非共沸混合工质制冷系统工质浓度变化及其性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非共沸混合工质制冷在超低温领域应用广泛,对其研究具有深刻的理论和现实意义。
     混合工质的两相流动将引起当地工质浓度与流动浓度的偏移。本文以两相流动守恒方程为基础,推导并求解当地浓度偏移的数学模型,通过丙烷/异丁烷混合工质J-T制冷机的蒸发器蒸发过程实验对求解结果进行验证;分析其数学模型,本文还得到了两相流动过程中当地浓度的偏移规律。由于两相流动的浓度偏移,制冷循环中循环工质浓度将不同于充注工质浓度,循环工质中重组分浓度偏低而轻组分偏高。另外,在自复叠制冷循环中,J-T节流阀开度变化也会引起循环工质浓度的变化,本文对其进行了近似模拟和分析并在实验中进行了验证。
     为提高自复叠循环的效率,本文对自复叠循环各换热过程进行了详细分析,并近似计算得出了其理想换热过程;根据自复叠循环的热源温度变化过程,得到了自复叠大温差制冷系统所需的工质特性;最后对大温度滑移的三元混合工质R41/R125/R124混合工质应用于自复叠大温差热泵和自复叠直热式热泵热水器进行浓度和压力优化。
     混合冷剂组分浓度及运行压力对天然气液化流程运行的安全性及经济性影响很大。为此,本文提出了基于Aspen plus流程模拟,遗传算法智能寻优的优化方法,对SMR混合工质天然气液化流程冷剂组分和运行压力进行了优化。在得到的优化方案的基础上,分析了运行参数对各设计变量变化的敏感度和优化参数下运行系统对环境变化的适应度。
     另外,本文还对SMR流程不同工况下的运行参数进行优化。首先,在不改变运行压力的前提下,对不同环境下的SMR流程进行冷剂浓度优化,并使优化的冷剂组分浓度对其进冷箱温度(T2)进行线性拟合,得到了(-20~40℃)之间不同工质进冷箱温度下冷剂浓度及其线性回归函数。而当天然气液化负荷变化时,在已知采用的离心压缩机参数的前提下,保持冷剂浓度不变,对不同液化负荷下的运行压力和离心压缩机转速进行优化,并拟合得到离心压缩机转速对液化负荷的二次回归函数。Aspen plus模拟结果表明,以上的拟合函数在对应的工况下都具有较高的运行效率。
     天然气液化流程的变冷剂浓度分析对于其流程设计和季节性变工况运行具有很好的指导意义,但是,使冷剂浓度根据环境温度进行实时变化并不能轻易实现。鉴于此,本文最后研究了采用纯工质循环预冷混合工质循环深冷的天然气液化流程,调节纯工质预冷循环来适应环境的变化,从而保证混合工质深冷循环稳定运行。这种流程综合利用了纯工质制冷循环的变工况调节性能稳定和混合工质大温差制冷循环效率高的特点。文中分析了其节能的理论基础,并计算分析了其改造投资效益及回收年限。
Non-azeotropic refrigeration is widely used in the cryogenic field, of which study is ofinterest from an academic as well as a practical point of view.
     In the refrigeration cycle, gas-liquid flow with phase transition is inevitable. Intwo-phase flow of mixed working fluid, there will be a difference between local compositionand circulating composition, i.e. composition shift. Based on conservation equations, themathematical model of the composition shift was set up and solved. The result calculated withpropane/I-butane binary mixture was verified by the experiment in the evaporator of arefrigerator. Plus, the composition shift principle was gotten by the analysis from themathematical model. The composition shift makes the difference between the circulatingcomposition and charged composition in a refrigerator. The flowing refrigerant contains somemore low-boiling-point components and some less high-boiling-point components.Additionally, in the auto cascade refrigeration (ACR) process, the variation of J-T valvesopening also causes the change of the circulating composition of refrigerant. This paperapproximately simulated the ACR system, then analyzed and experimentally verified thecirculated composition variation responding to the alteration of the opening of valves.
