浙江沿岸上升流遥感观测及其与赤潮灾害关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤潮灾害是我国主要海洋灾害之一,而浙江沿海是我国赤潮灾害最严重的海域。赤潮发生不仅与海域内水体理化环境和气象条件有关,还与沿岸上升流等物理海洋过程密切相关。本论文针对浙江沿岸上升流及海域内发生的赤潮灾害,研究浙江沿岸上升流遥感信息提取技术,提取了浙江沿岸上升流时空分布特征和变化规律;在收集多年赤潮记录资料基础上,统计分析了浙江沿海赤潮的时空分布特征;最后从遥感角度研究了浙江沿岸上升流与赤潮灾害间的时空关系,探讨了浙江沿岸上升流对赤潮灾害的影响与作用。
     在上升流遥感信息提取技术研究方面,提取了上升流卫星遥感数据的可见光和热红外图像特征。基于上升流在卫星热红外遥感数据中的图像特征,建立了基于动态温度阈值的浙江沿岸上升流遥感信息提取模型。针对业务化运行的EOS MODIS卫星遥感数据,实现了浙江沿岸上升流遥感信息提取方法。
     利用所建立的浙江沿岸上升流遥感信息提取方法,提取了2007~2009年浙江沿岸上升流的遥感信息。统计分析了浙江沿岸上升流的物理特征和时时空分布,得到了浙江沿岸上升流的短期和季节变化规律。明确了浙江沿岸上升流核心区与海底斜坡间的空间关系,揭示了浙江沿岸上升流时空分布的年度差异,探讨了浙江沿岸上升流的形成过程和影响因素。
     在浙江沿海赤潮灾害统计分析方面,通过收集2000~2009年间的赤潮事件数据与资料,开展了浙江沿海赤潮的统计分析,获取了浙江沿海赤潮的时间分布特征,进行了浙江沿海赤潮类型的时间划分。明确了浙江沿海赤潮多发区的空间位置及其与海底斜坡间的空间关系,发现了赤潮多发区赤潮空间分布的年际波动特征。
     在浙江沿岸上升流与赤潮灾害间关系研究方面,利用所获取的浙江沿岸上升流遥感信息,结合浙江沿海赤潮灾害统计结果,采用多尺度时空分析方法,建立了浙江沿岸上升流核心区与赤潮多发区间的空间关系,赤潮多发区赤潮空间分布年度变化与浙江沿岸上升流强度年度差异间的关系。分析了浙江沿岸上升流对赤潮灾害的影响,探讨了上升流等物理海洋过程在浙江沿海赤潮形成过程中的作用。
Red tide is one of the several marine disaters, and the Zhejiang Coastal Waters (ZCW) is the worst and major area of red tide disaster in China. There exist significant upwelling phenomena in the ZCW. Red tides and physical processes are closely related. This paper systematically carried out four research efforts about remote sensing technique of upwelling, temporal and spatial characteristics of the Zhejiang Coastal Upwelling (ZCU), statistical analysis of red tides occurred in the ZCW, and relationships between ZCU and red tides occurred in the ZCW.
     This study has collected a large number of EOS MODIS visible and thermal infrared data from 2007 to 2009 year, and the image features of ZCU are extracted from above remote sensing data sets. Based on the upwelling features in sea surface themperature images, a dynamic temperature threshold model is proposed and established to measure the ZCU, and then attributes of the ZCU are calculated. A semi-automatic method is achieved to obtain the ZCU information for the operational EOS MODIS satellite remote sensing data.
     With the established upwelling measure model, remote sensing information of the ZCU are extracted and then statistically analyzed with EOS MODIS data durring 2007~2009. Temporal characteristics of the ZCU are obtained, and development periods of the ZCU are proposed. Spatial distribution and variation of the ZCU are discussed. The variation discipline of spatial distribution of ZCUis set up, and position relationships between the ZCU and the submarine steep slope along the Zhejiang coast are also established. The development processes of the ZCU and its factors are investigated.
     By collecting red tide events’data from 2000 to 2009, the red tides in the ZCW are statistically analyzed. Temporal characteristics of red tides in the ZCW are obtained and two temporal types of red tide are classified. Based on the spatial distribution of red tide, location of the red tide-prone regions is pointed out and its position relationship with the submarine steep slope along the Zhejiang coast is cleared out. The annual characteristics of spatial distribution of red tides in the ZCW are also found.
     By applying multi-scale temporal-spactial analysis method, the relationship between ZCU and red tides in the ZCW are carried out and established. There exists a high degree of correlation in space, time and intensity distribution between ZCU and red tides occurred in the ZCW. The effects of the ZCU on red tides about time, scale and postion in the ZCW are analyzed. The roles of ZCU in the development processes of red tide in the ZCW are also discussed.
