多源遥感数据支持的中等城市热环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市化是区域气候和生态环境发生改变的根源和背景,它导致了诸如大气污染、生态失衡、城市热环境异常等一系列环境与生态问题。其中以城市热环境问题尤为突出,它将成为今后城市可持续发展和人居环境质量改善的严重阻碍。针对上述问题,本文以西部中等城市—四川省绵阳市为典型案例,在GIS技术的支持下,以多源遥感影像为主要数据源,揭示绵阳年际、季节和昼夜不同时间尺度上城市热环境的时空演变规律,定量分析不同城市景观的热环境效应。论文的主要研究内容和取得的主要研究成果如下:
     (1)完成地表温度反演模型的评述与选择,为热环境的分析奠定数据基础。
     地表温度是表征城市热环境状况的有效指标,其反演精度的好坏将直接决定后续分析成果的可靠性。对比分析AVHRR和TM/ETM+遥感数据地表温度反演的主流模型,分别选择劈窗算法和基于影像的算法完成AVHRR和TM/ETM+数据的地表温度反演工作。
     (2)联合Landsat TM/ETM+与NOAA/AVHRR遥感数据,揭示绵阳城市热环境年际、季节及昼夜演化特征。
     ①以TM/ETM+遥感影像为数据源,借鉴景观生态学理论,运用均值标准差法将热力景观划分为5类。然后选择景观格局指数对各景观斑块的年际变化(1988~2011年)和季节变化进行统计分析。景观破碎度等4个指数均反映出在1988~2001年间,热力景观破坏程度最大,在2001~2011年间热力景观破坏程度有所缓和;另外,春、秋和冬三个季节中热力景观破坏程度由大到小的顺序依次为秋季、冬季和春季。
     ②运用重心理论构建重心转移距离和转移角度模型,研究城市重心及热力重心的演变特征。结果表明:在年际变化中二者表现出极强的相关性,23年间城市重心的转移方向依次为:北偏西方向→南偏西方向→南偏东方向;高温斑块重心的转移方向依次为:北偏西方向→正西方向→南偏东方向,次高温斑块重心的转移方向依次为:北偏西方向→南偏西方向→南偏西方向。由此说明,城市扩展是城市热环境空间变化的主要驱动力。热力重心在春、秋、冬三个季节演变规律如下:高温斑块为北偏东方向→南偏东方向,次高温斑块为正西方向→南偏西方向。
     ③运用城乡平均温度对比法和热岛面积指数法计算出四个年度(1988年、2001年、2007年和2011年)5月份城市热岛强度值分别为3.65℃、1.77℃、1.07℃和0.55℃,表明23年间绵阳市5月份热岛效应呈现减弱的趋势;计算春、秋、冬三个季节热岛强度值分别为1.77℃、0.78℃和0.94℃,表明在所选时段内绵阳市春季热岛效应最强,冬季次之,秋季最弱。
     ④沿W-E方向和N-S方向做剖面分析发现,地表温度与城市下垫面性质、人口密度和城市功能分区密切相关。水体和绿地均对应相对较低的温度值。
     ⑤以AVHRR影像为数据源,借鉴景观生态学理论,运用密度分割法将绵阳热力景观划分为8类。分析城市热场和热岛强度的昼夜演变特征,结果表明:上午、正午和下午均存在多个强热中心,分别位于永兴镇、高新区、涪城老区或经济技术开发区;傍晚、夜间和凌晨仅有的一个强热中心出现在涪城老区,强热中心面积大小不一。由于水体的热惯量较大,白天涪江和安昌河升温较慢,对强热中心起分割作用;晚上两条河流降温较慢,促使热中心连接成为一个整体。热岛强度方面:夜间的热岛强度大于白天,并且一天内热岛强度值变化从大到小的顺序依次是凌晨、夜间、傍晚、下午和上午。
     (3)河流廊道、城市绿地和城市公园三种典型城市景观的热环境效应研究。
     分析了河流廊道景观、城市绿地景观和城市公园景观的热环境效应。总体而言,三者均存在明显的降温作用,但降温效果差异较大。其中河流对周围环境降温效果最明显。对地温和NDVI做剖面分析发现,除水体外二者呈显著负相关关系。对各景观类型斑块的平均温度统计结果为:林地的温度最低,道路的温度最高;城市绿地的降温效果与绿地斑块的面积、周长、形状指数成正比。通过对斑块面积和平均温差回归分析发现,绿地斑块面积为2hm2左右时降温效果最佳。在面积不变的前提下,形状越复杂降温效果越明显;城市公园景观的降温效果不但与公园斑块的面积有关,与公园景观类型组成亦存在较大相关性,乔木、灌木和人工草坪等级配合理的城市公园景观降温效果好。
     (4)城市热环境演变的驱动机制与对策探讨。
     将城市热环境演变的成因归结于下垫面性质改变、人为热能的排放和大气污染三个方面。因此,改善城市热环境提高居民生活质量,必须控制城市化速度,保护自然植被,倡导低碳生活,减少人为热能和有污染的气体的排放量。
Urbanization is the background and root of regional climate and ecologicalenvironment change, which results in numerous ecology and environment problemssuch as atmospheric pollution, ecology unbalance, abnormal of urban thermalenvironment and so on. And urban thermal environment is an increasingly prominentissue, which will become a serious impediment for urban sustainable developmentand residents’ living quality improving in the future. Aiming at these problems, thispaper takes the western medium-sized city—Mianyang city in Sichuan province as thetypical case, it reports the space–time evolution laws of urban thermal environmentunder the different time scales of inter-annual, season and diurnal based on the GIStechnology and multi-source remote sensing data, and also analyses the thermalenvironment effect of different urban landscape quantitatively. Main researches of thispaper are the following.
     (1) The retrieval models of land surface temperature are commented and chosen,which provide data support for analysis thermal environment.