     In order to improve the efficiency of ACR system, the causes of low efficiency in ACRexperiment were analyzed, and the ACR process running with the ideal heat transfer processeswas obtained. Then, based on the characters of temperature variation of heat source, thedemands for the properties of mixed refrigerant were analyzed and listed. At last, thecomposition and operating pressures were optimized for the one-stage ACR heat pumpsoperated with large temperature difference using R41/R125/R124ternary-componentsmixture as refrigerant.
     The refrigerating processes a none-azeotropic as working fluid shares a significantpart in liquefaction field. To optimize the refrigeration process using multi-componentsnon-azeotropic mixture, this paper proposed a new optimization process which applies thecommercial simulation software Aspen plus to simulate the process and searches theoptimal solution using Genetic Algorithm (GA). It was applied to optimize the SMR LNGprocess’s refrigerant composition and running pressures in this paper. In addition, theperformances' sensitivity to each optimized variable and the solution adaption to theenvironment change were studied. When ambient condition alters, the operating pressureswere fixed, the mixed-refrigerant compositions were optimized under different inlet temperatures of the cold box (T2) and performed linear regression. When the liquefaction loadalters, the refrigerant composition was fixed, the operating pressures were optimized. Thenthe corresponding rotate speeds of centrifugal compressor were calculated and quadraticallyregressed with the liquefaction load.
     Of course, it is impossible to make the refrigerant composition timely alters as theambient condition changes. Therefore, at last of this paper, the LNG process containingprecooling pure refrigerant cycle and deep-cooling mixed refrigerant cycle was proposed. Itcan adjust the precooling load to adapt the change of ambient condition and sequentially keepthe stability of mixed refrigerant cycle. The process synthesizes the stability of purerefrigerant cycle in load adjustment and high efficiency of mixed refrigerant cycle. Thetheoretical basis of energy saving was proposed and the payback time of the innovation investwas analyzed.
引文
[1] Venkatarathnam G. Cryogenic Mixed Refrigerant Process[M]. New York: Springer,2009.
    [2] Yoon W. J., Seo K., Chung H. J., et al. Performance optimization of a Lorenz–Meutznercycle charged with hydrocarbon mixtures for a domestic refrigerator-freezer[J]. InternationalJournal of Refrigeration,2012,35(1):36-46.
    [3] Podbielniak W. Art of refrigeration[P]. U.S.:2041725,1936.05.26.
    [4] BP.Statistical Review of World Energy. www.BP.com,2011.7.
    [5] Kleemenko A. P. One flow cascade cycle[A]. Proceedings10th International Congress ofRefrigeration[C]. Copenhagen, Denmark: Pergamon Press.1959:34-39.
    [6] Fuderer A. Compression Process for Refrigeration[P]. U.S.:3203194,1965.08.31.
    [7] Brodyanskii V. M., Gramov E. A., Grezin A. K., et al. Efficient throttling crogenicrefrigerators which operate on mixtures[J]. Chemical and Petroleum Engineering,1971,8(12):1057-1061.
    [8] Brodyanskii V. M., Gresin A. K., Gromov E. M. The use of mixtures as working gas inthrottle (J-T) cryogenic refrigerators[A]. Proceeding13th International CongressRefrigeration[C]. Washington DC, U.S.A.1971:43-46.
    [9] Missimer D. J. Self-balancing low temperature refrigeration system[P]. U.S.:3768273,1973.10.30.
    [10] Little W. A. Design and construction of microminiature cryogenic refrigerators[A]. AIPConf. Proc.[C]. Charlottesville, U.S.A.1978:421-424.
    [11] Little W. A. Scaling of miniature cryocoolers to microminiature size[A]. Zimmerman J. E.and Flynn T. M. NBS Cryocooler Conference[C]: NBS Special Publication.1978:75-80.
    [12] Kruse H., Kuever M., Quast U., et al. Theoretical and experimental investigations ofadvantageous refrigerant mixture applications[J]. ASHRAE Transactions,1985,91:1383-1420.
    [13]李文林,华小龙.混合工质制冷循环的试验研究[J].流体机械,1987,12(4):53-55.
    [14] Little W. A. Self-Cleaning low temperature refrigeration system[P]. U.S.:5617739,1997.4.8.