引文
1. Ackleson, S.G., and Holligan, P. M. AVHRR observations of a Gulf of Maine coccolithophorid bloom. Photogramm. Eng. Remote Sensing, 1989, 55, 473~474
    2. Afanasyeva Y.D., Nezlin N.P., Kostianoy, A.G. Patterns of seasonal dynamics of remotely sensed chlorophyll and physical environment in the Newfoundland region. Remote Sensing of Environment, 2001, 76, 268~282
    3. Alvarez-Salgado X.A., Figueiras F.G., Villarino M.L.and Pazos Y. Hydrodynamic and chemical conditions during onset of a red-tide assemblage in an estuarine upwelling ecosystem. Marine Biology,1998, 130, 509~519
    4. Ahn Yu-Hwan, et al. Satellite detection of harmful algal bloom occurrences in Korean waters, Harmful Algae, 2006, 5, 213~31
    5. Anderson D.M. Toxic red tides and harmful algal blooms: A practical challenge in coastal oceanography. Reviews of Geophysics, 1995, Supplement, 1189~1200
    6. Blasco D. Red tide in the upwelling region of Baja California. Limnology and Oceanography, 1977, 22(2), 255~263
    7. Ballestero D. and Boxall S. Remote sensing and modeling primary productivity in upwelling systems. Proc. 3rd ERS Symp. On Space at the service of our Environment, 1997, ESA SP-414, 3, 1439~1442
    8. Brylinski J.M. et al. Hydrography and phytoplankton biomass in the Eastern English Channel in spring 1992. Estuarine, Coastal and Shelf Science, 1996, 43, 507~519
    9. Cracknell A.P., Newcombe S.K., Black A.F. and Kirby N.E. The ABDMAP (Algal Bloom Detection, Monitoring and Prediction) concerted action. International Journal of Remote Sensing, 2001, 22(2&3), 205~247
    10. Clemente Colón P. and Yan X.H. Observations of East Coast Upwelling Conditionsin Synthetic Aperture Radar Imagery. IEEE Transactions on Geoscience and Remote Sensing, 1999. 37(5), 2239~2248
    11. Cullen, J., Ciotti A.M. Davis R.F. and Lewis M.R., Optical detection and assessment of algal blooms. Limnology and Oceanography, 1997, 42, 1223~1239
    12. Demarcq H. and Faure V. Coastal upwelling and associated retentionindices derived from satellite SST. OCeanologica Acta, 2000, 23(4), 391~408
    13. Dickson R.R. and Gurbutt P.A. Satellite evidence of enhanced upwelling along the European continental slope. Journal of Physical Oceanography, 1980, 10 813~819
    14. D'Croz L., Rosario J.B. and Gomez J.A. Upwelling and phytoplankton in the Bay of Panama. Rev. Biol.. Trop., 1991, 39(2), 233-241
    15. Durand, D., Bijaoui J. and Cauneau F., Optical remote sensing of shallow-water environment parameters: A feasibility study. Remote Sensing Environment, 73, 152-161, 2000.
    16. Engelsen O., Hegseth E.N., et al. Spatial variability of chlorophyll-a in the Marginal Ice Zone of the Barents Sea, with relations to sea ice and oceanographic conditions. Journal of Marine Systems, 2002, 35, 79~97
    17. Estrada M. and Blasco D. Two phases of the phytoplankton community in the Baja California Upwelling. Limnology and Oceanography, 1979, 24(6), 1065~1080
    18. Evans N.R., Woodruff D.L., Trainer V.L. Development of coastal upwelling edge detection algorithms associated with harmful algal blooms off the Washington coast using sea surface temperature imagery. Proc. of SPIE, 2005, 5885, L1~6
    19. Eynaud F., et al. Sea-surface distribution of coccolithophores, diatoms, silicoflagellates, and dinoflagellates in the South Atlantic Ocean during the late austral summer 1995, Deep-Sea Research, 1999, I46, 451~482
    20. Flament P., Armi L. and Washburn L. The Evolving Structure of an Upwelling Filament. Journal of Geophysical Research, 1985, 90(C6), 11765~11778
    21. Fisher W.S., Malone T.C. and Giattina J.D. A Pilot Project to detect and forecast Harmful Algal Blooms in the Northern Gulf of Mexico. Environmental Monitoring and Assessment, 2003, 81, 373~381
    22. Fu L.L, Holt B. SEASAT Views Ocean and Sea Ice with Synthetic Aperture Radar. NASA/JPL Publication, 1982, 81~120
    23. Gao X.L., Song J.M. Phytoplankton distributions and their relationship with the environment in the Changjiang Estuary, Marine Pollution Bulletin, 2005, 50(3), 327~335
    24. Luis D'Croz, et al. Upwelling and phytoplankton in the Bay of Panama. Revista de Biología Tropical, 1991., 39(2), 233~241
    25. Gowen R.J. et al. Plankton distributions in relation to physical oceanographic features on the southern Malin Shelf August 1996, ICES Journal of Marine Science, 1998, 55, 1095~1111
    26. Gower J.F.R. Bright plankton blooms on the west coast of North America observed with AVHRR imagery, in: Kahru, M. and Brown, C. W. (ed.), Monitoring Algal bloom: New Techniques for Detecting Large-scale Environmental Change, Spring-Velag and Landes Bioscience , 1997, 25~41
    27. Greenan B.J.W., Petrie B.D., Harrison W.G., Oakey N.S. Are the spring and fall blooms on the Scotian Shelf related to short-term physical events. Continental Shelf Research, 2004, 24, 603~625
    28. Groom, S.B. and Holligan P.M. Remote sensing of coccolithophore blooms. Adv. Space Res, 1987, 7(2), 73~78
    29. Hedgera R.D., Olsenb R.B., Malthusa T.J., Atkinson P.M. Coupling remote sensing with computational fluid dynamics modelling to estimate lake chlorophyll-a concentration. Remote Sensing of Environment, 2002, 79, 116~122
    30. Holligan P.M, Viollier M. Dupouy C. and Aiken J. Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature, 1983, 304, 339~342
    31. Hsu M.K, Mitnik L.M, Liu C.T. Upwelling area northeast of Taiwan on ERS-1 SAR images. Acta Oceanogr Taiwan, 1995, 34(3): 27~38
    32. Hu C.M., Muller-Karger F.E., et al. Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters, Remote Sensing of Environment, 2005, 97, 311~321
    33. Hu J.Y., et al. Hydrographic and satellite observations of summertime upwelling in the Taiwan Strait a preliminary description.TAO, 2001, 12(2), 415~430
    34. Inagake D. and Saitoh S. Description of the oceanographic conditions of Sanriku, Northwestern Pacific, and its relation to spring bloom detected by the ocean color and temperature scanner (OCTS) images. Journal of Oceanography, 1998, 54, 479~494