     Land surface temperature is an effective indicator for charactering the thermalenvironment situation, its retrieval precision will decide the dependability of analysisresults directly. After comparative analysis the mainstream models of land surfacetemperature retrieval for the remote sensing data of AVHRR and TM/ETM+, theauthor selects the split window algorithm and algorithm based on imagery to retrieveland surface temperature for AVHRR and TM/ETM+data.
     (2) The evolution characteristics of urban thermal environment duringinter-annual, season and diurnal are reported by using Landsat TM/ETM+andNOAA/AVHRR remote sensing data.
     ①This paper takes TM/ETM+remote sensing images as data source, and useslandscape ecology theories and mean-standard deviation method to classify thethermodynamic landscape into five patterns. Then the author selects the landscapepattern indexes to count and analyse the change of landscape patches during inter- annual (1988~2011) and season. The thermodynamic landscape is destroyed seriouslyduring1988and2001, but this situation gets eased during2001and2011, which arereflected by four indexes including landscape fragment and so on. Furthermore, thedestruction extent of thermodynamic landscape is more serious in winter than spring,but better than autumn.
     ②The changes of urban centroid and thermal centroid are all researched bybuilding the models of diversion distance and diversion direction on the centroidtheory. The results show that urban centroid and thermal centroid have stronglycorrelation with inter-annual change, during23years, the diversion direction of urbancentroid is northwest→southwest→southeast, the diversion direction of hightemperature patches centroid is northwest→west→southeast, the diversion directionof sub-high temperature patches centroid is northwest→southwest→southwest.Therefore urban expansion is the main driving force for changes of urban thermalenvironment. The various laws of thermal centroid among spring, autumn and winterare high temperature patches from northeast to southeast and sub-high temperaturepatches from west to southwest.
     ③The Urban Heat Island Intensity(UHII) in May of four years(1988,2001,2007,2011) are3.65℃,1.77℃,1.07℃and0.55℃, which are computed by the methods ofurban-Rural mean temperature contrast and heat island area index. It is suggested thatthe Urban Heat Island Effect trend of Mianyang city becomes weaker and weaker inMay during23years. The UHII of Spring, autumn and winter are1.77℃,0.78℃and0.94℃, in this period the winter’s UHII is weaker than spring, but stronger thanautumn.
     ④After the profile analysis along W-E and N-S directions, the author finds thatthe relationships between land surface temperature and urban underlying surfaceproperties, population density, urban function partition are closely. The temperaturesof water and green are lower.
     ⑤This paper takes AVHRR remote sensing images as data source, and useslandscape ecology theories and density segmentation to classify the thermodynamiclandscape into eight patterns, which also analyses the changes in diurnal of urbanthermal distribution and UHII. The results show that many thermal centers are locatedin Yongxing town, Gaoxin area, Fucheng area or economic-technologicaldevelopment area in the morning, noon and afternoon. Only one thermal center islocated in Fucheng area in the evening, night and early morning, the area of thermalcenters are different. The water’s thermal inertia is too large, so the temperature ofFujiang river and Anchang river increase slowly in the daytime, two rivers cut apartthe thermal centers. The temperature of Fujiang river and Anchang river reduceslowly at night, they impel thermal centers to be a whole. UHII is stronger at night than daytime, and the UHII from high to low are early morning, night, evening,afternoon, morning in one day,
     (3) The thermal environment effect of stream corridors, urban greenbelts andurban parks three typical urban landscape are researched.
     The thermal environment effect of stream corridors landscape, urban greenbeltslandscape and urban parks landscape are analysed. In brief, all of them have coolingfunction apparently, but the cooling effect is different. The best cooling effect of thethree is stream. The negative correlation between land surface temperature and NDVIis significantly except the stream by the profile analysis. Statistics of the averagetemperature of landscape pattern patch is that the temperature of woodland is thelowest and the temperature of the road is the highest of all. The relationships betweenthe cooling effect of urban greenbelts and area, perimeter, shape index are in directproportion. The author finds that the best cooling effect of greenbelts landscape area isabout2hm2by regression analysis the landscape area and average temperaturedifference. The shape is more complex, the cooling effect is more obvious. Thecooling effect of urban parks is not only related to the landscape area but also hasrelationship with landscape pattern. The urban parks with reasonable gradation amongarbor, bush, lawn and so on have better cooling effect.
     (4) Driving mechanism and countermeasure of urban thermal environmentchange are discussed
     Urban underlying surface properties, human heat emission and pollution are thethree main reasons which result in urban thermal environment change. In order toimprove residents’ living quality and thermal environment, we have to control theurbanization speed, protect natural vegetation, advocate low-carbon life, reduce theemissions of human heat and polluted gas.
引文
Akinbode OM,Eludoyin AO,Fashae OA. Temperature and relative humidity distributions in amedium-size administrative town in southwest Nigeria[J].Journal of EnvironmentalManagement,2008,87:95-105.
    Artis D A,Carnahan W H.Survey of emissivity variability in thermography of urbanareas[J].Remote Sensing of Environment,1982,12(4):313-329.
    Ashie Y,Thanh C V,Asaeda T.Building canopy model for the anaIysis of urban climate[J].Journalof Wind Engineer and Industrial Aerodynamics,1999,81(1-3):237-248.
    Balling R C, Brazel S W. High-resolution Surface Temperature Patterns in a Complex UrbanTerrain[J]. Photogrammetric Engineering and Remote Sensing,1988,54:1289-1293.
    Biggs,D,B. De Ville,E.Suen. A method of choosing multiway partitions for classification anddecision trees[J].Journal of Applied Statistics,1991,l8:49-62.
    Chander G,Markham B.Revised Landsat-5TM radiometric calibration procedures andpostcalibration dynamic ranges[J].IEEE Transactions on Geoscience and RemoteSensing,2003,41(11):2674-2677.
    Chavez P S J. An improved dark-object subtraction technique for atmospheric scatteringcorrection of multi-spectral data[J].Remote Sensing of Environment,1988,24:459-479.