    [15] Little W. A. Low cost cryocoolers for cryoelectronies[J]. Cryocoolers,1997,9:509-513.
    [16] Little W. A. Self-Cleaning low temperature refrigeration system[P]. U.S.:5724832,1998.3.10.
    [17] Little W. A. Kleemenko Cycle Coolers: Low Cost Refrigeration at CryogenicTemperatures[A]. International cryogenic engineering conference[C]. Bournemouth, England:IOP.1998.
    [18] Levenduski R., R.Scarlotti. Joule-Thomson cryocooler development at ball aerospace [J].Cryocoolers,1995,8:543-549.
    [19] Levenduski R., Scarlotti R. Joule-Thomson cryocooler for space applications[J].Cryogenics,1996,36(10):859-866.
    [20] Missimer D. J. Refrigerant conversion of auto-refrigerating cascade (ARC) systems[J].International Journal of Refrigeration,1997,20(3):201-207.
    [21] Luo E. C., Liang J., Zhou Y. Experimental investigation of an efficient closed-cyclemixed refrigerant J-T cooler [J]. Cryocoolers,1997,9:529-535.
    [22]罗二仓, Yakuba V. V., Lobko M. P.低工作压力的混合物节流制冷机的实验研究[J].真空与低温,1995,1(4):215-218.
    [23]罗二仓,周远.采用混合物作工质的J-T节流制冷机[J].真空与低温,1995,1(3):163-166.
    [24]罗二仓,周远, Yakuba V. V.一种高效率的混合物工质J-T制冷机的实验研究[J].低温与超导,1996,24(3):46-53.
    [25]罗二仓,周远,周赞熙.单级50-80K混合工质J-T节流制冷机的热力学分析及实验研究[J].真空与低温,1996,2(4):210-213.
    [26] Luo E. C., Gong M. Q., zhou Y., et al. Experimental investigation of a mixed-refrigerantJ-T cryocooler operating from30to60K [A]. Shu Q. S. Advances in CryogenicEngineering[C]: Plenum.2000:315-321.
    [27]陈光明,张绍志,王剑峰, et al.低温制冷机[P].中国:99203770.0,2000.2.16.
    [28]张绍志,王剑锋,张红线, et al.具有精馏装置的自动复叠制冷循环分析[J].工程热物理学报,2001,22(1):25-27.
    [29]陈光明,何一坚,季益华, et al.一个改进自行复叠制冷循环的实验研究[J].低温工程,2001(6):27-31.
    [30] Roberts M. J. Integrated multiple-loop refrigeration process for gas liquefaction[P]. U.S.:7086251,2006.8.8.
    [31] Olszewski W. J., Arman B., Acharya A., et al. Cryogenic industrial gas liquefaction withhybrid refrigeration generation[P]. U.S.:6041620,2000.5.28.
    [32] Foglietta J. H. LNG production using dual independent expander refrigeration cycles[P].U.S.:6412302,2002.7.2.
    [33] Fischer B., Martin P.-Y., Rojey A. Liquefaction of natural gas with natural gasrecycling[P]. U.S:6763680,2007.7.20.
    [34] Duba C. A. T., Tu O. L. M. Liquefaction apparatus[P]. U.S.:6250244,2001.6.26.
    [35] Brostow A. A., Agrawal R., Herron D. M., et al. Process for Nitrogen Liquefaction[P].U.S.:6298688,2001.10.9.
    [36] Alexeev A., Quack H. Refrigerant mixture for a mixture-throttling process[P]. U.S.:6513338,2003.2.4.
    [37] Acharya A., Arman B., Weber J. A., et al. Multiple circuit cryogenic liquefaction ofindustrial gas[P]. U.S.:6105388,2000.8.22.
    [38] Acharya A., Arman B., Olszewski W. J., et al. Variable load refrigeration systemparticularly for cryogenic temperatures[P]. U.S.:6076372,2000.6.20.
    [39] Boiarski M., Podtcherniaev O., Flynn K. Comparative Performance of Throttle CycleCryotiger Coolers Operating with Different Mixed Refrigerants[J]. Cryocoolers,2005,13:481-488.