    35. Jing Z.Y., Hua Z.L., Qi Y.Q. and Zhang H. Summer Upwelling in the Northern Continental Shelf of the South China Sea. 16th Australasian Fluid Mechanics Conference, 2007, Crown Plaza, Gold Coast, Australia, 782~785
    36. Johnny A. et al. Remote sensing and model simulation studies of the Norwegian coastal current during the algal bloom in May 1988, International Journal of Remote Sensing, 1989., 10(12), 1893~1906
    37. John P. R. et al. Coastal ocean physics and red tides, Oceanography, 2005, 18(2), 214~223
    38. Johannessen J.A., Haugan P.M., Remote sensing and model simulatin studies of the Norwegian coastal current during the algal bloom in May 1988. International Journal of Remote Sensing, 1989, 10(12), 1893~1906
    39. Kahru M., Horstmann U. and Rud O. Increased cyanobacterial blooming in the Baltic Sea detected by satellite: natural fluctuation or ecosystem change? Ambio, 1994, 23, 469~472
    40. Kerkhof L.J. et al. Variability in bacterial community structure duringupwelling in the coastal ocean. Hydrobiologia, 1999, 401, 139~148
    41. Kiorboe T., et al. Intensive aggregate formation with low vertical flux during an upwelling-induced diatom bloom. Limnology and Oceanography, 1998, 43(1), 104~116
    42. Kr??el A., Ostrowski M. and Szymelfenig M. Sea surface temperature distribution during upwelling along the Polish Baltic coast. Oceanologia, 2005, 47 (4), 415~432
    43. Kr??el A., et al. Influence of coastal upwelling on chlorophyll a concentration in the surface water along the Polish coast of theBaltic Sea. Oceanologia, 2005, 47 (4), 433~452
    44. Kudela R., et al. Harmfull Algal Blooms in coastal upwelling systems. Oceanography, 2005, 18(2), 184~197
    45. Kuo N.J., Zheng Q.N. and Ho C.R. Satellite observation of upwelling along the Western Coast of the South China Sea. Remote Sensing of environment, 2000, 74, 463~470
    46. Lavender S.J. and Groom S.B. The detection and mapping of algal blooms from space. International Journal of Remote Sensing, 2001, 22(2 & 3), 197~201
    47. Lee J.H.W., Hodgkiss I.J., et al. Real time observations of coastal algal blooms by an early warning system. Estuarine, Coastal and Shelf Science, 2005, 65, 172~190
    48. Li X.M., Li X.F., He M.X. Coastal upwelling observed by multi-satellite sensors. Sci China Ser D-Earth Sci, 2009, 52(7), 1030~1038
    49. LüX.G., Qiao F.L., et al. Tidally induced upwelling off Yangtze River estuary and in Zhejiang coastal waters in summer. Sci China Ser D-Earth Sci, 2007, 50(3), 462~473
    50. Nascimento, S., Sousa, F. M., Casimiro, H., & Boutov, D. Applicabilityof fuzzy clustering for the identification of upwelling areas on sea surfacetemperature images. In B. Mirkin, & G. Magoulas (Eds.), 2005, Proc. of the 2005 UK Workshop on Computational Intelligence. London, UK,. 143~148
    51. Nykjar, L. and Camp L.V. Seasonal and interannual variability of coastal upwelling along northwest Africa and Portugal from 1981 to 1991. Journal of Geophysical Research, 1994, 99(C7), 14197~14207
    52. Marcello J., Eugenio F. Automatic tool for the precise detection of upwelling and filaments in remote sensing imagery,IEEE Transactions on geosciences and remote sensing, 2005, 43(7), 1605~1616
    53. Moorea J.K., Abbott M.R. Surface chlorophyll concentrations in relation to the Antarctic Polar Front seasonal and spatial patterns from satellite observations. Journal of Marine Systems, 2002 (37) , 69~86
    54. Okkonen S.R., Schmidt G.M., CokeletE.D., Stabeno P.J. Satellite and hydrographic observations of the Bering Sea 'Green Bel'. Deep-Sea Research II, 2004, 51, 1033~1051
    55. Olascoaga M.J., et al. Tracing the early development of harmful algal blooms on the West Florida Shelf with the aid of Lagrangian coherent structures. Journal of Geophysical Research, 2008, 113, C12014
    56. Oram J.J., McWilliams J.C., Stolzenbach K.D. Gradient-based edge detection and feature classification of sea-surface images of the Southern California Bight. Remote Sensing of Environment, 2008, 112, 2397~2415
    57. Palanisamy, S., Ahn Y.H., Ryu J.H., Jeong-Eon M. Application of optical remote sensing imagery for detection of red tide algal blooms in Korean waters. IGARSS, 2005, 1912~1915
    58. Pelaez J. Satellite images of a red tide episode off. Southern California. Oceanologica Acta, 1987, 10(4), 403~410
    59. Peliz A.J. and Fiuza A.F.G. Temporal and spatial variability of CZCS-derived phytoplankton pigment concentrations off the western Iberian Peninsula. International Journal of Remote Sensing, 1999, 20(7), 1363~1403
    60. Pettersson L.H., Durand D., Johannessen O.M. Monitoring and model predictions of Harmful Algae Blooms in Norwegian Waters. IGARSS, 2001, 1146~1148
    61. Pitcher, G.C., Boyd A.J., Horstman D.A. and Mitchell-Innes B.A. Subsurface dinoflagellate populations, frontal blooms and the formation of red tides in the southern Benguela upwelling system. Marine Ecology Progress Series, 1998, 172, 253~264
    62. Prasad, K.S., Haedrich, R.L. Satellite observations of phytoplankton variability on the GrandBanks of Newfoundland during a spring bloom. International Journal of Remote Sensing, 1993, 4(2), 241~252
    63. Probyn, T.A., Pitcher G.C., Monteiro P.M.S., Boyd A.J. and Nelson G. Physical processes contributing to harmful algal blooms in Saldanha Bay. African Journal of Marine Science, 2000, 22, 285~297
    64. Raine R., et al. Physical dynamics on the continental shelf off southwestern Ireland and their influence on coastal phytoplankton blooms. Continental Shelf Research, 1998, 18, 883~914
    65. Richardson L.L. Remote sensing of algal bloom dynamics. Bioscience, 1996, 46, 492~501
    66. Rodriguez L., et al. Identification of an upwelling zone by remote sensing and in situ measurements. SCI. MAR., 1991, 55(3), 467~473