    Chavez P S J. Image–based atmospheric correction revisited and improved[J].PhotogrammetricEngineering and Remote Sensing,1996,62(9):1025-1036.
    Collin Homer.Development of A200l National Land Cover Database For the UnitedStates[J].Photogrammetric Engineering and Remote Sensing,2004,70(7):829-840.
    Ehlers M. Multisensor image fusion techniques in remote sensing[J]. ISPRS Journal ofPhtogrammetry and Remote Sensing,1991,46:19-30.
    Estoque M.A.Flow over a localized heat source[J].Monthly Weather Review,1969,97:850-859.
    Forman R T T, Godron M.Landscape Ecology[M].New York:John Wiley&Sons,1986,1-58.
    Friedl MA, Brodeley C E. Decision Tree Classification of Land Cover from Remotely SensedData[J].Remote Sens. Environ,1997,61:399-409.
    Gallo K, McNAB A L,Karl T R,et a1.The Use ofa Vegetation Index for Assessment of the UrbanHeat Island Effect[J].Intemational Journal of Remote Sensing,1993,14(1):2223-2230.
    GB J137-90,城市用地分类与规划建设用地[S].
    GB T21010-2007,土地利用分类现状[S].
    GB T50280-98,城市规划基本术语[S].
    GIRIDHARAN R,LAU S Y,GANESAN S, et a1.Lowering the outdoor temperature in high-risehigh-density residential developments of coastal Hong Kong:The vegetationinfluence[J].Building and Environment,2008,43(10):1583-1595.
    Giridharan R,Lau SSY,Ganesan S.Urban design factors influencing heat is land intensity inhigh-rise high-density environments of Hong Kong[J].Building andEnvironment.2007,42:3669-3684.
    Hafner J,K idder S Q.Urban heat island modeling in conjunction with satellite-derivedsurface/soil parameters[J].Journal of Applied Meteorology,1999,38:448-465.
    Harris J R.IHS Transform for the integration of radar imagery with other remotely sensed data[J].PE&RS,1990,36(12):1631-1641.
    Herald M, Couclelis H, Clarke K C.The Role of Spatial Metrics in Analysis and Modeling ofUrban Land Use Change[J]. Computers, Environment and Urban Systems.2005,29:369-399.
    Huang J, Akari H,Taha H,et a1.The potential of vegetation in reducing summer cooling loads inresidential buildings[J]. Journal of Climate and Applied Meteorology,1987,26:1103-1106.
    IHARA T,KIKEGAWA Y,ASAHI K.Changes in year round air tempemture and annual energyconsumption in office building area by urban-heat island countermeasures and energy savingmeasures[J].Applied Energy,2008,85(1):12-25.
    James L M.A numerical study of the nocturnal heat is land over a medium-sized mid-latitudecity(Columbus,Ohio)[J].Bound.Layer Meteor.,1973,27:442-453.
    Jiménez-Mu oz J C, Sobrino J A. A generalized s ingle channel method for retrieving landsurface temperature from remote sensing data[J].Journal of GeophysicalResearch,2003,108(D22):1-9.
    John Shafer,Rakesh Agrawal,Manish Metha.SPRINT:A scalable Parallel classifier for DataMining[C].In Proceedings of22th J International Conference on Very Large Data Base,Mumbai(Bombay),India,1996,9.
    Jordan MI. Learning in Graphical Models[M].The MIT Press,1998.
    Kass G V.An Exploratory Technique for Investigating Large Quantities of Categorical Data,[J].Applied Statistics,1980,29(2):119-l72.
    Kazimierz Kiysik, Krzyszt of Fortuniak.Temporal and spatial characteristics of the urban heatisland of Lód/zPoland[J].Atmospheric Environment,1999(33):3885-3895.
    Kazuya Takahashi,Harunori Yoshida.measurement of thermal environment in Kyoto city and itsprediction by CFD simulation[J],Energy and Buildings,2004(36):771-779.
    Kerr Y H,Lagouarde J P,Imbernon J.Accurate land surface temperature retrieval from AVHRRdata with use of an improved split window algorithm[J],Remote Sensing ofEnvironment,1992,41:197-209.
    Kikegawa Y,Genchi Y,Kondo H, et al. Inlpacts of city-block-scale countermeasures againsturban heat-island phenomena upon a building’s energy-consumption forair-conditioning[J].Applied Energy,2006,83(6):649-668.
    KIKEGAWA Y,GENCHI Y,KONDO H,et a1.Impacts of city-block-scale counter measuresagainst urban heat island phenomena upon a buildings energy consumption forairconditioning[J].Applied Energy,2006,83(6):649-668.
    Kolokotroni M, Giridharan R.Urban heat island intensity in London:An investigation of theimpact of physical characteristics on changes in outdoor air temperature duringsummer[J].Solar Energy,2008,82(11):986-998.
    Leo Breiman, Jerome H. Friedman, Richard A. Olshen. A Classification and Regression Trees[M].Chapman&Hall/CRC press Inc,1984.
    LO C P,Quattrechi D A,Luvall J C. Application of Hish-Resolution Thermal Infrared RemoteSensing and GIS to Assess the Urban Heat Island Effect[J].International Journal of RemoteSensing,1997,18(2):287-304.
    Makoto Y,Robert D,Yoshitake K,et al.The cooling effect of paddy fields on summertime airtemperature in residential Tokyo Japan[J].Landscape and Ur ban Planning,2001,53(1/2/3/4):17-27.
    McIver D K,Fiedl M A.Using Prior Probabilities in Decision-tree Remotely SensedData[J].Remote Sensing of Environment,2002,8l:253-261.
    Medley K. E, Pickett S.T A., McDoneli M.J., Forest Landscape Structure along all Urban ti RuralGradient[J]. Professional Geographer,1995,47(2):159-168.
    Mitchell J M J. On the causes of instrumentally observed secular temperature trends[J].Journal ofMeteorology,1953(10):244-261.
