光伏封装用EVA导热复合胶膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代社会的发展,人类对能源的需求正在逐步加剧,传统能源大多是不可再生能源,且会造成环境污染。而太阳能是一种取之不尽、用之不竭的绿色生态能源,硅太阳能电池是一种能将太阳能转变成电能而被人类利用的器件,实现利用太阳能的目的,具有十分广阔的应用和研究前景。硅电池在发电过程中生成的温度会对电池的应用造成巨大影响。通过分析电池的散热途径可以发现,提高组件自身的热导率可以达到提高电池散热的目的。位于组件下层的EVA胶膜由于对透光率没有要求,可以通过填充改性的方式提高下层EVA胶膜的热导率,实现提高电池散热速率的目的。因此,本文采用导热填料T-ZnOw、T-ZnOw/ZnO、T-ZnOw/AlN对EVA胶膜进行填充改性,以期制备出能够显著提高热导率,同时电绝缘性能、力学性能、热稳定性能、交联度能满足应用要求的EVA复合胶膜。
     本文主要做了一下几方面的研究并取得以下结果:
     一、研究了T-ZnOw单一填料,T-ZnOw/ZnO,T-ZnOw/AlN混杂填料填充EVA胶膜的导热效果,确定了混杂填料的最佳体积比。实验结果表明,体积比T-ZnOw/ZnO、T-ZnOw/AlN都是4:1时效果最佳。三种体系的复合胶膜随着填料含量的增加表现出相似的变化趋势,在体积含量为5%之前,复合胶膜热导率的变化不大,在5%到15%时,导热网络通路开始形成,热导率开始迅速增加。超过15%时,热导率的增幅又开始放缓。
     二、研究了填料的表面处理对复合胶膜热导率的影响,采用质量分数为1.5%的KH570和硬脂酸分别对T-ZnOw、ZnO、AlN进行表面处理,结果不同的表面处理方式对复合胶膜热导率的影响不一,其中KH570处理T-ZnOw、AlN的效果好于硬脂酸;而硬脂酸处理ZnO的效果好于KH570。
     三、研究了三种体系的填料含量对EVA复合胶膜体积电阻率的影响,结果三体系复合胶膜的体积电阻率的变化规律相似,在体积含量为5%之前,体积电阻率的变化不大,超过5%时,导电网络通路开始形成,体积电阻率开始迅速下降。总体而言,在填充量不超过15%时,复合胶膜的电绝缘性能仍然可以达到光伏封装材料应用要求。
     四、研究了三体系的填料含量对EVA复合胶膜拉伸强度的影响,三种体系对复合胶膜的拉伸强度影响规律相似,都是先曾后减,在体积含量为10%时达到最大值,总体而言,在填料的体积含量不超过20%时,复合胶膜的拉伸强度可以满足光伏封装材料应用要求。
     五、研究了填料的加入对EVA复合胶膜热稳定性能的影响,结果各体系填料都能显著提高胶膜的热稳定性能。
     六、研究了复合胶膜的交联,确定了交联的实验条件:交联剂的用量为质量分数的1.5%,交联温度为150℃,交联时间为30min,交联压力为5Mp。研究了交联对复合胶膜热导率和体积电阻率的影响,结果表明,交联可以使热导率与体积电阻率小幅提高。实验还研究了三体系填料对复合胶膜交联度的影响,发现不同填料对EVA复合胶膜交联度的影响不一,具体表现为对引发剂的增强和减活效应,T-ZnOw和AlN对引发剂具有减活效应,而ZnO对交联剂却有增强效应。总体而言,在填料体积含量不超过15%时,交联度可以达到光伏封装用EVA胶膜的应用要求。
With the development of the world, human’s need to energy become more and more rigorous,traditional energy mostly belongs to nonrenewable resources, and usually leads to environmentalpollution; while solar energy has been in the limelight as a clean energy source that isinexhaustible and inexhaustible, crystalline silicon solar cells is an device that can tranceformsolar energy into electrical energy, to realize the purpose of the use of solar energy, has the verygood application prospects. while much quantity of heat produce as solar cells generateelectricity that leading to the temperature rise of the device, which will has a huge impact to thesolar cells, Through the analysis of the module cooling way, it can be found that powergeneration efficiency of silicon solar cells can be improved by enhancing thermal conductivity ofsolar module. ethylene vinyl acetate (EVA) copolymer located in the lower of the device has norequirement to light transmittance, If we can improve the thermal conductivity of the EVAcopolymer via filling thermal conductive filler, the cooling efficiency of device can be improved.So this paper take T-ZnOw T-ZnOw/ZnO T-ZnOw/AlN as thermal conductive filler to fill EVAcopolymer, As to prepare the copolymer that with high thermal conductivity, at the same timedielectric protecties, mechanical property, thermal stability, and degree of cross linking meetsrequirements.