    [40] Walimbe N. S., Narayankhedkar K. G., Atrey M. D. Experimental investigation on mixedrefrigerant Joule–Thomson cryocooler with flammable and non-flammable refrigerantmixtures[J]. Cryogenics,2010,50(10):653-659.
    [41] Neks P., Brendeng E., Drescher M., et al. Development and analysis of a natural gasreliquefaction plant for small gas carriers[J]. Journal of Natural Gas Science and Engineering,2010,2(2-3):143-149.
    [42] Kim S. G., Kim M. S. Experiment and simulation on the performance of an autocascaderefrigeration system using carbon dioxide as a refrigerant[J]. International Journal ofRefrigeration,2002,25:1093-1101.
    [43] Gong M. Q., Wu J. F., Luo E. C. Performances of the mixed-gases Joule–Thomsonrefrigeration cycles for cooling fixed-temperature heat loads[J]. Cryogenics,2004,44:847-857.
    [44] Du K., Zhang S. Q., Xu W. R., et al. A study on the cycle characteristics of anauto-cascade refrigeration system[J]. Experimental Thermal and Fluid Science,2009,33:240-245.
    [45] Corr S., Murphy F. T., Wilkinson S. Composition shifts of zeotropic HFC refrigerants inservice[J]. ASHRAE Transactions,1994,100(2):538-545.
    [46] Rinne F., Kruse H. Anlagentechnische Untersuchungen min dem KaeltemittelgemischR23/R152a[A]. Proceedings of DKV conference, Tagungsbericht des Deutschen Kaelte-undKlimatechnischen Vereins17(Pt.2)[C]. Stuttgart.1990:591-600.
    [47] Hivet B., Gillet C. HFC134a and HCFC22/142b Mixture for Conversion of CFC12Heat Pumps[A]. International Refrigeration and Air Conditioning Conference[C]. PurdueUniversity, U.S.A.1994:159-164.
    [48] Kruse H., Rinne F. Performance and Leakage Investigations of Refrigeration andAirconditioning Systems Using Refrigerant Mixtures as Working Fluids[A]. InternationalRefrigeration and Air Conditioning Conference[C]. Purdue University, U.S.A.1992:621-630.
    [49] Chen J., Kruse H. Concentration shift simulation for the mixed refrigerant R-404A,R-32/134a, and R-407C in an air conditioning system[J]. HVAC&R Research,1997,3(2):149-157.
    [50] Chen J., Kruse H. Calculating circulation concentration of zeotropic refregerantmixtures[J]. HVAC&R Research,1995,1(3):219-231.
    [51] Hughmark G. A. Holdup in Gas-liquid Flow[J]. Chemical and Engineering Progress,1962,58(4):62-65.
    [52] Judge J., Radermacher R. A transient and steady state study of pure and mixedrefrigerants in a residential heat pump[R]. U.S.A.: United States Environmental ProtectionAgncy/National Risk Management Research Laboratory,1996.
    [53] Kim M. S., Didion D. A. Simulation of isothermal and adiabatic leak processes ofzeotropic refrigerant mixtures[J]. HVAC&Refrigeration Research,1995,1(1):3-20.
    [54] Bobbo S., Zilio C., Cortella G., et al. Composition shif of the mixturesR-125/236fa(49.4/50.6) and R-509[A]. International Refrigeration and Air ConditioningConference[C]. Purdue University, U.S.A.1998:87-92.
    [55] Stoecker W. F. Industrial refrigeration handbook[M]. McGraw-Hill,1998.
    [56] Giuliani G., Hewitt N. J., Marchesi-Donati F., et al. Composition shift inliquid-recirculation refrigerating systems: an experimental investigation for the pure fluidR134a and the mixture R32/134a[J]. International Journal of Refrigeration,1999,22:486-498.
    [57] Sumida Y., Okazaki T., kasai T., et al. Development of the Circulating CompositionSensing Circuit for a Multiple Split Type Air Conditioner with R-407C[A]. InternationalRefrigeration and Air Conditioning Conference[C]. Purdue University, U.S.A.1998.
