CO_2地质储存煤储层结构演化与元素迁移的模拟实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以高压超临界CO_2地球化学反应器模拟CO_2在煤储层中的储存过程为研究平台,选择不同煤级、不同粒度煤作为模拟储存的样品,以压汞分析、扫描电子显微镜分析、电感耦合等离子体质谱仪和电感耦合等离子体发射光谱仪等分析测试技术为手段,对实验反应前后煤样品的密度、总孔容、比表面积、孔径分布等参数进行分析测试和对模拟储存过程中的元素地球化学迁移进行了研究,并对煤在CO_2储存过程中的压缩性、膨胀性以及孔裂隙的演化进行了探讨。本次研究所取得的主要研究成果如下:
     (1)建立了CO_2地质储存的模拟实验研究方法体系,并论证了其可行性
     以高压超临界CO_2地球化学反应器为模拟平台,采用不同煤级、不同粒级的煤作为模拟样品,从不同矿物在不同时间阶段溶出的差异性特征入手,对煤样进行不同时间的CO_2模拟地质储存实验,并对反应后的煤样和水样进行分析测试,很好的实现了CO_2的模拟地质储存过程,并从模拟装置的稳定性、实验环境参数选择的合理性以及样品处理的规范性等方面论证了模拟实验方法的可行性。
     (2)CO_2的地质储存过程对煤储层具有明显改造作用
     CO_2地质储存后,孔隙体积的增大使得煤样品的真密度有增加趋势,而矿物质的溶出则使得视密度呈下降趋势;各煤级样品的总孔容、比表面积和孔隙度均在反应后表现出了明显的增大,其中以无烟煤表现最为突出。煤储层本身固有属性的发育特征也影响了CO_2储存后煤孔隙结构的变化,无烟煤微孔相对发育,微孔占有比例从反应前的76.95%增加到88.98%,而大孔比例相对下降;褐煤大孔发育,反应后大孔比例从14.40%增加到24.25%,微孔比例变化相对较小。CO_2地质储存对煤储层的改造还表现出地球化学反应后煤储层“软化”的趋势;分形维数的计算结果表明,煤的压缩性直接与煤级相关,即煤级越高相对越难被压缩,同时CO_2的储存过程使得煤中矿物质大量溶出,从而使得煤较储存前更易被压缩。
     (3)CO_2地质储存过程中发生了煤中元素地球化学的规律性迁移
     CO_2储存前后元素由于各自活性的不同而表现出分期分批优势组合的迁移特征,元素的活性主要取决于煤中与之赋存相关的无机矿物,Ca、Mg、Mn、Sr、Zn、Co、Ba、As、Cr、Cu等与碳酸盐矿物相关的元素在CO_2储存的整个过程中均表现出了较强的迁移能力,与硫化物矿物或者硫酸盐矿物赋存相关的元素则在反应的中后期表现出迁移特征,而Si、Zr、Be、Sc、Ga和Rb等与硅酸盐矿物相关的元素则在反应后期才表现出一定的迁移能力,溶解迁移是CO_2储存过程中元素迁移的最主要方式;同时,CO_2的储存过程也促使了煤中As、Mo、Zn等生态微量元素的迁移,表现出了很强的迁移特征,迁移率分别为31.15%、23.87%和48.87%,在反应后的水中浓度高度富集。因此,CO_2注入煤储层后,有必要对Pb、As、Cu和Cr等具有较强污染作用的元素进行监测。
     (4)煤储层结构演化与元素迁移存在耦合关系,并构建了孔裂隙演化的地球化学模式
     煤储层孔裂隙的演化主要表现为3个方面,即煤基质内孔隙的增大和连通、原有裂隙的扩展以及新裂隙的产生,元素或元素组合的优势迁移特征可以反应出煤体结构的变化,特别是具有较大迁移率的Ca、Mg、Mn、Sr、Zn、Co、Ba等元素组合可以反应出煤中碳酸盐矿物受到了强烈的改造,具体体现在对以充填形式存在于煤中的碳酸盐的溶出所导致的煤孔隙度和渗透率的改造上。基于储层应力分布变化、矿物溶解迁移和元素组合迁移特征建立了CO_2地质储存过程中孔裂隙演化的地球化学模式,CO_2储存的不同时期孔裂隙表现出不同的演化特征,具体为初期渗透率变低、短暂渗透率稳定、中期渗透率增大和后期渗透率稳定4个阶段。储层中应力分布的变化和矿物质的溶解特征是控制孔裂隙演化的关键因素。CO_2的储存过程较大的改善了煤储层的孔裂隙结构,使得其开启性和连通性均得到了有益的改善,CO_2的注入改变了煤层中气体成分和浓度的分布、改变了各气体组分的分压,从而导致了CH4的解吸,渗透率的改变加快了气体扩散和渗流的通道和速度,加速了CH4的解吸和扩散,从而使得整个解吸-扩散-渗流得到了较好的改善,提高了煤层气的采收率,也实现了CO_2的储存。
High pressure supercitical CO_2 geochemical ractor was employed to simulate CO_2 geological storage into coal seam reservoir process. Different coal samples with different coal rank and grain sizes were choosen in the experiments. True density, total pore volume, specific surface area, pore distribution and element geochemical migration were studied before and after the ScCO_2-H2O treatment with different analysing methods like mercury porosimetry, scanning electron microscope, inductively coupled plasma source mass spectrometer, inductively coupled plasma optical emission spectrometer and X-ray fluorescence spectrometer. Coal compressibility, swelling and evolution of pore-fracture structure were also discussed in this dissertation. The main research achievements are concluded as follows:
     (1) New method system of simulating CO_2 geological storage into coal seam reservoir has been established and the feasibility is demonstrated.
