    [50] R. Tamme. U. Taut and C. Struber. Advanced Regenerator Media for Industrial and Solar Thermal Application. Proc. 25th IECEC, Edited by H. Arastoopur, (New york, American Society of Mechanical Engineers United Engineering Center, 1990)pp. 1452-1460
    [51] 张仁元,朱泽培,朱焕良,谢国平.相变(复合)储能技术应用与开发可行性研究报告(广州,中国科学院广州能源研究所报国家纪委节能局,1988)
    [52] R. Tamme. et al. Energy storage development for solar thermal process. Solar Energy Materials, Dec2, 1991. pp386-396
    [53] 张仁元,柯秀芳,李爱菊.显热/潜热复合储能材料的研究.新能源.2000,22(12).-29~31
    [54] 王华等.燃料工业炉用陶瓷与熔融盐复合蓄热材料的制备.《工业加热》2002年第4期,20~22
    [55] Randy J. Petri, Estela T. ong. High Temperature Composite Thermal Storage Systems for Industrial Application. Proceedings of 20th Energy Technology Conference, Washington, DC, 1985
    [56] Terry Claar. D, et al. Composite Salt Ceramic Media for Thermal Energy Storage Application, Proceedings 17th IECEC Meeting, 1982, pp.2043-2048
    [57] Schwerin.M, Listle.W. 1998. Development of a latent heat storage system with ceramic matrix for utilization of industrial waste heat. Final Report
    [58] 张仁元,柯秀芳,李爱菊.无机盐/陶瓷基复合储能材料的制备和性能.材料研究学报,2000,Vol.14(6):652-656
    [59] 王华,Y. Ito,T.Nohira,乔欢.新型陶瓷与熔融盐复合蓄热材料优化组合的数值模拟.中国有色金属学报,2002,Vol.12,No.3:pp550-555
    [60] 王辅亚等.共晶盐/陶瓷基相变复合材料新型储能元件的研制.《矿物岩石地球化学通报》1997年16卷增刊
    [61] Petri R, Ong E T, Kardas A. Development of composite latent/sensible heat storage media. ORNL/Sub/86-95001-1,1990
    [62] Strumpf H J, Coombs M G. Solar receiver for the space station Brayton engine. Journal of Solar Energy Engineering, 1988, 110: 295-300
    [63] Strumpf H J, Coombs M G. Solar receiver experiment for the space station Brayton engine. Journal of Solar Energy Engineering, 1990, 112: 12-18
    [64] 王连星,朱立刚,党桂彬.硅质多孔陶瓷制造新工艺的研究.西北轻工业学院学报,Vol.15,№.1,PP17-21
    [65] 李庭寿,冯改山,戴龙大.钢铁工业用节能降耗耐火材料.冶金工业出版社,2000.1
    [66] 余际星,曾有鹏.旋转型蓄热式换热器蓄热体材料的选择.工业炉,1996年第2期,P37-40
    [67] 蔡作乾,王琏,杨根.陶瓷材料辞典.化学工业出版社,2002
    [68] 天津化工研究院编.无机盐工业手册(下册).化学工业出版社,1992
    [69] 梁英教等主编,无机物热力学数据手册,东北大学出版社,1993.08
    [70] Nathan S. Jacobson. Sodium sulfate: deposition and dissolution of silica. Oxidation of metals, 1989, Vol. 31, Nos. 1/2, pp91-103
    [71] 李家驹.日用陶瓷工艺学(第一版).武汉工业大学出版社,1992
    [72] 金志浩,高积强,乔冠军编著.工程陶瓷材料.西安交通大学出版社,2000
    [73] 王维邦.耐火材料工艺学.冶金工业出版社.