    [58] Johansson A., Lundqvist P. A method to estimate the circulated composition inrefrigeration and heat pump system using zeotropic refrigerant mixtures[J]. InternationalJournal of Refrigeration,2001,24:798-808.
    [59] Haberschill P., Gay L., Aubouin A., et al. Performance prediction of a refrigeratingmachine using R-407C: the effect of the circulating composition on system performance[J].international journal of Energy Research,2002,26:1295-1311.
    [60] Youbi-Idrissi M., Bonjour J., Marvillet C., et al. Impact of refrigerant-oil solubility on anevaporator performances working with R-407C[J]. International Journal of Refrigeration,2003,26:284-292.
    [61] Youbi-Idrissi M., Bonjour J., Meunier F. Local shifts of the fluid composition in asimulated heat pump using R-407C[J]. Applied Thermal Engineering,2005,25:2827-2841.
    [62] Gong M. Q., Wu J. F., Luo E. C., et al. Research on the Change of Mixture Compositionsin Mixed-Refrigerant Joule-Thomson Cryocoolers[A]. Breon S. Advances in CryogenicEngineering [C]: Plenum.2002:881-887.
    [63] Beggs H. D., Brill J. P. A Study of Two-Phase Flow in Inclined Pipes[J]. Journal ofPetroleum Technology,1973,25(5):607-617.
    [64]公茂琼.水平管内相积存造成深冷混合工质变浓度分析[J].工程热物理学报,2006,27(增刊1):45-48.
    [65]公茂琼.两相流中相积存造成多元混合制冷剂浓度变化分析[J].制冷学报,2006,27(4):10-12.
    [66] Gong M. Q., Deng Z. B., Wu J. F. Composition Shift of a Mixed-Gas Joule-ThomsonRefrigerator Driven by an Oil-Free Compressor[A]. Miller S. D. and Ross R. G. InternationalCryocooler Conference[C]. Boulder.2007:453-458.
    [67]邓昭彬,公茂琼,吴剑峰.无油压缩机驱动的混合工质节流制冷机工质浓度变化特征的实验研究[J].制冷学报,2006,27(6):5-9.
    [68] Chen J. F. Zeotropic Refrigerants and the Special Characteristics[J]. Proceedings of theInstitution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,2005,219(2):183-189.
    [69] Chen J. F. Comprehensive Approach to Predicting the Circulation Composition ofZeotropic Refrigerants[J]. Journal of Southeast University (English Edition)(China)(东南大学学报英文版),2004,20(3):315-318.
    [70]刘金平,朱宇龙.非共沸混合工质自复叠热泵相积存实验研究[J].制冷学报,2009,30(6):5-10.
    [71] Kim J. H., Cho J. M., Lee I. H., et al. Circulation concentration of CO2/propane mixturesand the effect of their charge on the cooling performance in an air-conditioning system[J].International Journal of Refrigeration,2007,30:43-49.
    [72] Rajapaksha L. Influence of special attributes of zeotropic refrigerant mixtures on designand operation of vapour compression refrigeration and heat pump systems[J]. EnergyConversion and Management,2007,48:539-545.
    [73] Lakshmi-Narasimhan N., Venkatarathnam G. A method for estimating the composition ofthe mixture to be charged to get the desired composition in circulation in a single stage JTrefrigerator operating with mixtures[J]. Cryogenics,2010,50(2):93-101.
    [74] Jakobs R., Kruse H. The use of non-azeotropic refrigerant mixtures in heat pumps forenergy saving[J]. International Journal of Refrigeration,1979,2(1):29-32.
    [75] Kruse H. The advantages non-azeotropic refrigerant mixtures for heat pumpapplication[J]. International Journal of Refrigeration,1981,4(3):119-125.
    [76] Pannock J., Didion D., Radermacher R. Performance Evaluation of Chlorine FreeZeotropic Refrigerant Mixtures in Heat Pumps-Computer Study and Tests[A]. InternationalRefrigeration and Air Conditioning Conference[C]. Purdue University, U.S.A.1992:25-34.