    Moran M S, Jackson R D, Slater P N, et al. Evaluation of simplified procedures for of retrieval ofland surface reflection factors from satellite sensor output[J].Remote Sensing ofEnvirronment,1992,41:169-184.
    OWEN T W,CARLSON T N,GILLIES R R.An assessment of satellite remotely-sensed landcover parameters in quantitatively describing the climatic effect ofurbanization[J].International Journal of Remote Sensing,1998,19:1663-1681.
    Parra M A,Santiago J L,Martín F,et al.A methodology to urban air quality assessment duringlarge time periods of winter using computational fluid dynamic models[J].AtmosphericEnvironment,2010,44(17):2089-2097.
    Qin Z H,Karnieli A,Berliner P.A mono—window algorithm for retrieving land surfacetemperature from Landsat TM data and its application to the Israel—Egypt borderregion[J].International Journal of Remote Sensing,2001,22(18):3719-3746.
    Quinlan J. R. C4.5:Programs for Machine Learning[M].San Mateo, CA:Morgan KautmannPublishers Inc,1993.
    Quinlan J. R. Introduction of decision trees[J].Machine learning,1986,1:84-100.
    Rajeev Rastogi, Kyuseok Shim.PUBLIC:A Decis ion Tree that Integrates Building andPruning[C].In Proceedings of24th International Conference on Very Large Data Bases,NewYork,USA,1998,8.
    Rao P k. Remote sensing of urban heat is lands from an environmental satellite[J]. Bulletin of theAmerican Meteorological Society,1972,53:647-648.
    Rizwan A M, Dennis L Y, Liu C.A review on the generation determination and mitigation ofUrban Heat Island [J].Journal of Environmental Sciences,2008,20(1):120-128.
    Roth M,Oke T R, Emery W J. Satellite-derived Urban Heat Islands from Three Coastal Citiesand the Utilization of Such Data in Urban Climatology[J].International Journal of RemoteSensing,1989,10(11):1699-1720.
    Roth M,Oke T R,Emery w J.satellite derived urban heat islands from three coastal cities and theutilization of such data in urban climatology[J].International Journal of RemoteSensing,1989,10(11):1699-1720.
    Sobrino J A, Jiménez-Mu oz J C, Paolini L. Land surface temperature retrieval from LANDSATTM5[J].Remote Sensing of Environment,2004,90(4):434-440.
    Sobrino J A. Raissouni N, Li Z L. A comparative study of land surface emissivity retrieval fromNOAA data[J].Remote Sens Environ,2001,75(2):256-266.
    Sprites P,et a1.Causation, prediction and Search2nd[M].The MIT Press,2001.
    Streutker D R.A remote sensing studying of the urban heat island of Houston [J].Int J RemoteSens,2002,23:2595-2608.
    Streutker D R.satellite-measured growth of the urban heat island of Houston,Texas[J]RemoteSens Environ,2003,85(3):282-289.
    Turner M G, Gardner R H, O' Neill R V. Landscape ecology in theory and practice: pattern andprocess[M]. New York: Springer-Verlag,2001.
    Turner M.G. Landscape changes in nine rural counties in Georgia[J].PhotogrammetricEngineering and Remote Sensing,1989,56(3):379-386.
    Turner M.G. Spatial simulation of landscape changes in Georgia:a comparison of3transitionmodels [J]. Landscape Ecology,1987,4:29-36.
    Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of earth’secosystems[J].Science,1997,21(15):2781-2797.
    Weng Q H.A Remote Sens ing-GIS Evaluation of Urban Expansionand Its Impact on SurfaceTemperature in the Zhujiang Delta, China[J].International Journal of RemoteSensing,2001,22(10):1999-2014.
    Weng Q,Lu D,Schubring J.Estimmation of land surface temperature-Vegetation abundancerelationship for urban heat island studies[J].Remote Sens Environ,2004,89(4):467-483.
    Wilson J S, Clay M, Martin, et al. Evaluation environmental influence of zoning in urbanecosystems with remote sensing[J].Remote Sensing of Environment,2003,86(3):303-321.
    Yu C, Hien W N.Thermal benefits of city parks[J].Energy and Building,2006,38(2):105-120.
    YUAN F,MARVIN E.Comparison of impervious surface area and normalized differencevegetation index as indicators of surface urban heat island effects in landsatimagery[J].Remote Sensing of Environment,2007,106(3):375-386.
    Zhou S Z,Su J.Urban Climatology[M].Beijing:China Meteorological Press.1994,244-345.
    白洁,刘绍民,扈光.针对TM/ETM+遥感数据的地表温度反演与验证[J].农业工程学报,2008,24(9):148-154.
    陈峰,何报寅,龙占勇,等.利用Landsat ETM+分析城市热岛与下垫面的空间分布关系[J].国土资源遥感,2008,76(2):56-61.
    陈利顶,刘洋,吕一河,等.景观生态学中的格局分析:现状、困境与未来[J].生态学报,2008,28(11):5521-5531.
    陈命男,张浩,唐靖寅,等.上海城市地表热环境多时期遥感研究[J].中国环境科学,2011,31(7):1143-1151.
    陈松林,王天星.等间距法和均值标准差法界定城市热岛的对比研究[J].地球信息科学学报,2009,11(2):145-150.
    陈文波,肖笃宁,李秀珍.景观空间分析的特征和主要内容[J].生态学报,2002,22(7):1135-1142.
    陈佑启,Verburg EH.基于GIS的中国土地利用变化及其影响模型[J].生态科学,2000,19(3):l-7.
    陈云浩,宫阿都,李京.基于地表辐射亮温标准化的城市热环境遥感研究—以上海市为例[J].中国矿业大学学报,2006,35(4):462-467.
    陈云浩,李京,李晓兵.城市空间热环境遥感分析—格局过程模拟与影响[M].北京:科学出版社,2004.
    陈云浩,史培军,李晓兵,等.城市空间热环境的遥感研究—热场结构及其演变的分形测量[J].测绘学报,2002,31(4):322-326.