     The high pressure supercritical CO_2 geochemical reactor was used to simulate CO_2 geological storage into coal reservoir with different coal rank and grain sizes samples. The simulated experiments were carried out based on the different dissolution characteristics of different minerals in coal at different stage. Coal samples before and after the ScCO_2-H2O treatment and water samples after the treatment were analyzed. The CO_2 geological storage was simulated in labratory as expected. The feasibility was demonstrated from the stability of the simulation apparatus, rationality of the selected environmental parameters and normativity of sample preparation.
     (2) Coal structures are largely changed after the CO_2 geological storage process.
     True densities are all increased because of the increased pore voume in coal after the CO_2 geological storage, while bulk densities are all decreased because of the dissolution of coal minerals. Total pore volume, specific surface area and porosity are all largley increased in all the samples especially the anthracite coal. Changes of pore structure are also influenced by the intrinsic property of coal seam reservoir. Micropores are highly developed in anthracite which accordingly resulted in that the proportion of micropores after the ScCO_2-H2O treatment increased from the untreated sample of 76.95% to the treated sample of 88.98% while the macropores are decreased slightly . On the contrary, macropores are very developed in lignite which accordingly resulted in the proportion of macropores increased from the untreated sample of 14.40% to the treated sample of 24.25% while the micropores are not changed largely.
     The soften phenomenon of coal reservoir was also observed after the CO_2 geological storage. According to the calculation of fractal dimensions, the compressibility of coal is directly related to coal rank i.e. higher rank coal is harder to be compressed than the lower rank one. With the dissolution of coal minerals the treated samples are easier to be compressed than the untreated one.
     (3) Regularity of elements migration is observed during the CO_2 geological storage.
     The ability of element migration before and after the CO_2 geological storage is due to the difference of their activity which mainly decided by their occurrence in inorganic mineral matter in coal. Elements such as Ca, Mg, Mn, Sr, Zn, Co, Ba, As, Cr and Cu which interrelated with carbonate mineral and sulfide minerals have the strongest migration ability during the whole geological storage process but elements such as Si, Zr, Be, Sc, Ga and Rb which interrelated with silicate minerals only show their migration ability in the later stage of geological storage. The primary way of elements migration is dissolution migration. Meanwhile, some ecological elements such as As, Mo, Zn also show strong migration ability with migration rate of 31.15%、23.87% and 48.87% respectively. As a result, attention should be paid to the monitor to the elements with high contamination effects such as Pb, As, Cu and Cr.
     (4) Coupling relationship is found between reservoir structure evolution and element migration and also the geochemical model of pore-fracture evolution has been established.
     The evolution of pore-fracture structure are mainly represented in 3 aspects, i.e. enlarge and connectivity of pores in the coal matrix, extend of the original fractures and new-forming fractures. Changes of coal structure can be reflected by elements migration or elements combination migration especially those with high migration rate, for instance, elements combination of Ca, Mg, Mn, Sr, Zn, Co and Ba can be a reflectance of reforming of carbonate minerals.
     Based on the changes of stress distribution in the coal reservoir, dissolution and migration of minerals and migration characteristics of elements combination, the geochemical model of pore-fracture structure during the CO_2 geological storage has been established. The behaviors of pore-fracture evolution at different stage are shown as different characteristics, i.e. decrease of permeability in the initial stage, briefly stability of permeability, increase of permeability in the middle stage and stable permeability in the later stage. Changes of stress distribution in coal reservoir and dissolution characteristics of minerals in coal are the key factors which control the pore-fracture structure evolution. When pores and fractures are changed during the CO_2 geological storage process, their opening and connecting characteristics are greatly improved. Gas components, gas concentrations and partial pressure of different gases are all changed because of the injection of CO_2 which resulted in the desorption of CH4. Desorption and diffusion of CH4 are largely improved because the permeability of coal reservoir are increased. These processes all contribute to the enhanced coalbed methane recovery and the geological storage of CO_2 into coal seam reservoir.
引文
[1] IPCC. IPCC special report on carbon dioxide capture and storage[M]. New York, NY, USA: Cambridge University Press, 2005.
    [2] IPCC. Climate Change 2007: Mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change[M]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA: 2007.
    [3] Mazzotti, M., Pini, R., Storti, G. Enhanced coalbed methane recovery[J]. The Journal of Supercritical Fluids, 2009, 47(3): 619-627.
    [4] White, C.M., Strazisar, B.R., Granite, E.J., Hoffman, J.S., Pennline, H.W. Separation and capture of CO2 from large stationary sources and sequestration in geological formation-coalbeds and deep saline aquifers[J]. Journal of the Air and Waste Management Association, 2003, 53(6): 645-715.