    67. Ryan J.P., et al. Birth of a red tide in a coastal ocean upwelling ecosystem, 2004.
    68. Ryan J.P., et al. Coastal ocean physics and red tides. Oceanography, 2005, 18(2), 215~223
    69. Ryther J.H. Photosynthesis and fish production in the sea.Science, 1969, 166, 72~76
    70. Sacau M., Conde P., Otero P. Forecast of red tides off the Galician coast. Acta Astronautica, 2003, 53, 439~443
    71. Santos A.M.P., Kazmin A.S. and Peliz A. Decadal changes in the Canary upwelling system asrevealed by satellite observations: Their impact on productivity. Journal of Marine Research, 2005, 63, 359~379
    72. Sasamal S.K., Panigrahy R.C. and Misra S. Asterionella blooms in the northwestern Bay of Begal during 2004. International Journal of Remote Sensing, 2005, 26(17), 3853~3858
    73. Sasaoka, K., Saitoh, S., et al. Temporal and spatial variability of chlorophyll-a in the western subarctic Pacific determined from satellite and ship observations from 1997 to 1999. Deep-Sea Research II, 2002, (49), 5557~5576
    74. Sawadogo S., Brajard J., Niang A., Lathuiliere C., Crepon M., Thiria S. Analysis of the Senegalo-Mauritanian Upwelling by processing satellite remote sensing observations with topological maps. Proceedings of International Joint Conference on Neural Networks, Atlanta, Georgia, USA, June 14-19, 2009, 2826~2832
    75. SCOR and IOC of UNESCO. Global ecology and oceanography of harmful algal blooms-science plan. GEOHAB Scientific Steering Committee, 2001, 86
    76. Siegel H. et al. Case studies on phytoplankton blooms in coastal and open waters of the Baltic Sea using Coastal Zone Color Scanner data. International Journal of Remote Sensing, 1999, 20(7), 1249~1264
    77. Saitoh S., Inagake D., Sasaoka K., Ishizaka J., Nakame Y. and Saino T. Satelliteand ship observations of Kuroshio warm-core during 93A of Sanriku, Northwestern North Pacific, in spring 1997. Journal of Oceanography, 1998, 54, 495~508
    78. Saitoh S., Iida T., Sasaoka K. A description of temporal and spatial variability in the Bering Sea spring phytoplankton blooms (1997–1999) using satelite multi-sensor remote sensing. Progress in Oceanography, 2002, (55), 131~146
    79. Shuji M., et al. Research in Verifying Emergence of Upwelling Using Remote Sensing. Journal of Geophysical Research, 1994, 99(C7), 14197~14207
    80. Smith W.O., et al. Regulation of phytoplankton communities by physical processes in upwelling ecosystem. Journal of Marine Research, 1983, 41, 539~556
    81. Sousa F.M., Nascimento S., Casimiro H., Boutov D. Identification of upwelling areas on sea surface temperature images using fuzzy clustering. Remote Sensing of Environment, 2008, 112, 2817~2823
    82. Stumpf R.P. and Tyler M.A. Satellite detection of bloom and distributions in estuaries. Remote Sensing of Environment, 1988, 24, 385~404
    83. Stumpf R.P. and Megan L.F. Use of AVHRR imagery to examine long-tem trends in water clarity in coastal estuaries: example in Florida Bay, in: Kahru, M. and Brown, C. W. (ed.), Monitoring Algal bloom: New Techniques for Detecting Large-scale Environmental Change. Spring-Velag and Landes Bioscience, 1997, 3~23
    84. Stumpf R.P. Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms. Human and Ecological Risk Assessment, 2001, 7(5), 1383~1368
    85. Stumpf R.P., Culver M.A., et al. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae, 2003, (2), 147~160
    86. Stumpf R.P., Culver M.A. Forecasting of harmful algal blooms in the gulf of Mexico, 2004.
    87. Sukhacheva L.L., Bychkova I.A., Victorov S.V. Multiyear remotely sensed data in support of monitoring, management and protection of the eastern Gulf of Finland coastal zone. IGARSS, 2002, 3, 1585~1587
    88. Tang D.L., et al. Short-term variability of phytoplankton blooms associated with a cold eddy in the northwestern Arabian Sea. Remote Sensing of Environment, 2002, 81, 82~89
    89. Tang D.L., et al. Upwelling in the Taiwan Strait during the summer monsoon detected by satellite and shipboard measurements. Remote Sensing of Environment , 2002, 83(3), 457~471
    90. Tang D.L., et al. Tidal Front around the Hainan Island, northwest of the South China Sea. Journal of Geophysical Research, 2003, 108(C11), 3342.