    程承旗,吴宁,郭仕德,等.城市热岛强度与植被覆盖关系研究的理论技术路线和北京案例分析[J].水土保持研究,2004,11(3):172-174.
    池宏康,周广胜,许振柱,等.表观反射率及其在植被遥感中的应用[J].植物生态学报,2005,29(1):74-80.
    仇文侠.西藏墨竹工卡地区土壤侵蚀遥感定量评价[D].成都:成都理工大学,2009.
    仇文侠,但尚铭,薛万蓉.城市扩展的遥感动态监测研究[A].2010年国际遥感大会[C].2007:169-172.
    戴晓燕.基于遥感数据挖掘定量反演城市化区域地表温度研究[D].上海:华东师范大学,2008.
    单丹丹,杜培军,夏俊士.基于多分类器集成的北京一号小卫星遥感影像分类研究[J].遥感应用,2011,2:69-78.
    但玻,赵希锦,但尚铭,等.成都城市热环境的空间特点及对策[J].四川环境,2011,30(5):124-127.
    但尚铭,安海锋,但玻,等.基于AVHRR和DEM的重庆城市热岛效应分析[J].长江流域与资源环境,2009,18(7):681-685.
    但尚铭,但玻,蒋薇.成都市热力景观空间格局分析[J].四川环境,2011,30(2):53-56.
    但尚铭,但玻,杨秀蓉,等.卫星遥感成都平原城市热岛效应的动态特征[J].环境科学与技术,2009,32(7):10-13.
    但尚铭,许辉熙,但玻,等.基于AVHRR的中等规模城市热岛效应的时空特征[J].测绘科学,2010,35(z):144-146.
    党安荣,史慧珍,何新东.基于3S技术的土地利用动态变化研究[J].清华大学学报(自然科学版),2003,43(10):1408-1411.
    党安荣,王晓栋,陈晓峰,等.ERDASIMAGINE遥感图像处理方法[M].北京:清华大学出版社,2002.
    邓劲松.基于SPOT影像的杭州市区土地利用/覆盖变化动力学研究[D].杭州:浙江大学,2009.
    邓玉娇,匡耀求,黄宁生,等.温室效应增强背景下城市热环境变化的遥感分析—以广东省东莞市为例[J].地理科学,2008,28(6):814-819.
    丁凤,徐涵秋.TM热波段图像的地表温度反演算法与实验分析[J].地球信息科学,2006,8(3):125-130.
    丁凤,徐涵秋.基于LandsatTM的3种地表温度反演算法比较分析[J].福建师范大学学报(自然科学版),2008,24(1):91-96.
    董超华,章国材,邢福源,等.气象卫星业务产品释用手册[M].北京:气象出版社,1999.
    杜明义,陈玉荣,孙维先,等.廊道结构对北京市空间热环境的影响分析[J].辽宁工程技术大学学报,2007,26(2):194-197.
    法国国家人口研究所.城市人口已过半[J].地理教育,2007,9:47.
    樊辉.基于NOAA/AVHRR热红外数据的城市热岛强度年内变化特征[J].遥感技术与应用,2008,23(4):414-417.
    范天锡,潘钟跃.北京地区城市热岛特性的卫星遥感[J].气象,1987,13(10):29-32.
    范心圻.北京城市热岛遥感研究的应用与效益[J].世界导弹与航天,1991,6:6-11.
    范运年,任波,周建中.ERDASIMAGINE8.4中影像几何校正法初探—以清江流域为例[J].计算机仿真,2003,20(10):49-51.
    房祥飞.基于决策树的分类算法的并行化研究及应用[D].济南:山东师范大学,2007.
    冯永玖,韩震.基于遥感的黄浦江沿岸土地利用时空演化特征分析[J].国土资源遥感,2010,2:91-96.
    傅伯杰,陈利顶,马克明,等.景观生态学原理及应用[M].北京:科学出版社,2001.
    高峻,宋永昌.基于遥感和GIS的城乡交错带景观演变研究—以上海西南地区为例[J].生态学报,2003,23(4):805-813.
    高峻,宋永昌.上海西南城市干道两侧地带景观动态研究[J].应用生态学报,2001,12(4):605-609.
    高凯,秦俊,胡永红.上海城市居住区绿化缓解热岛效应研究进展[J].中国园林,2010,26(12):12-15.
    高志强,刘纪远.基于遥感和GIS的中国植被指数变化的驱动因子分析及模型研究[J].气候与环境研究,2000,5(2):155-l64.
    葛伟强,周红妹,杨引明,等.基于遥感和GIS的城市绿地缓解热岛效应作用研究[J].遥感技术与应用,2006,21(5):432-435.
    宫阿都,陈云浩,李京,等.北京市城市热岛与土地利用/覆盖变化的关系研究[J].中国图像图形学报,2007,12(8):1476-1482.
    宫阿都,江樟焰,李京,等.基于LandsatTM图像的北京城市地表温度遥感反演研究[J].遥感信息,2005,3:18-20.
    宫阿都,徐捷,赵静,等.城市热岛研究方法概述[J].自然灾害学报.2008,17(6):96-99.
    龚志强,何介南,康文星,等.长沙市城区热岛时间分布特征分析[J]中国农学通报201l,27(14):200-204.
    顾孝烈.测量学[M].上海:同济大学出版社,2006.
    郭家林,王永波.近40年哈尔滨的气温变化与城市化影响[J].高原气象,2005,31(8):74-76.
    何介南,肖毅峰,吴耀兴,等.4种城市绿地类型缓解热岛效应比较[J].中国农学通报,2011,27(16):70-74.
    何泽能,李永华,陈志军,等.重庆市2006年夏季城市热岛分析[J].热带气象学报,2008,24(5):527-532.
    胡嘉骢,朱启疆.城市热岛研究进展[J].北京师范大学学报(自然科学版).2010,46(2):186-192.