     This paper mainly studied on some aspects as follows:
     (1) The thermal effect of EVA copolymer filled with T-ZnOw. hybrid system T-ZnOw/ZnO andT-ZnOw/AlN was studied, determine the best ratio of hybrid system, the result shows that thebest volume ratio was4:1, three system show the same variation trend with the increase of filler,before5%of volume content, Thermal conductivity increased slowly, between5%and15%,Thermal conductivity increases rapidly, after15%, the increase of thermal conductivity began toslow.
     (2) The dependence of thermal conductivity of co-film of packing interface processing wasstudied, using the quality dosage of1.5%KH570and stearic acid to tread with T-ZnOw, ZnO, AlN, the result shows that different surface treatment appears different effect,T-ZnOw,AlNtreated with KH570was superior to stearic acid, while ZnO treated with stearic acid wassuperior to KH570.
     (3) The dependence of volume resistivity of EVA co-film on three system’s volume content wasstudied, the result shows that three system show the same variation trend with the increase offiller, before5%of volume content, Volume resistivity change little, after5%, Volume resistivityslow rapidly, as a whole, before15%of volume content, dielectric protecties meet the pvpackaging materials application requirements.
     (4) The dependence of tensile strength of EVA co-film on three system’s volume content wasstudied, the result shows that three system show the same variation trend that climb up and thendecline with the increase of filler, at the volume content of10%, tensile strength reach biggest, asa whole, before20%of volume content, tensile strength meets the pv packaging materialsapplication requirements.
     (5) The dependence of thermal stability on the filler was studied, the result shows that eachsystem packing could improve the thermal stability
     (6) crosslinking of EVA co-film was studied, the optimum experimental conditions weredetermined: the quality dosage was1.5%, Crosslinking temperature was150℃, crosslinkingtime was30min.crosslinking pressure was5MP. the dependence of thermal conductivity andvolume resistivity on crosslinking was studied, the result shows that thermal conductivity andvolume resistivity improved slightly after crosslinking; the dependence of degree of crosslinkingof three system’s volume content was studied at last, the result shows that defferent filler hasdifferent effect to the crosslinking,T-ZnOw and AlN reduce the activity of initiator, while ZnOincrease the activity, as a whole, before15%of volume content, degree of crosslinking meets thepv packaging materials application requirements.
引文
[1]席珍强,陈君杨,德仁.太阳能电池发展现状及展望[J].新能源,2000,22(12):100-102
    [2]林红,李鑫,刘忆翥,等.太阳能电池发展的新概念和新方向[J].稀有金属材料与工程,2009,38(2):722-725
    [3]黄庆举,林继平,魏长河,等.硅太阳能电池的应用研究与进展[J].材料开发与应用,2009,4(6):93-96
    [4]褚玉芳,陈维,沈辉,等.热性能对晶体硅太阳能电池的效率影响研究[J].宜春学院学报,2009,31(4):10-13
    [5] Radziemska Ewa. Thermal performance of Si and GaAs based solar cells and modules: areview[J]. Progress in Energy and Combustion Science,2003,(29):407-424
    [6]李坤明,包亦望,石新勇,等.太阳能玻璃的透过率及光伏组件中胶的黏结强度研究进展[J].2010,(12):39-41
    [7]尚华,王惠荣.太阳能光伏发电效率的影响因素[J].宁夏电力,2010,(5):48-51
    [8] Oreskia G, Wallner G M. Delamination behaviour of multi-layer films for PV encaps-ulation[J]. Solar Energy Materials&Solar Cells,2005,(89):139-151
    [9] Jorgensen G J, Terwilliger K M, DelCueto J A, et al. Moisture transport, adhesion, andcorrosion protection of PV module packaging materials[J]. Solar Energy Materials&Solar Cells,2006,(90):2739-2775
    [10]李国雄,许妍,林安中.太阳电池中EVA胶层的研究[J].太阳能学报,1998,19(1):98-101
    [11] Pern F J, Glick S H. Photothermal stability of encapsulated Si solar cells and encapsulationmaterials uponaccelerated exposures[J]. Solar Energy Materials&Solar Cells,2000,(61):153-188.