    91. Tang D.L., Kester D.R., et al. In situ and satellite observations of a harmful algal bloom and water condition at the Pearl River estuary in late autumn 1998. Harmful Algae, 2003, 2, 89~99
    92. Tang D.L, et al. Seasonal and spatial distribution of chlorophyll-a concentrations and water conditions in the Gulf of Tonkin South China Sea. Remote Sensing of Environment, 2003, 85, 475~483
    93. Tang D.L, et al. Offshore phytoplankton biomass increase and its oceanographic causes in the South China Sea. Marine Ecology Progress Series, 2004, 268, 31~41
    94. Tang D.L, et al. Remote sensing oceanography of a harmful algal bloom off the coast of southeastern Vietnam. Journal Geophysical Research, 2004, 109, C03014
    95. Tang D.L, et al. Satellite evideance of harmful algal blooms and related oceanographic features in the Bohai Sea during autumn 1998. Advances in Space Research, 2006, 37, 681~689
    96. Tang D.L, et al. Spatial, seasonal and species variations of harmful algal blooms in the South Yellow Sea and East China Sea. Hydrobiologia, 2006, 568, 245~253
    97. Tester P.A., Stumpf R.P., Vukovich F.M., Fowler P.K., Turner J.T. An expatriate red tide bloom: transport, distribution and persistence. Limnology and Oceanography, 1991, 36, 1053~1061
    98. Tester P.A., Steidinger K.A. Gymnodinium breve red tide blooms: initiation, transport and consequences of surface circulation. Limnology and Oceanography, 1997, 45, 1039~1051
    99. Tester P.A. and Stumpf R.P. Phytoplankton blooms and remote sensing: What is the potential for early warning? Journal of Shellfish Research, 1998, 17, 1469~1471
    100. Tilstone G.H., Figueiras F.G. et al. Phytoplankton composition, photosynthesis and hydrographic conditions at the Northwest Iberian upwelling system. Marine Ecology Progress Series, 2003, 252, 89~104
    101. Traganza, E.D., Nestor D.A. and McDonald A.K., Satellite observations of a nutrient upwelling off the coast of California. Journal Geophysical Research, 1980, 85(C7), 4101~4106
    102. Tyler M.A., Stumpf R.P. Feasibility of using satellites for detection of kinetics of small phytoplankton blooms in estuaries tidal and migrational effects. Remote Sensing of Environment, 1989, 27(3), 233~249
    103. Uiboupin R. and Laanemets J. Upwelling characteristics derived form satellite sea surface temperature data in the Gult of Finland Baltic Sea. Boreal Environment Research, 2009, 14, 297~304
    104. Weeks S.J., Shillington F.A. Phytoplankton pigment distribution and frontal structure in the subtropical convergence region south of Africa. Deep-Sea Research I, 1996, 43(5), 739~768
    105. Weeks S.J., Pitcher G.C., Bernard S. Satellite monitoring of the evolution of a coccolithophorid bloom in the Southern Benguela Upwelling System. Oceanography, 2004, 17(1), 83~89
    106. Wynne T.T., Stumpf R.P., et al. Detecting Karenia brevis blooms and algal resuspension in the western Gulf of Mexico with satellite ocean color imagery.Harmful Algae, 2005, 4, 992~1003
    107. Yang Z.B., Hodgkiss I.J. Hong Kongs worst red tide-causative factors reflected in a phytoplankton study at Port Shelter station in 1998. Harmful Algae, 2004, 3, 149~161
    108. Yin K.D. Influence of monsoons and oceanographic processes on red tides in Hong Kong waters. Marine Ecology Progress Series, 2004, 262, 27~41
    109. Yin K.D., et al. Effect of wind events on phytoplankton blooms in the Pearl River estuary during summer. Continental Shelf Research, 2004, 24, 1909~1923
    110. Zeichen M.M., Robinson I.S. Detection and monitoring of algal blooms using SeaWiFS imagery, International Journal of Remote Sensing, 2004, 25(7&8), 1389~1395