    [77] Chang Y. S., Kim M. S., Ro S. T. Performance and heat transfer characteristics ofhydrocarbon refrigerants in a heat pump system[J]. international Journal of Refrigeration,2000,23:232-242.
    [78] Kim T. S., Shin J. Y., Chang S. D., et al. Cycle Performance and Heat TransferCharacteristics of a Heat Pump Using R22/R142b Refrigerant Mixtures[A]. InternationalRefrigeration and Air Conditioning Conference[C]. Purdue University, U.S.A.1992:404-413.
    [79] Kim M., Kim M. S., Kim Y. Experimental study on the performance of a heat pumpsystem with refrigerant mixtures' composition change[J]. Energy,2004,29:1053-1068.
    [80] Yilmaz M. Performance analysis of a vapor compression heat pump using zeotropicrefrigerant mixtures[J]. Energy Conversion and Management,2003,44:267-282.
    [81] Comakli., Comakli K., Ozdemir N., et al. Analysis of heat pumps with zeotropicrefrigerant mixtures by Taguchi method[J]. Journal of Thermal Science and Technology,2010,30(2):113-122.
    [82] Rajapaksha L., Suen K. O. Influence of liquid receiver on the performance of reversibleheat pumps using refrigerant mixtures[J]. International Journal of Refrigeration,2004,27:53-62.
    [83] Li T. X., Guo K. H., Wang R. Z. High temperature hot water heat pump withnon-azeotropic refrigerant mixture HCFC-22/HCFC-141b[J]. Energy Conversion andManagement,2002,43:2033-2040.
    [84]李廷勋,郭开华,王如竹, et al.非共沸混合工质R22/R141b高温热泵实验研究[J].化工学报,2002,53(5):542-545.
    [85] Zhao L. Experimental evaluation of a non-azeotropic working fluid for geothermal heatpump system[J]. Energy Conversion and Management,2004,45:1369-1378.
    [86]赵力,涂光备,张启, et al.混合工质在地热热泵系统中的实验研究[J].暖通空调,2002,32(3):4-6.
    [87] Zhao P. C., Ding G. L., Zhang C. L., et al. Simulation of a geothermal heat pump withnon-azeotropic mixture[J]. Applied Thermal Engineering,2003,23:1515-1524.
    [88] Gao P., Zhao L. Investigation on incomplete condensation of non-azeotropic workingfluids in high temperature heat pumps[J]. Energy Conversion and Management,2006,47:1884-1893.
    [89] Zhang S., Wang H., Guo T. Experimental investigation of moderately high temperaturewater source heat pump with non-azeotropic refrigerant mixtures[J]. Applied Energy,2010,87:1554-1561.
    [90]马利敏,王怀信.中高温热泵工质的理论研究[J].工程热物理学报,2003,24(5):737-740.
    [91]张宇,王怀信,马利敏.一种中高温热泵混合工质的实验研究[J].工程热物理学报,2005,26(6):924-926.
    [92]马利敏,王怀信,王继霄.一种新型高温热泵混合工质的循环性能[J].热能动力工程,2010,25(5):491-496.
    [93]胡永亮,陈光明,陈斌, et al.三元混合工质在变浓度空气源热泵中的应用[J].暖通空调,2005,35(8):132-137.
    [94]陈光明,张丽娜,陈斌.混合工质变浓度空气源热泵系统的研究[J].工程热物理学报,2006,27(2):202-204.
    [95]刘东方,陈光明.三元混合工质用于变容量热泵系统的实验研究[J].制冷学报,2009,30(4):25-30.
    [96]刘金平,郭灵兵,曹乐, et al.自复叠制冷中节流阀开度对流量影响实验研究[J].低温与超导,2011,39(3):66-71.
    [97]刘金平,吴啸,郭灵兵.节流阀开度对自复叠制冷循环冷凝蒸发器换热性能影响的试验研究[J].机械工程学报,2011,47(8):152-157.
    [98]刘金平,许雄文,张志鹏, et al.非共沸混合工质自复叠热泵循环试验研究[J].低温与超导,2006,34(6):408-413.