    [12] Michael D Kempea, Gary J Jorgensena, Kent M Terwilligera. Acetic acid production andglass transition concerns with ethylene-vinylacetate used in photovoltaic devices[J]. SolarEnergy Materials&Solar Cells,2007,(91):315–329
    [13]江海亮,应丽艳,钱华,等.硅烷偶联剂对化学交联EVA及其性能的影响[J].塑料工业,2010,38(5):63-66
    [14] Pern F J. Factors that affect the EVA encapsulant discoloration rate upon acceleratedexposure[J]. Solar Energy Materials and Solar Cells,1996,41(42):587-615
    [15] Klemchuk Peter, Ezrin Myer, Lavigne Gary, et al. Investigation of the degradation andstabilization of EVA-based encapsulant in field-aged solar energy modules[J]. PolymerDegradation and Stability,1997,(55):347-365
    [16] Kojima Takeshi, Yanagisawa Takeshi. The evaluation ofaccelerated test for degradation a stacked a-Si solar cell and EVA films[J]. Solar Energy Materials&Solar Cells,2004,(81):119-123
    [17] Carlssona Thomas, Konttinena Petri, Malmb Ulf, et al. Absorption and desorption of wateringlass/ethylene-vinyl-acetate/glass laminates [J]. Polymer Testing,2006(25):615-622
    [18] Oreskia G, Wallner G M. Evaluation of the aging behavior of ethylene copolymer films forsolar applications under accelerated weathering conditions[J]. Solar Energy,2009(83):1040-1047
    [19]陈小舟,申明霞.光伏组件用EVA封装胶膜的老化研究进展[J].粘接,2010,(12):65-69
    [20]王响,沈辉,李光吉,等. EVA老化机理以及EVA老化对太阳电池的影响[J].合成材料老化与应用,2008,37(2):32-34
    [21] Kurnikn Jurij, Jankovec Marko, Brecl Kristijan, et al. Outdoortesting of PV moduletemperature and performance under different mounting and operational conditions[J]. SolarEnergy Materials&Solar Cells.2011(95):373–376
    [22] Firoz Khan, Singh S N, Husain M. Effect of illumination in tensity on cell parametersof asilicon solar cell[J]. Solar Energy Materials&Solar Cells.2010,(94):1473-1476
    [23] Jong Pil Kim, Ho Lim, Ju Hun Song, et al. Numerical analysis on the thermal characteristicsof photovoltaic module with ambient temperature evariation Solar Energy Materals Solar[J].Cells.2010,(10):1-4
    [24] Lu Z H, YaoEnergy Q. analysis of silicon solar cell modules based on an optical model forarbitrary layers[J]. Solar Energy.2007,(81):636–647
    [25]吴翠姑,于波,韩帅,等.多晶硅光伏组件功率衰减的原因分析以及优化措施.电气技术,2009,(8):113-114
    [26]陈明凯,朱华,帅麒.硅太阳电池聚光光伏组件的温度场有限元分析.科技创新导报,2009,(05):8-9
    [27] Pern F J, Glick S H. Photothermal stability of encapsulated Si solar cells and encapsulationmaterials upon accelerated exposures. Solar Energy Materials&Solar Cells,2000(61)153-188
    [28]穆志君,关欣,刘鹏.太阳能光伏光热一体化系统运行实验研究.节能技术,2009,27(157):445-447
    [29]王宝群,姚强,宋蔷,等.太阳能光伏/光热集热器设计与性能研究.燃气轮机技术,2009,1(22):66-72
    [30] Zondag H A. Flat-plate PV-Thermal collectors and systems: A review. Renewable andSustainable Energy Reviews,2008,(12):891-959
    [31] Wei He, Tin-Tai Chow, Jie Ji, et al. Hybrid photovoltaic and thermal solar-collectordesigned for natural circulation of water Applied. Energy,2006(83):199-210