    111. IOC Working Group on Harmful Algal Bloom Dynamic (WGHABD), http://www.ices.dk/iceswork/
    112. NOAA Harmful Algal Bloom Operational Forecast System, http://tidesandcurrents.noaa.gov/hab/.
    113. Harmful Algal BloomS Observing System (HABSOS), http://habsos.noaa.gov/.
    114. North Carolina's Harmful Algal Blooms (HAB) Program, http://www.epi.state.nc.us/epi/hab/.
    115.蔡燕红,项有堂.舟山海域具齿原甲藻赤潮初探.海洋环境科学, 2002, 21(4), 34~36
    116.曹欣中.浙江近海上升流季过程的初步研究.海洋通报, 1986, 10(1), 51~68
    117.曹丛华,等.赤潮的爆发与水文气象环境因子多元分析.赤潮灾害预报机理与技术, 2004, 54~60
    118.陈翰林,吕颂辉,张传松,朱德弟. 2004年东海原甲藻赤潮爆发的现场调查和分析.生态学报, 2006, 5(3), 226~230
    119.陈晓翔,等.赤潮相关因子的卫星遥感探测与赤潮预报的可行性探讨.中山大学学报(自然科学版), 2001, 40(2), 112~115
    120.丛丕福,赵冬至,曲丽梅.利用卫星遥感技术监测赤潮的研究.海洋技术, 2000, 20(4), 69~72
    121.崔廷伟,张杰,马毅,孙凌.基于地物光谱的赤潮优势种识别研究.海洋与湖沼, 2005, 36(3), 277~283
    122.崔廷伟,张杰,马毅,孙凌.赤潮光谱特征及其形成机制.光谱学与光谱分析, 2006, 26(15), 884~886
    123.范学炜,张汉德,孙幸文.成像高光谱数据在赤潮检测和识别中的应用研究.国土资源遥感, 2003, (1), 8~12
    124.邓素清.浙江近海赤潮气象统计预报试验.赤潮灾害预报机理与技术, 2004, 125~131
    125.邓素清,等.浙江海区赤潮发生前期气象因子的统计分析.科技通报, 2005, 21(4), 387~391
    126.费岳军,蒋红.舟山朱家尖海域角毛藻赤潮与环境因子关系的研究.海洋环境科学, 2008, 27(Supp1), 38~41
    127.冯士筰,李凤岐,李少菁编.海洋科学导论.高等教育出版社, 1999,北京
    128.翟自强,等.诱发赤潮的水文气象条件,赤潮灾害预报机理与技术, 2004, 62~66
    129.方绍锦.浙江近海上升流调查海区赤潮的初步探讨.海洋学报, 1984, 6(3), 408~414
    130.苟钊训,等.赤潮的成因及其预报初探.聊城大学学报(自然科学版), 2003, 16(4), 82~85
    131.顾德宇,等.赤潮遥感进展与算法研究.遥感技术与应用, 2003, 18(6), 434~440
    132.管秉贤.有关部门我国近海海流研究的若干问题.海洋与湖沼, 1962, 4(3), 121~141
    133.韩玺山,等.气象遥感在赤潮监测及预报中的应用.环境科技, 1993, 13(3), 25~28
    134.何德华,等,浙江沿岸上升流区浮游动物生态研究.海洋学报, 1987, 9(1), 80~92
    135.何全军,张月维,曹静,吴志军,黄江.基于IDL的MODIS L1B数据SST反演.热带气象学报, 2009, 25(2), 205~208
    136.洪君超,黄秀清,蒋晓山,等.长江口中肋骨条藻赤潮发生过程环境要素分析-营养盐状况.海洋与湖沼, 1994, 25(2), 179~184
    137.胡德永,等.陆地卫星TM观测到渤海湾赤潮,遥感信息, 1991, 6(3), 11
    138.胡敦欣,吕良洪,熊庆成,等.关于浙江沿岸上升流的研究.科学通报, 1980, (3), 131~133
    139.胡明娜.舟山及邻近海域沿岸上升流的遥感观测与分析.硕士学位论文,中国海洋大学, 2007,青岛
    140.胡明娜,赵朝方.浙江近海夏季上升流的遥感观测与分析.遥感学报, 2008, 12(2), 297~304
    141.黄韦艮,等.赤潮卫星遥感监测与实时预报.海洋预报, 1998, (15), 111~115
    142.黄韦艮主编,赤潮监测与预报研究论文选编. 2000,国家海洋局第二海洋研究所
    143.黄韦艮,等.赤潮光谱特性研究.赤潮监测与预报研究论文选编, 2000,国家海洋局第二研究所, 44~47
    144.黄韦艮,等.国内外赤潮卫星遥感技术与应用进展.遥感技术与应用, 2002, 17(1), 31~36
    145.黄蓉.浙江沿海赤潮状况及防治对策.环境监测管理与技术, 2001, 13(5), 29~30
    146.纪焕红,叶属峰,刘星,洪君超.南麂列岛海域浮游植物生态特征及甲藻赤潮频发原因.海洋科学进展, 2008, 26(2), 235~242
    147.蒋国昌,王玉衡,董恒霖,等.浙江沿海富营养化程度的初步探讨.海洋通报, 1987, 6(4), 408~4141
    148.经志友,齐义泉,华祖林.闽浙沿岸上升流及其季节变化的数值研究.河海大学学报(自然科学版), 2008, 35(4), 465~470
    149.矫晓阳.叶绿素a预报赤潮原理探索.海洋预报, 2004, 21(2), 56~63