    [5] M.White, C., Smith, D.H., Jones, K.L. et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery-a review[J]. Energy & Fuels, 2005, 19(3): 659-724.
    [6] Gunter, W.D., Mavor, M.J., Robinson, J.R. CO2 storage and enhanced methane production: field testing at the Fenn-Big Valley, Alberta, Canada, with application, in: Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies[C].Vancouver, Canada, September 5-9,2004.
    [7] Bergen, F.V., Pagnier, H., Krzystolik, P. Field experiment of CO2 -ECBM in the upper Silesian basin of Poland, in: Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies[C].Trondheim, Norway, June 19-22,2006.
    [8] Yamaguchi, S., Ohga, K., Nako, M., Muto, S. Field experiment of Japan CO2 geosequestration in coal seams project(JCOP). in: Proceeding of the 8th International Conference on Greenhouse Gas Control Technologies [C]. Trondheim Norway, 2006
    [9] Reeves, S. The Coal-Seq project: Key results from field, laboratory and modeling studies. in: Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies [C]. Vancouver, Canada, 2004
    [10] Wong, S., Law, D., Deng, X. et al. Enhanced coalbed methane micro-pilot test at South Qinshui, Shanxi,China[C].Trondheim, Norway, June 19-22,2006.
    [11]武汉地质学院编.煤田地质学[M].北京:地质出版社, 1981.
    [12]韩德馨,杨起.中国煤田地质学[M].北京:煤炭工业出版社, 1984.
    [13]张建博,王红岩.中国煤层气地质[M].北京:地质出版社, 2000.
    [14]中国煤田地质总局编.中国煤层气资源[M].徐州:中国矿业大学出版社, 1999.
    [15]王红岩,刘洪林.煤层气富集规律[M].北京:石油工业出版社, 2005.
    [16] Zhang, Z.X., Wang, G.X., Massarotto, P., Rudolph, V. Optimization of pipeline transport for CO2 sequestration[J]. Energy Conversion and Management, 2006, 47(6): 702-715.
    [17]曾荣树,孙枢,陈代钊.减少二氧化碳向大气的排放二氧化碳地下储存研究[J].中国科学基金, 2004, 18(4): 196-199.
    [18]刘嘉,李永,刘德顺.碳封存技术的现状及在中国应用的研究意义[J].环境与可持续发展, 2009, 2(33-35.
    [19] Todd, M.R., Grand, G.V. Enhanced oil recovery using carbon dioxide[J]. Energy Conversion and Management, 1993, 34(9-11): 1157-1164.
    [20] Manrique, E.J., Muci, V.E., Gurfinkel, M.E. EOR field experiences in Carbonate Reservoirs in the United states[J]. SPE Reservoir Evaluation & Engineering, 2007, 10(6): 667-686.
    [21] Gaspar Ravagnani, A.T.F.S., Ligero, E.L., Suslick, S.B. CO2 sequestration through enhanced oil recovery in a mature oil field[J]. Journal of Petroleum Science and Engineering, 2009, 65(3-4): 129-138.
    [22] van Bergen, F., Gale, J., Damen, K.J., Wildenborg, A.F.B. Worldwide selection of early opportunities for CO2-enhanced oil recovery and CO2-enhanced coal bed methane production[J]. Energy, 2004, 29(9-10): 1611-1621.
    [23] Gunter, W.D., Wong, S., Cheel, D.B., Sjostrom, G. Large CO2 Sinks: Their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) perspective[J]. Applied Energy, 1998, 61(4): 209-227.
    [24] Korb?l, R., Kaddour, A. Sleipner vest CO2 disposal - injection of removed CO2 into the utsira formation[J]. Energy Conversion and Management, 36(6-9): 509-512.
    [25] Chadwick, R.A., Zweigel, P., Gregersen, U. et al. Geological reservoir characterization of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea[J]. Energy, 2004, 29(9-10): 1371-1381.
    [26] Torp, T.A., Gale, J. Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects[J]. Energy, 2004, 29(9-10): 1361-1369.
    [27] White, D.J., G, B., T, D. et al. Greenhouse gas sequestration in abandoned oil reservoirs: the international energy agency Weyburn pilot project[J]. GSA today, 2004, 14(7): 4-10.
    [28] Christopher, Sabine. Current status and past trends of global carbon cycle, in C. B. Field and M. R. Raupach, eds., The global carbon carbon cycle: Intergrating humans, climate, and the natural world (Washington, DC: Island)[J]. 2004, 17-44.
    [29] Wong, S., Law, D., Deng, X. et al. Enhanced coalbed methane-micro-pilot test at SouthQinshui, Shanxi, China. in: Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies [C]. Trondheim, Norway, 2006
    [30] Van Bergen, F., Pagnier, H., Krzystolik, P. Field experiment of CO2-ECBM in the Upper Silesian Basin of Poland. in: Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies [C]. Trondheim, Norway, 2006
    [31] Yamaguchi, S., Ohga, K., Fujioka, M., Muto, S., Center, J. Field experiment of Japan CO2 geosequestration in coal seams project (JCOP). in: Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies [C]. Trondheim, Norway, 2004
    [32] Bae, J., Bhatia, S. High-pressure adsorption of methane and carbon dioxide on coal[J]. Energy and Fuels, 2006, 20(6): 2599-2607.