    黄聚聪,赵小锋,唐立娜,等.城市热力景观格局季节变化特征分析及其应用[J].生态环境学报,2011,20(2):304-310.
    黄荣峰,徐涵秋.利用LandsatETM+影像研究土地利用/覆盖与城市热环境的关系—以福州市为例[J].遥感信息,2005,5:36-39.
    黄妙芬,邢旭峰,王培娟,等.利用LANDSAT/TM热红外通道反演地表温度的三种方法比较[J].干旱区地理,2006,29(1):132-137.
    季崇萍,刘伟东,轩春怡.北京城市化进程对城市热岛的影响研究[J].地球物理学报,2006,49(1):69-77.
    贾刘强,邱建.基于遥感的城市绿地斑块热环境效应研究—以成都市为例[J].中国园林,2009,25(12):97-101.
    金蓉.福州市建成区绿地系统景观格局分析及其生态功能研究[D].福州:福建师范大学,2009.
    雷江丽,刘涛,吴艳艳,等.深圳城市绿地空间结构对绿地降温效应的影响[J].西北林学院学报,2011,26(4):218-223.
    李鸱,余庄.基于遥感技术的城市布局与热环境关系研究—以武汉市为例[J].城市规划,2008,31(2):75-82.
    李哈滨,FranklinJF.景观生态学-生态学领域的新概念[J].生态学进展,1988,5(1):23-33.
    李海峰,郭科.对地观测技术的发展历史、现状及在地球系统科学研究中的应用[J].测绘科学,2010,35(6):92-94.
    李奇虎.基于土地利用数据库的空间格局分析[D].武汉:华中师范大学大学,2009.
    李爽,张二勋.基于决策树的遥感影像分类方法研究[J].地域研究与开发,2003,22(1):17-21.
    李伟峰,王轶.基于目标分割和景观格局特征的城市土地利用分类[J].国土资源遥感,2011,88(1):118-122.
    李文亮,张丽娟,陈红,等.哈尔滨市城市扩展与地表热环境变化关系研究[J].地域研究与开发,2010,29(2):49-52.
    李小娟,刘晓萌,胡德勇,等.ENVI遥感图像处理教程(升级版)[M].北京:中国环境科学出版社,2008.
    梁敏妍,赵小艳,林卓宏,等.基于LandsatETM+/TM遥感影像的江门市区地表热环境分析梁[J].热带气象学报,2011,22(2):244-250.
    赁常恭,王宣吉.用气象卫星信息探测川西平原的城市热岛群[J].遥感信息,1990,5(1):10-13.
    刘立群,李树华,杨志峰.北京公园绿地夏季温湿效应[J].生态学杂志,2008,27(11):1972-1978.
    刘娇妹,朱月霞,顾卫.安庆市气温变化若干特征及城市热岛效应分析[J].安徽农业科学,2011,39(30):18821-18823.
    刘世平.数据挖掘技术与应用[M].北京:高等教育出版社,2010.
    刘文杰,李红梅.景洪市城市热岛效应对城市高温的影像及其防御对策[J].热带地理,1998,18(2):143-146.
    刘闻雨,宫阿都,周纪,等.城市建筑材质—地表温度关系的多源遥感研[J].遥感信息,2011,4:46-53.
    刘雯.城市热岛效应的成因和改善策略探究[J].科技创新导报,2010,4:116-117.
    刘香美.基于粗糙集和灰色理论的决策树算法研究[D].成都:西南交通大学,2010.
    刘学全,唐万鹏,周志翔.宜昌市城区不同绿地类型环境效应[J].东北林业大学学报,2004,32(5):53-54.
    刘艳红,郭晋平.城市景观格局与热岛效应研究进展[J].气象与环境学报,2007,23(6):46-50.
    刘艳红,郭晋平.基于植被指数的太原市绿地景观格局及其热环境效应[J].地理科学进展,2009,28(5):798-804.
    刘艳红,郭晋平.绿地空间分布格局对城市热环境影响的数值模拟分析—以太原市为例[J].中国环境科学,2011,31(8):1403-1408.
    刘勇洪,牛铮,王长耀.基于MODIS数据的决策树分类方法研究与应用[J].遥感学报,2005,9(4):405-412.
    刘志丽,陈曦.基于ERDASIMAGING软件的TM影像几何精校正方法初探[M].干旱区地理,2001,24(4):353-358.
    吕志强,文雅,孙琤,等.珠江口沿岸土地利用变化及其地表热环境遥感分析[J].生态环境学报,2010,19(8):1771-1777.
    栾丽华,吉根林.决策树分类技术研究[J].计算机工程,2004,30(9):94-96.
    罗亚,徐建华,岳文泽.基于遥感影像的植被指数研究方法述评[J].生态科学,2005,24(1):75-79.
    马安青,陈东景,王建华,等.基于RS与GIS的陇东黄土高原土地景观格局变化研究[J].水土保持学报,2002,16(3):56-59.
    马广彬,章文毅,陈甫.图像几何畸变精校正研究[J].计算机工程与应用,2007,43(9):45-48.
    梅安新,彭望琭,秦其明,等.遥感导论[M].北京:高等教育出版社,2003.
    潘竞虎,冯兆东,相得年,等.河谷型城市土地利用类型及格局的热环境效应遥感分析—以兰州市为例[J].遥感技术与应用,2008,23(2):202-207.
    潘卫华,张春桂.泉州市城市化进程中的热岛效应遥感研究[J].国土资源遥感,2006,70(4):50-54.
    邱建,贾刘强,王勇.基于遥感的青岛市热岛与绿地的空间相关性[J].西南交通大学学报:自然科学版,2008,43(3):427-433.
    曲开社,成文丽,王俊红.ID3算法的一种改进算法[J].计算机工程与应用,2003,39(25):104-107.
    申文明,王文杰,罗海江,等.基于决策树分类技术的遥感影像分类方法研究[J].遥感技术与应用,2007,22(3):333-338.