    [99]刘金平,朱海明,刘雪锋.基于Aspen Plus的自复叠热泵模拟[J].制冷,2010,29(1):1-8.
    [100]徐卫荣,杜垲.自然复叠式热泵循环系统热力性能分析[J].化工学报,2008,59(S2):230-234.
    [101]徐卫荣,杜垲.自然复叠式热泵循环系统热力计算与分析[J].低温工程,2009(5):31-36.
    [102]杜垲,徐卫荣. R134a/R123自然复叠式热泵系统浓度配比分析[J].制冷学报,2009,30(2):33-38.
    [103]陶锴,晏刚,张敏, et al.具有中间压力调节功能的新型自复叠热泵[J].制冷学报,2010,44(9):43-47.
    [104] Remeljej C. W., Hoadley A. F. A. An exergy analysis of small-scale liquefied naturalgas (LNG) liquefaction processes[J]. Energy,2006,31:2005-2019.
    [105] Venkatarathnam G. Cryogenic Mixed Refrigerant Process[M]. New York: Springer,2008.
    [106] Dobak-III J. D., Radebaugh R., Huber M. L., et al. Mixed gas refrigeration method [P].U.S.:5787715,1998.8.4.
    [107] Gong M. Q., Luo E. C., Zhou Y., et al. Optimum composition calculation formulticomponent cryogenic mixture used in Joule-Thomson refrigerators[A]. Shu Q. S.Advances in Cryogenic Engineering[C]: Plenum.2000:283-290.
    [108] Luo E. C., Zhou Y., Gong M. Q. Thermodynamic analysis and optimization of80Kclosed cycle Joule-Thomson cryocooler with gas mixture[A]. Kitte P. Advances in CryogenicEngineering[C]. PORTLAND, OR: Plenum.1998:1679-1683.
    [109]公茂琼,罗二仓,周远.用状态方程计算多元混合工质的热导率[J].低温工程,1997,99(5):18-22.
    [110]公茂琼,罗二仓,周远.多元混合物节流制冷工质最佳配比计算[J].真空与低温,1999,5(2):108-113.
    [111]公茂琼,罗二仓,周远.多元低温混合物工质迁移物性计算[J].低温工程,1999,110(4):197-201.
    [112] Gong M. Q., Wu J. F., Luo E. C., et al. Study of the single-stage mixed-gasesrefrigeration cycle for cooling temperature-distributed heat loads[J]. International Journal ofThermal Sciences,2004,43(1):31-41.
    [113]公茂琼,罗二仓,周远.用于复叠温区的多元混合工质一次节流制冷系统[J].工程热物理学报,2000,21(2):147-149.
    [114] Boiarski M. J., Khatri A., Kovalenko V. Design optimization of the throttle cycle coolerwith mixed refrigerant[J]. Cryocoolers,1999,10:457-465.
    [115] Boiarski M., Longsworth R. C., Yudin B., et al. Closed cycle cryogenic refrigerationsystem with automatic variable flow area throttling device [P]. U.S.A:5595065,1997.1.21.
    [116] Boiarsky M. J., Yudin B., Mogorychny V. I., et al. Cryogenic mixed gas refrigerant foroperation within temperature ranges of80.degree.K-100.degree.K [P]. U.S.:5441658,1995.8.15.
    [117] Khatri A. A throttle cycle refrigerator operating below77K[A]. Kittel P. Advances inCryogenic Engineering[C]: Plenum.1996:1291-1296.
    [118] Khatri A., Boiarski M. J., Nesterov S. Water trap refrigerated by a throttle-cycle coolerusing mixed gas refrigerant[A]. Kittel P. Advances in Cryogenic Engineering[C].PORTLAND, OR: Plenum.1998:1693-1700.
    [119] Khatri A., Boiarsky M. J. A throttle cycle cryocooler operating with mixed gasrefrigerants in70K to120K temperature range[J]. Cryocoolers,1997,9:515-520.
    [120] Longsworth R. C.80K throttle-cycle refrigerator cost reduction[J]. Cryocoolers,1997,9:521-528.