    [33] Fitzgerald, J., Pan, Z., Sudibandriyo, M. et al. Adsorption of methane, nitrogen, carbon dioxide and their mixtures on wet Tiffany coal[J]. Fuel, 2005, 84(18): 2351-2363.
    [34] Goodman, A., Busch, A., Bustin, R. et al. Inter-laboratory comparison II: CO2 isotherms measured on moisture-equilibrated Argonne premium coals at 55℃and up to 15 MPa[J]. International Journal of Coal Geology, 2007, 72(3-4): 153-164.
    [35] St. George, J., Barakat, M. The change in effective stress associated with shrinkage from gas desorption in coal[J]. International Journal of Coal Geology, 2001, 45(2-3): 105-113.
    [36] Day, S., Sakurovs, R., Weir, S. Supercritical gas sorption on moist coals[J]. International Journal of Coal Geology, 2008, 74(3-4): 203-214.
    [37] Siemons, N., Busch, A. Measurement and interpretation of supercritical CO2 sorption on various coals[J]. International Journal of Coal Geology, 2007, 69(4): 229-242.
    [38] Krooss, B.M., van Bergen, F., Gensterblum, Y. et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. International Journal of Coal Geology, 2002, 51(2): 69-92.
    [39] Iwai, Y., Murozono, T., Koujina, Y., Arai, Y., Sakanishi, K. Physical properties of low rank coals dried with supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2000, 18(1): 73-79.
    [40] Goodman, A., Busch, A., Duffy, G. et al. An inter-laboratory comparison of CO2 isotherms measured on Argonne premium coal samples[J]. Energy and Fuels, 2004, 18(4): 1175-1182.
    [41] Sakurovs, R., Day, S., Weir, S., Duffy, G. Application of a modified Dubinin- Radushkevich Equation to adsorption of gases by coals under supercritical conditions[J]. Energy and Fuels, 2007, 21(2): 992-997.
    [42] Clarkson, C.R., Bustin, R.M. Binary gas adsorption/desorption isotherms: effect of moistureand coal composition upon carbon dioxide selectivity over methane[J]. International Journal of Coal Geology, 2000, 42(4): 241-271.
    [43] Stevenson, M., Pinczewski, W., Somers, M., Bagio, S. Adsorption/desorption of multicomponent gas mixtures at in-seam conditions. in: SPE Asia-Pacific Conference [C]. Perth, Western Australia, 1991
    [44] Yu, H., Zhou, L., Guo, W., Cheng, J., Hu, Q. Predictions of the adsorption equilibrium of methane/carbon dioxide binary gas on coals using Langmuir and ideal adsorbed solution theory under feed gas conditions[J]. International Journal of Coal Geology, 2008, 73(2): 115-129.
    [45] DeGance, A., Morgan, W., Yee, D. High pressure adsorption of methane, nitrogen and carbon dioxide on coal substrates[J]. Fluid Phase Equilibria, 1993, 82(215-224.
    [46] Chaback, J., Morgan, W., Yee, D. Sorption of nitrogen, methane, carbon dioxide and their mixtures on bituminous coals at in-situ conditions[J]. Fluid Phase Equilibria, 1996, 117(1-2): 289-296.
    [47] Arri, L., Yee, D., Morgan, W., Jeansonne, M. Modeling coalbed methane production with binary gas sorption. in: SPE Rocky Mountain Regional Meeting [C]. Casper, Wyoming, 1992
    [48] Ottiger, S., Pini, R., Storti, G., Mazzotti, M. Measuring and Modeling the Competitive Adsorption of CO2, CH4, and N2 on a Dry Coal[J]. Langmuir, 2008, 24(17): 9531-9540.
    [49] Fitzgerald, J., Robinson Jr, R., Gasem, K. Modeling high-pressure adsorption of gas mixtures on activated carbon and coal using a simplified local-density model[J]. Langmuir, 2006, 22(23): 9610-9618.
    [50] Sudibandriyo, M., Fitzgerald, J., Pan, Z., Robinson Jr, R., Gasem, K. Extension of the Ono-Kondo Lattice Model to High-pressure Mixture Adsorption. in: Proceedings of the AIChE Spring National Meeting [C]. New Orleans, LA, March, 2003
    [51] Hocker, T., Rajendran, A., Mazzotti, M. Measuring and modeling supercritical adsorption in porous solids. Carbon dioxide on 13X zeolite and on silica gel[J]. Langmuir, 2003, 19(4): 1254-1267.
    [52] Larsen, J.W. The effects of dissolved CO2 on coal structure and properties[J]. International Journal of Coal Geology, 2004, 57(1): 63-70.
    [53] Ottiger, S., Pini, R., Storti, G., Mazzotti, M. Competitive adsorption equilibria of CO2 and CH4 on a dry coal[J]. Adsorption, 2008, 14(4-5): 539-556.