    150.乔方利,袁业立,朱明远,等.长江口海域赤潮生态动力学模型及赤潮控制因子研究.海洋与湖沼, 2000, 31(1), 93-100
    151.李继龙,唐援军,郑嘉淦,等.利用MODIS遥感数据探测长江口及邻近海域赤潮的初步研究.海洋渔业, 2007, 29(1), 25~30
    152.李雁宾.长江口及邻近海域季节性赤潮生消过程控制机理研究.博士学位论文,中国海洋大学, 2008
    153.梁松,钱宏林.南海北部赤潮发生频率与季风转换的关系的探讨.南海研究与开发, 1991, (3), 1~5
    154.林祖享,梁舜华.探讨影响赤潮的物理因子及其预报.海洋环境科学, 2003, 21(2), 1~5
    155.刘良明主编.卫星海洋遥感导论.武汉大学出版社, 2005,武昌, 290~292
    156.刘先炳,等.浙江沿海上升流和沿岸锋面的数值研究.海洋学报, 1991, 13(3), 305~314
    157.龙华,周燕,余骏,胡益峰,傅国君. 2001~2007年浙江海域赤潮分析.海洋环境科学, 2008, 27(Supp.1), 1~4
    158.楼琇林,黄韦艮.基于人工神经网络的赤潮卫星遥感方法研究.遥感学报, 2003, 7(2), 125~130
    159.陆斗定,张志道,楼毅,等.浙江近海夜光藻的分布及其生态学特点.东海海洋, 1994, 12(3), 62~69
    160.陆斗定,张志道,楼毅,等.浙江近海浮游植物与赤潮生物研究—台州列岛附近海域.海洋环境科学, 1995, 14 (1), 32~37
    161.陆斗定,张志道.浙江马鞍列岛附近海域浮游植物与赤潮生物研究.东海海洋, 1996, 14(1), 44~51
    162.陆斗定, Gobel J.,王春生等.浙江海区赤潮生物监测与赤潮实时预测.东海海洋, 2000, 18(2), 33~43
    163.罗义勇,等.东海沿岸上升流的数值计算.海洋湖沼通报1998, (3), 1~6
    164.吕新刚,乔方利,夏长水,袁业立.长江口外及浙江沿岸夏季上升流的潮生机制.中国科学D辑:地球科学, 2007, 37(1), 133~144
    165.宁修仁,等.浙江沿岸上升流区叶绿素a和初级生产力德分布特征.海洋学报, 1985, 7(6), 751~762
    166.马金峰,詹海刚,陈楚群,唐世林.赤潮卫星遥感监测与应用研究进展.遥感技术与应用, 2008, 23(5), 604~610
    167.马毅,张杰.中国海洋航空高光谱遥感应用研究进展.海洋科学进展, 2002, (4), 94~98
    168.马毅.赤潮航空高光谱遥感探测技术研究.博士学位论文,中国科学院研究生院, 2003,北京
    169.马毅,吴瑞贞,等.有利于赤潮消亡的水文气象条件.海洋预报, 2008, 25(3), 1~6
    170.毛汉礼,等.南黄海和东海北部(28°~37°N)夏季的水文特征以及海水类(水系)的初步分析,海洋科学集刊, 1964, (1), 23~77
    171.毛显谋,黄韦艮.赤潮遥感监测-海洋水产养殖区赤潮监测及其短期预报试验性研究项目赤潮遥感研究报告, 1998
    172.毛显谋,等.多波段卫星遥感海洋赤潮水华的方法研究,应用生态学报, 2003, 14(7), 1200~1202
    173.宁修仁,等.浙江沿岸上升流区叶绿素a和初级生产力的分布特征.海洋学报, 1985, 7(6), 751~762
    174.潘刚,段舜山,徐宁.海洋赤潮水色遥感技术研究进展.生态科学, 2007, 26(5), 60~465
    175.潘智韬,刘士忠.赤潮对浙江近海养殖业危害的初步调查.东海海洋, 1990,(8 1), 61~66
    176.潘玉萍,沙文钰.闽浙沿岸上升流的数值模拟.海洋预报, 2004, 21(2), 86~95
    177.潘玉萍,沙文钰.夏季闽浙沿岸上升流的数值研究.海洋通报, 2004, 23(3), 1-11
    178.潘玉球,徐端蓉,许建平,等.浙江沿岸上升流区的锋面结构、变化及其原因.海洋学报, 1985, (4), 401~411
    179.浦泳修.沿岸上升流研究的概况.海洋通报, 1985, 4(6), 55~58
    180.丘仲锋.东海赤潮高发区水色遥感算法及赤潮遥感监测研究.博士学位论文,中国科学院研究生院, 2006,北京,
    181.石晓勇,王修林,陆茸,孙霞.东海赤潮高发区春季溶解氧和PH分布特征及影响因素探讨.海洋与湖沼, 2005, 36(5), 404-412
    182.孙强,杨燕明,顾德宇,滕骏华,陈巧云,陈世敢. SeaWiFS探测1997年闽南赤潮模型研究.台湾海峡, 2000, 19(1), 70~73
    183.田荣湘.东亚季风与东海赤潮.浙江大学学报(理学版) , 2005, 32(3), 355-360
    184.王其茂,等. EOS/MODIS遥感资料探测海洋赤潮信息方法.遥感技术与应用, 2006, 21(1), 6~10
    185.王金辉.中街山列岛海域赤潮应急监测.浙江海洋学院学报(自然科学版), 2001, 20(1), 62~65
    186.王金辉,黄秀清.具齿原甲藻的生态特征及赤潮成因浅析.应用生态学报, 2003, 14(7), 1065~1069
    187.王金辉,等.南麂列岛自然保护区海域红色裸甲藻赤潮及其成因分析.海洋科学, 2005, 29(2), 32~36
    188.王修林,孙培艳,高振会,韩秀荣,陈江麟.中国有害赤潮预测方法研究现状和进展.海洋科学进展, 2003, 21(1), 93~98