    [32] Tonui J K, Tripanagnostopoulos Y. Air-cooled PV/T solar collectors with low cost,performance improvements. Solar Energy,2007(81):498-511
    [33] Sarhaddi F, Farahat S, Ajam H, et al. An improved thermal and electrical model for a solarphotovoltaic thermal (PV/T) air collector. Applied Energy,2010,(87):2328-2339
    [34] Santbergen R, Rindt C C M, Zondag H A, et al. Detailed analysis of the energy yield ofsystems with covered sheet-and-tube PVT collectors. Solar Energy,2010,(84):867-878
    [35] Ronak Daghigh, Adnan Ibrahim, Goh Li Jin. Et al. Predicting the performance ofamorphous and crystalline silicon based photovoltaic solar thermal collectors. EnergyConversion and Management,2011(52):1741-1747
    [36]李宾,李壮,郑彬,等. EVA基导热绝缘复合材料的制备与性能研究.中国塑料,2007,21(12):42-45
    [37]李宾,李壮,郑彬,等.聚合物基导热绝缘复合材料的性能及界面效应.华东理工大学学报(自然科学版),2008,34(2):219-224
    [38]申明霞,崔寅鑫,何辉,等.高含量氧化铝对EVA胶膜导热性能的影响.高分子材料科学与工程,2009,25(10):38-41
    [39]梁振南,秦红,沈辉.背板材料对太阳电池效率影响的实验研究.材料研究与应用,2008,2(4):432-436
    [40]储九荣,张晓辉,徐传骧.导热高分子材料的研究与应用.高分子材料科学与工程,2000,16(4):17-21
    [41]肖善雄,张艺,孙世彧,等.导热高分子复合材料的研究进展.广东化工,2010,37(202):5-8
    [42]张兴军,王明明. AlN/线性低密度聚乙烯导热复合材料的制备及性能.机械工程材料,2008,32(10):56-59
    [43]张诚,周平,乔梁,等.高导热高绝缘FEP/AlN复合材料的研究.塑料工业,2007,35(5):9-12
    [44]左建,刘运春,叶华,等.导热绝缘热塑性树脂基复合材料的研究.合成材料老化与应用,2008,37(4):27-31
    [45]阎冬梅.导热塑料材料的研究进展.塑料制造,2008,(4):130-133
    [46]任芳,任鹏刚,狄莹莹.导热绝缘高分子复合材料的研究进展.包装工程,2009,30(2):122-124
    [47]涂春潮,齐暑华,周文英,等.氮化硼填充甲基乙烯基硅橡胶导热复合材料的性能.合成橡胶工业,2009,32(3):238-240
    [48]赵红振,齐暑华,周文英,等.氧化铝粒子对导热硅橡胶性能的影响.特种橡胶制品,2007,28(5):19-24
    [49]任芳,任鹏刚,狄莹莹,导热LLDPE/SiC复合材料的性能研究.化工新型材料,2010,38(10):94-97
    [50]任鹏刚,方长青,周文英,导热HD-PE/SiC复合材料的制备和性能研究.中国塑料,2007,21(7):10-14
    [51]安群力,齐暑华,周文英,等.绝缘导热Si3N4/LLDPE复合材料的研制.合成树脂及塑料,2008,25(1):40-43
    [52]张军营,冒小峰,橡胶基导热复合材料中填充粉体粒径对导热性能的影响.化工新型材料,2009,37(10):43-45
    [53] Agari Y, Uno T. Estimation on thermal conductivities of filled polymer[J]. Apply PolymerScience,1986,32(7):5705
    [54] Wang Jiajun, Yi Xiao-Su, Effects of interfacial thermal barrier resistance and particle shapeand size on the thermal conductivity of AlN/PI composites. Composites Science and Technology,2004,(64):1623–1628
    [55]童铭康,吴秀平,戚嵘嵘,等.铜粉填充UHMWPE导热材料性能的研究.工程塑料应用,2010,38(7):8-10
    [56] Kim W J, Taya M, Nguyen M N. Electrical and thermal conductivities of a silverflake/thermosetting polymer matrix composite. Mechanics of Materials,2009(41):1116-1124
    [57] SuZhu Yu, peter Hing, Xiao Hu, thermal conductivity of polystyrene-aluminum nitridecomposite. composites: Part A,2002,(3):289-292
    [58] Wenying Zhou, Shuhua Qi, Haidong Li, et al. Study on insulating thermal conductiveBN/HDPE composites, Thermochimica Acta,2007(452):36–42
    [59] Wen-Tai Hong, Nyan-Hwa Tai. Investigations on the thermal conductivity of compositesreinforced with carbon nanotubes. Diamond&Related Materials,2008(17):1577-1581