    [54] Day, S., Fry, R., Sakurovs, R. Swelling of Australian coals in supercritical CO2[J]. International Journal of Coal Geology, 2008, 74(1): 41-52.
    [55] Harpalani, S., Chen, G. Estimation of changes in fracture porosity of coal with gas emission[J]. Fuel, 1995, 74(10): 1491-1498.
    [56] Pan, Z., Connell, L. A theoretical model for gas adsorption-induced coal swelling[J]. International Journal of Coal Geology, 2007, 69(4): 243-252.
    [57] Levine, J. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs[J]. Geological Society London Special Publications, 1996, 109(1): 197-212.
    [58] Cui, X., Bustin, R., Chikatamarla, L. Adsorption-induced coal swelling and stress: Implications for methane production and acid gas sequestration into coal seams[J]. Journal of Geophysical Research-Solid Earth, 2007, 112(B10): B10202.
    [59] Larsen, J., Flowers, R., Halls, P., Carlson, G. Structural rearrangement of strained coals[J]. Energy and Fuels, 1997, 11(5): 998-1002.
    [60] Scherer, G. Dilatation of porous glass[J]. Journal of the American Ceramic Society, 1986, 69(6): 473-480.
    [61] Karacan, C.O. Heterogeneous Sorption and Swelling in a Confined and Stressed Coal during CO2 Injection[J]. Energy and Fuels, 2003, 17(6): 1595-1608.
    [62] Viete, D.R., Ranjith, P.G. The effect of CO2 on the geomechanical and permeability behaviour of brown coal: Implications for coal seam CO2 sequestration[J]. International Journal of Coal Geology, 2006, 66(3): 204-216.
    [63] Wang, F., Zhu, Z., Massarotto, P., Rudolph, V. Mass transfer in coal seams for CO2 sequestration[J]. AIChE Journal, 2007, 53(4): 1028-1049.
    [64]傅雪海.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学, 2003.
    [65]郝琦.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报, 1987, (4): 51-57.
    [66]朱兴珊.煤层孔隙特征对抽放煤层气的影响[J].中国煤层气, 1996, 6(1): 362-369.
    [67]张慧.煤孔隙的成因类型及其研究[J].煤炭学报, 2001, 26(1): 40-44.
    [68] Gan, H., Nandi, S.P., Walker Jr, P.L. Nature of the porosity in American coals[J]. Fuel, 1972, 51(4): 272-277.
    [69]张新民,张遂安,钟玲文.中国的煤层甲烷[M].西安:陕西科学技术出版社, 1991.
    [70]秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社, 1995.
    [71]Ходот, B.B.宋世钊等译.煤与瓦斯突出[M].北京:中国工业出版社, 1966.
    [72] Tsotsis, T., Patel, H., Najafi, B. et al. Overview of laboratory and modeling studies of carbon dioxide sequestration in coal beds[J]. Industrial and Engineering Chemistry Research, 2004, 43(12): 2887-2901.
    [73] Stevens, S.H., Kuuskraa, V.A., Spector, D.S., Reimer, P. CO2 sequestration in deep coal seams: pilot results and worldwide potential, 4th International Conference on Greenhouse Gas Control Technologies[C].Elsevier: Oxford, UK Interlaken, Switzerland,1998.
    [74] Kuuskraa, V., Boyer, C., Kelafant, J. Hunt for quality basins goes abroad[J]. Oil & Gas Journal, 1992, Special(4): 49-54.
    [75]张洪涛,文冬光,李义连,张家强,卢进才.中国CO2地质埋存条件分析及有关建议[J].地质通报, 2005, 24(12): 1107-1110.
    [76] Massarotto, P., Rudolph, V., Golding, S.D. Anisotropic permeability characterisation of Permian coals. 2003 International Coalbed Methane Symposium Proceedings[C].University of Alabama, Tuscaloosa, Alabama, CD ROM Paper 0395,2003.
    [77] Kolak, J., Burruss, R. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds[J]. Energy Fuels, 2006, 20(2): 566-574.
    [78] Mazumder, S., van Hemert, P., Bruining, J., Wolf, K.H.A.A., Drabe, K. In situ CO2-coal reactions in view of carbon dioxide storage in deep unminable coal seams[J]. Fuel, 2006, 85(12-13): 1904-1912.
    [79] Mazumder, S., Wolf, K. Differential swelling and permeability change of coal in response to CO2 injection for ECBM[J]. International Journal of Coal Geology, 2008, 74(2): 123-138.
    [80] Gunter, W.D., Talman, S., Perkins, E. Geosequestration geochemistry. Proceedings of 2008 Asia Pacific Coalbed Methane Symposium[C].Brisbane, Queensland, 22-24 September,2008.
    [81] Bertier, P., Swennen, R., Laenen, B., Lagrou, D., Dreesen, R. Experimental identification of CO2-water-rock interactions caused by sequestration of CO2 in Westphalian and Buntsandstein sandstones of the Campine Basin (NE-Belgium)[J]. Journal of Geochemical Exploration, 2006, 89(1-3): 10-14.
    [82] Mirzaeian, M., Hall, P.J. The interactions of coal with CO2 and its effects on coal structure[J]. Energy and Fuels, 2006, 20(5): 2022-2027.