    史培军,富鹏,李晓兵等.土地利用/覆盖变化研究的方法与实践[M].北京:科学出版社,2000.
    史晓雪.上海地区土地利用变化的景观生态格局演化研究[D].上海:复旦大学,2007.
    宋巍巍,管东生.五种TM影像大气校正模型在植被遥感中的应用[J].应用生态学报,2008,19(4):769-774.
    宋伟东,王伟玺.遥感影像几何纠正与三维重建[M].北京:测绘出版社,2011.
    孙家抦,舒宁,关泽群.遥感原理、方法和应用[M].北京:测绘出版社,1997.
    孙芹芹,吴志峰,谭建军.基于热力重心的广州城市热环境时空变化分析[J].地理科学,2010,30(4):620-623.
    孙天纵,周坚华.城市遥感[M].上海:上海科学技术文献出版社,1994.
    覃志豪,ZhangMinghua,ArnonKarnieli,等.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001,56(4):456-466.
    覃志豪,ZhangMing-hua,ArnonKarnieli.用NOAA-AVHRR热通道数据演算地表温度的劈窗算法[J].国土资源遥感,2001,48(2):33-42.
    覃志豪,李文娟,徐斌,等.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感,2004,61(3):28-36.
    汤国安,张友顺,刘咏梅,等.遥感数字图像处理[M].北京:科学出版社,2004.
    唐罗忠,李职奇,严春风,等.不同类型绿地对南京热岛效应的缓解作用[J].生态环境学报,2009,18(1):23-28.
    唐盈.重庆大剧院室内外热环境数值模拟研究[D].重庆:重庆大学,2006.
    田光进,张增祥,张国平,等.基于遥感与GIS的海口市景观格局动态演化[J].生态学报,2002,22(7):1028-1034.
    佟华,刘辉志,李延明,等.北京夏季城市热岛现状及楔形绿地规划对缓解城市热岛的作用[J].应用气象学报,2005,16(3):357-366.
    佟华,刘辉志,桑建国,等.城市人为热对北京热环境的影响[J].气候与环境研究,2004,9(3):409-421.
    王翠云.基于遥感和CFD技术的城市热环境分析与模拟—以兰州市为例[D].兰州:兰州大学,2008.
    王芳,卓莉,冯艳芬.广州市冬夏季热岛的空间格局及其差异分析[J].热带地理,2007,27(3):198-202.
    王桂新,沈续雷.上海城市化发展对城市热岛效应影响关系之考察[J].亚热带资源与环境学报,2010,5(2):1-11.
    王国安,米鸿涛,邓天宏,等.太阳高度角和日出日落时刻太阳方位角一年变化范围的计算[J].气象与环境科学(增刊),2007,161-164.
    王静.土地资源遥感监测与评价方法[M].北京:科学出版社,2006.
    王茂新,沙奕卓,于莉.关于NOAA/AVHRR图像冲采样及投影方法的研究[J].中国图像图形学报,1997,2(1):38-42.
    王三,赵伟,黄春芳.基于遥感的重庆市土地利用动态变化研究[J].中国农学通报,2010,26(2):250-256.
    王天星,陈松林,马娅,等.亮温与地表温度表征的城市热岛尺度效应对比研究[J].地理与地理信息科学,2007,23(6):73-77.
    王天星,陈松林,阎广建.地表参数反演及城市热岛时空演变分析[J].地理科学,2009,29(5):697-702.
    王伟武,李国梁,薛瑾.杭州城市热岛空间分布及缓减对策[J].自然灾害学报,2009,18(6):14-20.
    卫亚星,王莉雯,陈全功.对NOAA/AVHRR图像进行几何精纠正的研究[J].草业科学,2005,22(9):92-94.
    邬建国.景观生态学概念与理论[J].生态学杂志,2000,19(1):42-52.
    邬建国.景观生态学—格局、过程、尺度与等级[M].北京:高等教育出版社,2000.
    吴耀兴,康文星.城市绿地系统的生态功能探讨[J].中国农学通报,2008,24(6):335-337.
    肖笃宁,布仁仓,李秀珍.生态空间理论与景观异质性[J].生态学报,1997,17(5):453-461.
    肖笃宁,钟林生.景观分类与评价的生态原则[J].应用生态学报,1998,9(2):217-221.
    肖笃宁.景观生态学研究进展[M].长沙:湖南科学技术出版社,1999.
    肖荣波,欧阳志云,李伟峰,等.城市热岛的生态环境效应[J].生态学报,2005,25(8):2055-2060.
    谢苗苗,王仰麟,李贵才,等.不同城市化阶段景观演变的热环境效应动态—以深圳西部地区为例[J].地理研究,2009,28(4):1085-1094.
    徐涵秋,陈本清.不同时相的遥感热红外图像在研究城市热岛变化中的处理方法[J].遥感技术与应用,2003,18(3):129-132.
    徐涵秋.基于影像的LandsatTM/ETM+数据正规化技术[J].武汉大学学报·信息科学版,2007,32(1):62-66.
    徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595.
    徐建华,梅安新,吴建平,等.20世纪下半叶上海城市景观镶嵌结构演变的数量特征与分形结构模型研究[J].生态科学,2002,21(2):131-137.
    徐丽华,岳文泽,徐建华.城市热场剖面的分形维数计算及其意义研究—以上海中心城区为例[J].长江流域资源与环境,2007,16(3):384-390.
    徐丽华,岳文泽.城市公园景观的热环境效应[J].生态学报,2008,28(4):1702-1710.
    许辉熙,但尚铭,何政伟,等.成都平原城市热岛效应的遥感分析[J].环境科学与技术,2007,30(8):21-23.
    许辉熙.空间信息技术在水电开发工程预可研中的决策支持[D].成都:成都理工大学,2008.
    许学强,周一星,宁越敏.城市地理学[M].北京:高等教育出版社,1996.
    杨俊,赵忠明,杨健.一种高分辨率遥感影像阴影去除方法[J].武汉大学学报·信息科学版,2008,33(1):17-20.