    [121] Longsworth R. C., Boiarsky M. J., Khatri A. Cryostat refrigeration system using mixedrefrigerants in a closed vapor compression cycle having a fixed flow restrictor [P]. U.S.:5579654,1996.12.3.
    [122] Longsworth R. C., Boiarsky M. J., Klusmier L.80K closed-cycle throttle refrigerator[J].Cryocoolers,1995,8:537-547.
    [123]石玉美,顾安忠,汪荣顺, et al.混合制冷剂循环液化天然气流程的优化分析[J].工程热物理学报,2000,21(4):409-412.
    [124] Venkatarathnam G. A refrigerant composition for refrigeration system[P]. U.S.:7582223,2009.9.1.
    [125]王勤.混合工质节流制冷机的理论与实验研究[D].杭州:浙江大学,2002.
    [126] Cao W. S., Lu X. S., Lin W. S., et al. Parameter comparison of two small-scale naturalgas liquefaction processes in skid-mounted packages[J]. Applied Thermal Engineering,2006,26:898-904.
    [127] Box M. J. A new method of constrained optimization and a comparison with othermethods[J]. Computer Journal,1965,8(1):42-52.
    [128] Lee G. C., Smith R., Zhu X. X. Optimal synthesis of mixed-refrigerant systems for lowtemperature processes[J]. Industrial&Engineering Chemistry Research,2002,41:5016-5028.
    [129] Aspelund A., Gundersen T., Myklebust J., et al. An optimization-simulation model for asimple LNG process[J]. Computers and Chemical Engineering,2010,34(10):1606-1617.
    [130] Mokarizadeh M., Shirazi H., Mowla D. Energy optimization for liquefaction process ofnatural gas in peak shaving plant[J]. Energy,2010,35:2878-2885.
    [131] Alabdulkarem A., Mortazavi A., Hwang Y., et al. Optimization of propane pre-cooledmixed refrigerant LNG plant[J]. Applied Thermal Engineering,2011,31:1091-1098.
    [132] Locklar R. W., Matinelli R. C. Proposed correlation of data for isothermal two-phasecomponent flow in pipes[J]. Chemical and Engineering Progress,1949,45(1):39-45.
    [133]葛云亭,彦启森.冷凝器动态参数数学模型的建立与理论计算[J].制冷学报,1995(3):17-26.
    [134] Zivi S. M., Jones A. B. An analysis of the EBWR instability by the FABLE program[J].Transaction of American Nuclear Social,1966,9:273-274.
    [135] Smith S. L. Void fractions in two‐phase flow: a correlation based upon an equalvelocity head model[J]. Proceedings of the Institution of Mechanical Engineers,1969,184:647-664.
    [136]王生龙,陈光明,王勤.自动复叠制冷循环中节流阀开度的试验研究[J].制冷学报,2005,26(4):56-58.
    [137]丁国良,欧阳华,李鸿光.空调装置数字化设计[M].北京:中国建筑工业出版社,2008.
    [138]丁国良,张春路.制冷空调装置智能仿真[M].北京:科学出版社,2002.
    [139]丁国良,张春路.制冷空调装置仿真与优化[M].北京:科学出版社,2001.
    [140] Wile D. D. The measurement of expansion valve capacity[J]. Refrigeration Engineering,1935,8:1-8.
    [141] Holland J. Adaption in natural and artificial systems[M]. Boston: MIT Press,1975.
    [142]雷英杰,张善文,李续武, et al. Matlab遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [143] Pradowshi H., Hagyard P. Comparing five LNG processes[J]. Hydrocarbon Engineering,2003,8(10):32-37.
    [144] Linnhoff B., Flower J. R. Synthesis of heat exchanger networks: I. Systematicgeneration of energy optimal networks[J]. AIChE Journal,1978,24(4):633-642.
    [145] Venkatarathnam G., Murthy S. S. Effect of mixture composition on the formation ofpinch points in condensers and evaporators for zeotropic refrigerant mixtures[J]. InternationalJournal of Refrigeration,1999,22:205-215.
    [146]刘金平,许丁雪,刘雪峰.珠江水作为冷水机组冷却水的经济性能研究[J].暖通空
    调,2009,39(8):128-132.