    [83] Nishioka, M., Larsen, J.W. Association of aromatic structures in coals[J]. Energy and Fuels, 1990, 4(1): 100-106.
    [84] Giri, C.C., Sharma, D.K. Mass-transfer studies of solvent extraction of coals in N-methyl-2-pyrrolidone[J]. Fuel, 2000, 79(5): 577-585.
    [85] Smith, P., Moll, D. Deuterium NMR investigation of the plasticization effects induced by high-pressure carbon dioxide gas on the molecular dynamics of polymers[J].Macromolecules, 1990, 23(13): 3250-3256.
    [86] Shieh, Y., Su, J., Manivannan, G. et al. Interaction of supercritical carbon dioxide with polymers. II. Amorphous polymers[J]. Journal of Applied Polymer Science, 1996, 59(4): 707-712.
    [87] Lin, H., Fujii, T., Takisawa, R., Takahashi, T., Hashida, T. Experimental evaluation of interactions in supercritical CO2/water/rock minerals system under geologic CO2 sequestration conditons[J]. Journal of Materials Science, 2007, 43(7): 2307-2315.
    [88] Day, S., Duffy, G., Sakurovs, R., Weir, S. Effect of coal properties on CO2 sorption capacity under supercritical conditions[J]. International Journal of Greenhouse Gas Control, 2008, 2(3): 342-352.
    [89] Hayashi, J.-i., Takeuchi, K., Kusakabe, K., Morooka, S. Removal of calcium from low rank coals by treatment with CO2 dissolved in water[J]. Fuel, 1991, 70(10): 1181-1186.
    [90] Wellman, T.P., Grigg, R.B., Mcpherson, B.J., Svec, R.K., Lichtner, P.C. Evaluation of CO2-brine-reservoir rock interaction with laboratory flow tests and reactive transport modeling. in: International Symposium on Oilfield Chemistry [C]. 2003
    [91] Swaine, D.J. Trace elements in coal[M]. London Boston Singapore Sydney Toronto: Butterworths, 1990.
    [92]杨起.煤地质学进展[M].北京:科学出版社, 1987.
    [93]赵峰华.煤中有害微量元素分布赋存机制及燃煤产出淋滤实验研究[D].北京:中国矿业大学, 1997.
    [94]王运泉.煤及其燃烧产物中微量元素分布赋存特征研究[D].中国矿业大学北京研究生部, 1994.
    [95]雷加锦.贵州晚二叠世煤中硫的赋存规律[D].中国矿业大学北京研究生部, 1993.
    [96] Stach, E. Stach's textbook of coal petrology[M]. 3rd edition. Berlin: Gebruder Borntraeger, 1982.
    [97] Lowry, H. Chemistry of coal utilization[M]. New York, NY: Wiley (supplementary volume), 1981.
    [98]任德贻,赵峰华,代世峰,张军营,雒昆利.煤的微量元素地球化学[M].北京:科学出版社, 2006.
    [99] Finkelman, R.B., Aruscavage, P.J. Concentration of some platinum-group metals in coal[J]. International Journal of Coal Geology, 1981, 1(2): 95-99.
    [100] Finkelman, R.B. Modes of occurrence of potentially hazardous elements in coal: levels of confidence[J]. Fuel Processing Technology, 1994, 39(1-3): 21-34.
    [101] Kimura, T. Relationships between inorganic elements and minerals in coals from theAshibetsu district, Ishikari coal field, Japan[J]. Fuel Processing Technology, 1998, 56(1-2): 1-19.
    [102] Spears, D.A., Martinez Tarazona, M.R., Lee, S. Pyrite in UK coals: its environmental significance[J]. Fuel, 1994, 73(7): 1051-1055.
    [103]代世峰,任德贻,唐跃刚.煤中常量元素的赋存特征与研究意义[J].煤田地质与勘探, 2005, 33(2): 1-5.
    [104] Viana, M., Jouannin, P., Pontier, C., Chulia, D. About pycnometric density measurements[J]. Talanta, 2002, 57(3): 583-593.
    [105] Cloke, M., Lester, E., Belghazi, A. Characterisation of the properties of size fractions from ten world coals and their chars produced in a drop-tube furnace[J]. Fuel, 2002, 81(5): 699-708.
    [106] Raask, E. Mineral impurities in coal combustion: behavior, problems, and remedial measures[M]. Taylor & Francis, 1984.
    [107] Massarotto, P., Golding, S.D., Bae, J.S., Iyer, R., Rudolph, V. Changes in reservoir properties from injection of supercritical CO2 into coal seams- A laboratory study[J]. International Journal of Coal Geology, In Press, Accepted Manuscript
    [108] Li, Y.H., Lu, G.Q., Rudolph, V. Compressibility and fractal dimension of fine coal particles in relation to pore structure characterisation using mercury porosimetry[J]. Particle & Particle Systems Characterization, 1999, 16(1): 25-31.
    [109] Stanmore, B.R., He, Y., White, E.T. et al. Porosity and water retention in coarse coking coal[J]. Fuel, 1997, 76(3): 215-222.