    [74] 中南矿冶学院冶金教研室 编著.《粉末冶金基础》,1974.12
    [75] Randall M. German. Supersolids Liquid-phase Sintering of Prealloyed Powders. Metal. Mater. Trans. 1999, 28A: 1553-1567
    [76] 刘雄飞,薛建.激光加热法同时测定三个热物性参数的研究.计量技术,1994,NO.2.14-16
    [77] 吴清仁,文壁璇.陶瓷材料导热系数测量方法.佛山陶瓷,1995年第二期,40-42
    [78] 李朝祥.陶瓷蓄热材料的开发研究.冶金能源,2002年第一期,P46-48
    [79] (英)拉顿 约翰.威尔逊 著;刘阳君,张宝峰 译.固体物理基础,天津科学技术出版社,1984.10
    [80] 马庆芳,方荣生编.实用热物理性质手册.中国农业机械出版社,1986.01
    [81] 陈则韶,钱军,叶一火.复合材料等效导热系数的理论推算.中国科学技术大学学报,VOL.22,No.4,pp416-424
    [82] 李明伟,朱景川,尹钟大.颗粒弥散复合材料等效导热系数的估算.功能材料,2001,Vol.32,No.4,pp397-398
    [83] 陈雅兰.合理选择格子砖的材料提高热效率.云南建材,1998第1期,12-14
    [84] 郭元强.聚乙二醇复合物相转变贮能温控材料(华南理工大学博士学位论文),2002
    [85] 张清纯主编.陶瓷材料的力学性能.科学出版社,1987.12
    [86] R. K. Goyal, G. N. Tiwari and H.P. Garg. Effect of Thermal Storage on the Performance of an Air Collector: a Periodic Analysis. Energy Convers. Mgmt, Vo. 139. No.3/4, pp 193-202, 1998
    [87] Abel HernaA ndez-Guerrero, Salvador M. Aceves, Eduardo Cabrera-Ruiz, Juan Carlos Baltazar-Cervantes. Modeling of the charge and discharge processes in energy storage cells. Energy Conversion & Management 40 (1999) 1753-1763
    [88] 邹进,黄素逸.相变热传导的计算.能源技术,2000,No.1.PP11-14
    [89] 田丽平.含有相变传热问题的数学化处理.工业加热,1996年第6期,P6-8
    [90] 陶文铨.数值传热学.西安交通大学出版社,1995年第三版
    [91] 杨世铭,陶文铨.传热学(第三版).高等教育出版社,1998
    [92] 郭宽良,孔祥谦,陈善年.计算传热学.中国科技大学出版社,1998
    [93] Goodman T R. The heat-balance integral and its application to problems involving a change of phase. HeatTransfer, 1958, 80: 335~342
    [94] Biot M A. Varitional analysis of ablations for variable properties. HeatTransfer, 1964, 86: 437~442
    [95] Huang C L, Yen P S. A perturbation method for spherical and cylindrical solidification. ChemEngSci, 1975, 30: 897~906
    [96] 王志峰,王德芳.二元固液相变过程的三维非稳态数值研究.太阳能学报,Vol.21,No.1,p7-14,2000
    [97] S. T. Ro. Resent Progress in Heat Transfer during Melting and Solidification Processes. Heat and Mass Transfer, 1991, No. 2, pp679-696
    [98] Mounir B Ibrahim, Kyung H Ahn. Transient Thermal Analysis of Phase Change Process. Heat and Mass Transfer, 1991, No. 3, pp954-965
    [99] Hiki Hong, Akio Saito. Numerical method for Direct Contact Melting in Transient Process. Heat and Mass Transfer, Vol36(8): 2093-2103
    [100] 郭宽良.计算传热学.天津大学出版社,1987
    [101] Voller V R, Cross M, Markatos N C. An Enthalpy Method for Converction Diffusion Phase Change. Jourmal for Numerical Methods in Engineering. 1984, 24: 271-284
    [102] 曾欣,辛明道.耦合求解焓及移动边界位置的多维相变传热问题的数值焓法.重庆大学学报:自然科学版,1992,15(3).-62-67
    [103] Zhang Xiaoli. Natural Convection and Heat Transfer in a Vertical Cavity Filled with an Ice-water Saturated Porous Medium. Heat and Mass Transfer, Vol. 36, No. 11, pp.2881-2890, 1993
    [104] 马骥,王补宣.湿饱和多孔介质冻结过程中壁面效应的影响.化工学报,Vol.47,No.1,pp16-21,1996
    [105] Choi J. and R. Viskanta, Freezing of Aqueous Sodium Chloride Solution Saturated Pacded Bed from a Vertical Wall of a redtangular Cavity. Heat and