    杨丽萍,夏敦胜,陈发虎.Landsat7ETM+全色与多光谱数据融合算法的比较[J].兰州大学学报,2007,43(4):7-12.
    杨山,查勇.太湖流域城镇形态的遥感信息提取模型研究[J].长江流域资源与环境,2002,11(1):1-5.
    杨昕,汤国安,邓凤东,等.ERDAS遥感数字图像处理实验教程[M].北京:科学出版社,2009.
    杨英宝,苏伟忠,江南.基于遥感的城市热岛效应研究[J].地理与地理信息科学,2006,22(5):36-40.
    杨玉华,徐祥德,翁永辉.北京城市边界层热岛的日变化周期模拟[J].应用气象学报,2003,14(1):61-68.
    袁林山,杜培军,张华鹏,等.基于决策树的CBERS遥感影像分类及分析评价[J].国土资源遥感,2008,76(2):92-98.
    岳文泽,徐建华,徐丽华.基于遥感影像的城市土地利用生态环境效应研究—以城市热环境和植被指数为例[J].生态学报,2006,26(5):1450-1460.
    岳文泽.基于遥感影像的城市景观格局及其热环境效应研究[M].北京:科学出版社,2008.
    曾辉,江子瀛,孔宁宁,等.快速城市化景观格局的空间自相关特征分析-以深圳市龙华地区为例[J].北京大学学报:自然科学版,2000,36(6):824-831.
    曾永年,张少佳,张鸿辉.城市群热岛时空特征与地表生物物理参数的关系研究[J].遥感技术与应用,2010,25(1):1-6.
    张波,郭晋平,刘艳红.太原市城市绿地斑块植被特征和形态特征的热环境效应研究[J].中国园林,2010,26(1):92-96.
    张闯,吕东辉,顼超静.太阳实时位置计算及在图像光照方向中的应用[J].电子测量技术,2010,30(11):87-89.
    张慧,张迎军,王瑞霞,等.土地整理对区域景观变化影响研究[J].安徽农业科学,2007,35(22):6879-6822.
    张金区.珠江三角洲地区地表热环境的遥感探测及时空演化研究[D].广州:中国科学院地球化学研究所,2006.
    张金屯,PickettS.TA.城市化对森林植被、土坡和景观的影响[J].生态学报,2000,19(3):654-658.
    张利权,吴建平,甄彧,等.基于GIS的上海市景观格局梯度分析[J].植物生态学报,2004,28(1):78-85.
    张琳,陈燕,李枕迎,等.决策树分类算法研究[J].计算机工程,2011,37(13):66-70.
    张仁华.对于定量热红外遥感的一些思考[J].国土资源遥感,1999,1:1-6.
    张新乐,张树文,李颖,等.近30年哈尔滨城市土地利用空间扩张及其驱动力分析[J].资源科学,2007,29(5):850-856.
    张新乐,张树文,李颖,等.土地利用类型及其格局变化的热环境效应—以哈尔滨市为例[J].中国科学院研究生院学报,2008,25(6):756-763.
    张勇,余涛,顾行发,等.CBERS-02IRMSS热红外数据地表温度反演及其在城市热岛效应定量化分析中的应用[J].遥感学报,2006,10(5):790-796.
    张兆明,何国金,王威.基于TM和LISS3数据的地表反射率反演比较研究[J].遥感信息,2006,6:55-57.
    张兆明,何国金.北京市TM图像城市扩张与热环境演变分析[J].地球信息科学,2007,9(5):84-88.
    章皖秋,岳彩荣,徐天蜀.QuickBird预正射产品处理及在林地宗地勾绘中的应用[J].东北林业大学学报,2011,39(2):120-124.
    赵福云.城市住宅小区热环境模拟[D].长沙:湖南大学,2003.
    赵捷,韩秀凤,田海文.包头市土地利用动态变化及其环境效应研究[J].安徽农业科学,2011,39(4):2402-2408.
    赵敬源,刘加平.城市街谷热环境数值模拟及规划设计对策[J].建筑学报,2007,3:37-39.
    赵丽荣,王丹.基于ERDAS软件对QuickBird影像的正射纠正[J].测绘与空间地理信息,2009,32(6):144-145.
    赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    赵志敏.城市化进程对城市热岛效应因子的对比分析[J].中国环境监测,2008,24(6):77-79.
    郑国强,鲁敏,张涛,等.地表比辐射率求算对济南市地表温度反演结果的影响[J].山东建筑大学学报,2010,25(5):519-523.
    郑文武,曾永年,田亚平.基于混合像元分解模型的TM6/ETM+热红外波段地表比辐射率估算[J].地理与地理信息科学,2010,26(3):25-28.
    郑祚芳,刘伟东,王迎春.北京地区城市热岛的时空分布特征[J].南京气象学院学报,2006,29(5):694-699.
    中国气象局.地面气象观测规范[M].北京:气象出版社,2003.
    周东颖,张丽娟,张利,等.城市景观公园对城市热岛调控效应分析—以哈尔滨市为例[J].区域研究与开发,2011,30(3):73-78.
    周海芳,易会战,杨学军.基于多项式变换的遥感图像几何校正并行算法的研究与实现[J].计算机工程与科学,2006,28(3):58-60.
    周红妹,周成虎,葛伟强,等.基于遥感和GIS的城市热场分布规律研究[J].地理学报,2001,56(2):189-197.
    周淑贞,束炯.城市气候学[M].北京:气象出版社,1994.
    周淑贞,张超上海城市热岛效应[J].地理学报,1982,37(4):372-381.
    朱亮璞.遥感地质学[M].北京:地质出版社,1994.
    朱佩娟,肖洪,田怀玉.基于GIS-ESDA的城市热岛效应研究[J].自然灾害学报,2010,19(2):6-14.
    朱述龙,张占睦.遥感图像获取与分析[M].北京:科学出版社,2000.