    [110] Suuberg, E.M., Deevi, S.C., Yun, Y. Elastic behaviour of coals studied by mercury porosimetry[J]. Fuel, 1995, 74(10): 1522-1530.
    [111] Mahajan, O., Walker Jr, P. Porosity of coals and coal products[R]. FE-2030-TR7, Pennsylvania State Univ., University Park (USA). Coal Research Section, 1978
    [112] Washburn, E.W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273-283.
    [113] Ritter, H., Drake, L. Pressure Porosimeter and Determination of Complete Macropore-Size Distributions[J]. Industrial & Engineering Chemistry Analytical Edition, 1945, 17(12): 782-786.
    [114] McBain, J. An explanation of hysteresis in the hydration and dehydration of gels[J]. Journal of the American Chemical Society, 1935, 57(4): 699-700.
    [115] Salmas, C., Androutsopoulos, G. Mercury porosimetry: contact angle hysteresis of materials with controlled pore structure[J]. Journal of Colloid and Interface Science, 2001, 239(1): 178-189.
    [116] Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M. Characterization of porous solids and powders: surface aera, pore size and density.[M]. Netherlands: Kluwer Academic Publishers, 2004.
    [117] Wardlaw, N.C., McKellar, M. Mercury porosimetry and the interpretation of pore geometry in sedimentary rocks and artificial models[J]. Powder Technology, 1981, 29(1): 127-143.
    [118] Tsakiroglou, C.D., Payatakes, A.C. Mercury intrusion and retraction in model porous media[J]. Advances in Colloid and Interface Science, 1998, 75(3): 215-253.
    [119] Toda, Y., Toyoda, S. Application of mercury porosimetry to coal[J]. Fuel, 1972, 51(3): 199-201.
    [120] Debelak, K.A., Schrodt, J.T. Comparison of pore structure in Kentucky coals by mercury penetration and carbon dioxide adsorption[J]. Fuel, 1979, 58(10): 732-736.
    [121] NG, S.H., Fairbridge, C., Kaye, B.H. Fractal description of the surface structure of coke particles[J]. Langmuir, 1987, 3(3): 340-345.
    [122] Pfeifer, P., Avnir, D. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces[J]. The Journal of Chemical Physics, 1983, 79(7): 3558-3565.
    [123] Avnir, D., Farin, D., Pfeifer, P. Chemistry in noninteger dimensions between two and three. II. Fractal surfaces of adsorbents[J]. The Journal of Chemical Physics, 1983, 79(7): 3566-3571.
    [124] Song, H., Min, L., Jun, X. et al. Fractal characteristic of three Chinese coals[J]. Fuel, 2004, 83(10): 1307-1313.
    [125] Yao, Y., Liu, D., Tang, D., Tang, S., Huang, W. Fractal characterization of adsorption-pores of coals from North China: An investigation on CH4 adsorption capacity of coals[J]. International Journal of Coal Geology, 2008, 73(1): 27-42.
    [126] Friesen, W.I., Mikula, R.J. Mercury porosimetry of coals: Pore volume distribution and compressibility[J]. Fuel, 1988, 67(11): 1516-1520.
    [127] Avinr, D., Farin, D., Pfeifer, P. A discussion of some aspects of surface fractality and of its determination[J]. New Journal of Chemistry, 1992, 16(439-449.
    [128] Ren, D., Zhao, F., Wang, Y., Yang, S. Distributions of minor and trace elements in Chinese coals[J]. International Journal of Coal Geology, 1999, 40(2-3): 109-118.
    [129]黎彤.大洋地壳和大陆地壳的元素丰度[J].大地构造与成矿学, 1984, 8(1): 19-27.
    [130] Valkovic, V. Trace elements in coal[M]. Crc Press, 1983.
    [131] Finkelman, R.B. Modes of occurrence of environmentally sensitive trace elements in coal. In: Swaine D J and Goodarzi F, Environmental aspects of trace elements in coal.Dordrecht: Kluwer Academic Publishers[J]. 1995, 24-50.
    [132]刘英俊,曹励明,李兆麟.元素地球化学[M].北京:科学出版社, 1984.
    [133]张军营.煤中潜在毒害元素富集规律及其污染性抑制研究[D].北京:中国矿业大学, 1999.
    [134]李鑫,凌开成,何敏,申俊,贾伟.脱矿物质过程对煤结构影响的研究[J].洁净煤技术, 2009, 15(3): 39-42.
    [135] Swaine, D.J. The contents and some related aspects of trace elements in coals. In: Swaine D J, Goodarzi F, eds. Environmental aspects of trace elements in coal[M]. Dordrecht: Kluwer Academic Publisher: 1995.
    [136] Limi , N., Valkovi , V. The occurrence of trace elements in coal[J]. Fuel, 1986, 65(8): 1099-1102.
    [137] Alastuey, A., Jiménez, A., Plana, F., Querol, X., Suáez-Ruiz, I. Geochemistry, mineralogy, and technological properties of the main Stephanian (Carboniferous) coal seams from the Puertollano Basin, Spain[J]. International Journal of Coal Geology, 2001, 45(4): 247-265.