    [60]姚月雯,高鑫,王晓东,等.石墨和碳纤维改性聚酰亚胺复合材料的导热性能.中国塑料,2009,23(11):44-47
    [61]费海燕,朱鹏,宋艳江,等.石墨和炭纤维分别改性热塑性聚酰亚胺复合材料的导热行为.复合材料学报,2007,24(5):44-49
    [62] Wenying Zhou, Shuhua Qi, Qunli An, et al. Thermal conductivity of boron nitridereinforced polyethylene composites. Materials Research Bulletin,2007(42):1863-1873
    [63] Kai Yang, Mingyuan Gu. Enhanced thermal conductivity of epoxy nanocomposites filledwith hybrid filler system of triethylenetetramine-functionalized multi-walled carbonnanotube/silane-modified nano-sized silicon carbide, Composites: Part A,2010(41):215-221
    [64] Wenyi Peng, Xingyi Huang, Jinhong Yu, et al. Electrical and thermophysical properties ofepoxy/aluminum nitride nanocomposites: Effects of nanoparticle surface modification.Composites: Part A,2010(41):1201-1209
    [65] Karnthidaporn, Wattanakul, HathaikarnManuspiya, et al.The adsorption of cationicsurfactants on BN surface: Its effects on the thermal conductivity and mechanical properties ofBN-epoxy composite. ColloidsSurf.A:Physicochem.Eng.Aspects,2010,(21):1-8
    [66] Jinho Hong, Jeongwoo Lee, Chang Kook Hong, et al. Effect of dispersion state of carbonnanotube on the thermal conductivity of poly(dimethyl siloxane) composites. Current AppliedPhysics,2010(10):359-363
    [67]周柳,熊传溪,董丽杰.氧化锌晶须/环氧树脂导热绝缘复合材料的制备与性能.2009,25(5):165-167
    [68]李光吉,冯晖,童奇勇.四针状氧化锌晶须/PP导热绝缘复合材料的制备与性能研究.材料研究与应用,2008,2(4):511-516
    [69]汪昆华,罗传秋,周啸.聚合物近代仪器分析(2版)[M].北京.清华大学出版社.2008:26-55
    [70] Atkina R, Craig V S J, Wanless E J, et al. Mechanism of cationic surfactant adsorption at thesolid-aqueous interface. Advances in Colloid and Interface Science,2003,(103):219-304
    [71]江海亮,应丽艳,钱华,等.硅烷偶联剂对化学交联EVA及其性能的影响.塑料工业,2010,38(5):63-66
    [72]朱雨涛,谢恒垄.聚合物复合材料的电导率研究.复合材料学报,1997,14(3):77-80
    [73]王响,沈辉,李光吉,等.老化机理以及EVA老化对太阳电池的影响.合成材料老化与应用,2008,37(2):32-34
    [74] Fletcher L S, Lambert M A, MarottaE E. Thermal enhancement coatings for microelectronicsystems[J]. Journal of Eleetronic Paekaging Transaetions of the ASME,1998,120(3):229-236
    [75] Eriguehi F, Hotta Y. Development of novel thermal conductive film,.Proceedings of theInternational Symposiumon Microelectronics[D], Chicago: IL, USA. IMAPS.1999.
    [76] Lu X, Xu G, Hofstra P G. Moisture-absorption, dieleetric relaxation, and thermalconduetivity Studies of Polymer composites[J]. Polym Sci,1998,36(13):2259-2265.
    [77]金鸿,赵春宝,陈建峰,等.环氧树脂/氧化锌晶须/氮化硼导热绝缘复合材料的研究.塑料科技,2010,38(10):73-76
    [78]李光吉,童奇勇,冯晖.聚丙烯/四针状氧化锌晶须/氧化镁导热绝缘复合材料的制备与性能研究.中国塑料,2010,24(6):28-35
    [79] Geon-Woong Leea, Min Parka, Junkyung Kima, et al. Enhanced thermal conductivity ofpolymer composites filled with hybrid filler, Composites: Part A2006(37):727-734.
    [80] Sanada K, Tada Y, Shindo Y. Thermal conductivity of polymer composites withclose-packed structure of nano and micro fillers. Composites: Part A,2009(40):724-73084