    189.王正方,张庆,吕海燕.温度、盐度、光照强度和pH对海洋原甲藻生长的效应.海洋与湖沼, 2001, 32(1), 15~18
    190.吴瑞贞,马毅.近20 a南海赤潮的时空分布特征及原因分析.海洋环境科学, 2008, 27(1), 30~32
    191.夏平,陆斗定,朱德弟,杜伟.浙江近岸海域赤潮发生的趋势与特点.海洋学研究, 2007, 25(12), 47~56
    192.徐韧,洪君超,王桂兰,沈竑.长江口及其邻近海域的赤潮现象.海洋通报, 1994, 13(5), 25~29
    193.许建平.浙江近海上升流区的水团分析.东海海洋, 1984, 2(4), 11~16
    194.许建平.浙江近海上升流区冬季水文结构的初步分析.东海海洋, 1986, 4(3), 18~23
    195.许卫忆,等.实际海域的赤潮生消过程数值模拟.海洋与湖沼, 2001, 32(6), 598~604
    196.许卫忆,等.赤潮发生和蔓延的动力机制数值模拟.海洋学报, 2002, 24(5), 91~97
    197.许卫忆,等.赤潮发生机制探讨Ⅰ和Ⅱ.赤潮灾害预报机理与技术, 2004, 1~12
    198.姚炜民,等.浙江中、南海域的赤潮和赤潮生物.温州师范学院学报(自然科学版), 2005, 26(5), 59~62
    199.姚炜民,等.浙江海域米氏凯伦藻赤潮成因的初步研究.水利渔业, 2007, 27(6), 57~59
    200.颜廷壮.中国沿岸上升流成因类型的初步划分.海洋通报, 1991, 10(6), 1~6
    201.张传松,王江涛,朱德弟,王修林,李京. 2005年春夏季东海赤潮过程中营养盐作用初探.海洋学报, 2008, 30(2), 153~159
    202.赵保仁,任广法,曹德明,杨玉玲.长江口上升流海区的生态环境特征,海洋与湖沼, 2001,32(3), 327~333
    203.赵保仁,李徽翡,杨玉玲.长江口海区上升流现象的数值模拟.海洋科学集刊, 2003, (45),64~76
    204.赵冬至主编.渤海赤潮灾害监测与评估研究文集.海洋出版社,北京, 2000
    205.赵冬至. AVHRR图像用于监测渤海赤潮方法研究.赵冬至主编,渤海赤潮灾害监测与评估研究文集,海洋出版社, 2000,北京, 144~150
    206.赵冬至,等.我国海域赤潮灾害的类型、分布和变化趋势.海洋环境科学, 2003, 22(3), 7~11
    207.赵冬至,张丰收,赵玲,丛丕福.近岸海域叶绿素和赤潮的AVHRR波段比值探测方法研究.海洋环境科学, 2003, 22(4), 9~12
    208.赵冬至.我国赤潮灾害分布规律与卫星遥感探测模型.博士学位论文,华东师范大学, 2004,上海
    209.赵冬至,等.基于表面反射率的赤潮卫星荧光线高度算法比较,高技术通讯, 2004, 14(11), 93~97
    210.张朝贤.赤潮的危害和预测预报.海岸工程, 2000, 19(2), 86~89
    211.赵辉,唐丹玲,王素芬.南海西北部夏季叶绿素a浓度的分布特征及其对海洋环境的响应.热带海洋学报, 2005, 24(6), 31~37
    212.郑嘉淦,李继龙,杨文波.利用MODIS遥感数据反演东海海域海表温度的研究.海洋渔业, 2006, 28(2), 141~146
    213.曾江宁,等.赤潮影响因素研究进展.东海海洋, 2004, 22(2), 40~47
    214.周良明,刘玉光,郭佩芳.关于赤潮水色研究的探讨.海洋湖沼通报, 2004, (4), 61~67
    215.周名江,朱明远,张经.中国赤潮的发生趋势和研究进展.生命科学, 2001, 13(2), 53~59
    216.周名江,颜天,邹景忠.长江口邻近海域赤潮发生区基本特征初探.应用生态学报, 2003, 14(7), 1031~103
    217.周名江,朱明远.“我国近海有害赤潮发生的生态学、海洋学机制及预测防治”研究进展.地球科学进展, 2006, (07), 673~679
    218.周伟华,霍文毅,袁翔城,殷克东.东海赤潮高发区春季叶绿素a和初级生产力的分布特征.应用生态学报, 2003, 14(7), 1055~1059
    219.周伟华,殷克东,朱德第.舟山海域春季浮游植物生物量及东海原甲藻赤潮频发机制初探.应用生态学报, 2006, 17 (5) , 887~893
    220.邹景忠.赤潮生物与赤潮灾害研究.曾呈奎,中国海洋科学研究及开发, 1992,青岛,青岛出版社, 284~287
    221.朱根海,等.长江口赤潮高发区浮游之外与水动力环境因子的分布特征.应用生态学报, 2003, 14(7), 1135~1139
    222.朱德弟,潘玉球,许卫忆,陈巧云.长江口外赤潮频发海区水文分布特征分析.应用生态学报, 2003, 14(7), 1131~1134
    223.朱德弟,等. 2002-2003年长江口及舟山群岛附近海域德锋面分布特征和变化,赤潮灾害预报机理与技术, 2004, 13~22
    224.庄伟,王东晓,吴日升,胡建宇. 2000年夏季福建、广东沿海上升流的遥感与船舶观测分析.大气科学, 2005, 29(30), 438~444
    225.尹世源.澳大利亚用卫星遥感研究近海上升流.国外水产, 1991, 4, 30
    226.中国有害赤潮信息网, http://www.china-hab.cn/
    227.国家海洋局, 2000~2009年中国海洋灾害公报
    228.国家海洋局, 2000~2009年中国海洋环境质量公报
    229.浙江省海洋与渔业局, 2001~2009年浙江省海洋环境公报