    [138]樊金串,樊民强.煤中微量元素间依存关系的聚类分析[J].燃料化学学报, 2000, 28(2): 157-161.
    [139] Minkin, J., Chao, E., Thompson, C. Distribution of elements in coal macerals and minerals: determination by electron microprobe[J]. American Chemical Society, Division of Fuel Chemistry, Preprint Papers, 1979, 24(1): 242-249.
    [140] Kuhn, J., Fiene, F., Cahill, R., Gluskoter, H., Shimp, N. Abundance of trace and minor elements in organic and mineral fractions of coal[R]. EGN-88, Illinois State Geological Survey, Urbana (USA), 1980
    [141] Finkelman, R. Modes of occurrence of trace elements in coal[D]. University of Maryland., 1980.
    [142]许琪.煤中伴生元素的聚集机制及其侵入环境的动态规律[D].北京:中国矿业大学研究生部, 1988.
    [143]孔洪亮.内陆湖沼和近海沼泽相沉积环境煤中微量元素和矿物的对比研究[D].北京:中国科学院地质与地球物理研究所, 2002.
    [144]白向飞.中国煤中微量元素分布赋存特征及其迁移规律试验研究[D].北京:煤炭科学研究总院, 2003.
    [145] Pickhardt, W. Trace elements in minerals of German bituminous coals[J]. International Journal of Coal Geology, 1989, 14(1-2): 137-153.
    [146] Littke, R. Petrology and genesis of Upper Carboniferous seams from the Ruhr region[J]. West Germany: International Journal of Coal Geology, 1987, 7(147-184.
    [147] Palmer, C., Wandless, M. Distribution of trace elements in coal minerals of selected eastern United States coals. in: Procedure International Conference of Coal Science Pergoman [C]. Sydney, NSW, 1985
    [148] Hatch, J., Avcin, M., Van Dorpe, P. Element geochemistry of Cherokee Group coals (Middle Pennsylvanian) from south-central and southeastern Iowa[M]. Iowa Geological Survey, 1984.
    [149] Palmer, C., Filby, R. Distribution of trace elements in coal from the Powhatan No. 6 mine, Ohio[J]. Fuel, 1984, 63(3): 318-328.
    [150]唐跃刚.四川晚二叠世煤中硫的赋存机制、黄铁矿矿物学及其磁性研究[D].北京:中国矿业大学北京研究生部, 1993.
    [151]代世峰.煤中伴生元素的地质地球化学习性与富集模式[D].北京:中国矿业大学(北京校区), 2002.
    [152]李生盛.鄂尔多斯盆地东缘晚古生代煤中微量元素地球化学研究[D].北京:中国矿业大学(北京校区), 2005.
    [153] Onal, Y., Ceylan, K. Effects of treatments on the mineral matter and acidic functional group contents of Turkish lignites[J]. Fuel, 1995, 74(7): 972-977.
    [154] Stach, E., Mackowsky, M.-T., Teichmǖller, M. Berrllium content of American coals[M]. Berlin Stuttgart: Gebrǖder Borntraeger: Us Geol Petrology (3rd ed), 1982.
    [155]庄新国,龚家强,王占岐,曾荣树,徐文东.贵州六枝、水城煤田晚二叠世煤的微量元素特征[J].地质科技情报, 2001, 20(3): 53-58.
    [156]张军,汉春利,徐益谦.煤中次要元素的赋存方式[J].煤炭转化, 1999, 22(2): 6-11.
    [157]张军营,任德贻,王运泉,赵峰华,许德伟.煤中有机态微量元素含量与煤级关系[J].煤田地质与勘探, 2000, 28(6): 11-12.
    [158] Davidson, R. Modes of occurrence of trace elements in coal[M]. IEA Coal Research, 2000.
    [159] Reucroft, P., Sethuraman, A. Effect of pressure on carbon dioxide induced coal swelling[J]. Energy & fuels, 1987, 1(1): 72-75.
    [160] Reucroft, P., Patel, H. Gas-induced swelling in coal[J]. Fuel, 1986, 65(6): 816-820.
    [161] Walker, P., Verma, S., Rivera-Utrilla, J., Khan, M. A direct measurement of expansion in coals and macerais induced by carbon dioxide and methanol[J]. Fuel, 1988, 67(5): 719-726.
    [162] Ceglarska-Stefańska, G., Czapliński, A. Correlation between sorption and dilatometric processes in hard coals[J]. Fuel, 1993, 72(3): 413-417.
    [163] Ammosov, I., Eremin, I. Fracturing in coal[M]. Moscow: IZDAT Puvlishers, 1954.
    [164] Laubach, S., Marrett, R., Olson, J., Scott, A. Characteristics and origins of coal cleat: Areview[J]. International Journal of Coal Geology, 1998, 35(1-4): 175-207.
    [165] Spears, D., Caswell, S. Mineral matter in coals: cleat minerals and their origin in some coals from the English Midlands[J]. International Journal of Coal Geology, 1986, 6(2): 107-125.
    [166] Gamson, P., Beamish, B., Johnson, D. Coal microstructure and secondary mineralization: their effect on methane recovery[J]. Geological Society London Special Publications, 1996, 109(1): 165.