猪轮状病毒JL94株VP4基因克隆及其主要抗原位点的原核表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪轮状病毒(Porcine Rotavirus,PRV)属于呼肠病毒科轮状病毒属,是引起仔猪病毒性腹泻的主要病原之一,该病在世界范围内分布,给世界各地的畜牧业造成严重的损失。
    本研究根据GenBank中已发表的猪轮状病毒VP4全基因序列,设计合成一对引物,以PRV/JL94株RNA为模板,通过RT-PCR技术扩增出约2.3kb的基因片段,命名为VP4。将其与pMD18-T载体连接,构建重组质粒VP4-pMD18-T,对扩增的VP4全基因进行序列测定。测序结果表明JL94-VP4基因全长2362bp,含有一个完整的开放阅读框架,编码776个氨基酸。将测序结果与国外分离株BEN-307株、Gottfried株VP4全基因序列比较,氨基酸同源性分别为96.06%和71.88%。说明JL94株同BEN-307株属于同一VP4血清型,而同Gottfried株属于不同血清型。
    研究资料表明PRV VP4基因5’端长750bp的特异性片段主要决定其活性,据此又设计合成一对引物,克隆VP4基因5’端1bp-756bp(包括全部的VP8区、胰酶区和VP5的N端),命名为VP4主要抗原位点基因;该主要抗原位点基因与PRV国外分离株CRW-8株、Gottfried株该基因片段比较,氨基酸同源性分别为96.43%和67%。同型之间高度保守,不同型间差别较大,其中aa81-aa207变异最大。
    将PRV/JL94-VP4主要抗原位点基因同载体pGEX-6P-1连接后转化入E.Coli.BL21 (DE3)plysS,经IPTG诱导表达出50kDa的融合蛋白,与预计相符,对表达产物进行光密度扫描定量分析,融合蛋白占菌体总蛋白的26.6%。对表达的蛋白进行Western blot分析和谷胱甘肽琼脂糖亲和层析纯化,得到纯化的VP4融合蛋白。Western blot证实所表达的融合蛋白有较好的反应原性。
    本研究在国内首次克隆了PRV/JL94株VP4全基因,并获得了VP4主要抗原位点基因的表达,为研究我国轮状病毒的病毒毒力的相关基因位点、抗原变异、VP4蛋白的致病机理研究及基因工程疫苗的研制提供依据。
Porcine Rotavirus(PRV) belongs to the family reoviridae. It is one of the major pathogens of diarrhea in piglets and causes of significant losses in graziery worldwide.
    According to the reported complete VP4 nucleotide sequences of group A PRV in GenBank,a pair of primers was designed to amplify VP4 gene of JL94. The segments of complete gene 4 of JL94 were obtained from RT-PCR using dsRNA extracted from the virus as template. The product of PCR named VP4 is approximate 2.3kb in length. The VP4 gene was cloned into pMD18-T vector and sequenced. The results of sequencing showed that JL94 isolate complete gene 4 was 2362bp and had a complete open reading frame which encoded 776 amino acides. The sequence was analyzed homologously in comparison with the VP4 nucleotide sequences of two reference porcine rotavirus BEN-307 and Gottfried. The deduced animo acid sequences were 96.06% and 71.88% correspondingly. The result affirmed that JL94 isolate is more similar to BEN-307 than Gottfired in gene type.
    According to date specific major antigen site of VP4 is in 5’ extremity 750bp in legs, another pair of primers was designed to amplify VP4 gene of major antigen site(1bp-756bp). The sequence was analyzed homologously in comparison with the VP4 nucleotide sequences of two reference porcine rotavirus CRW-8 and Gottfried. The deduced animo acid sequences were 96.43% and 67% correspondingly. The most divergence of amino acid sequence is located in a region delimited by aa81-aa207.
    The major antigen site of VP4 gene was into expression plasmid pGEX-6P-1. The recombinant plasmid VP4-pGEX-6P-1 was transformed into E.coliBL21(DE3)plysS and induced with IPTG. A fusion protein about 50kDa as we expected was found. The amount of the goal protein was evaluated by densitometric scanning. It indicated that the 50kDa product of the VP4 gene was 26.6% of total bacterial protein of BL21. The expressed products were purified by Glutathion-Sepnarose chelation affinity chromatography and tested by western blot. The results showed that GST-VP4 fusion proteins have a positive reaction with anti-JL94 serum.
    This study is first time in amplify complete JL94/VP4 gene and get expression of major antigen site of JL94-VP4, it provides the basis evidence and material basis for PRV identification, molecular epdiemiology investigation research of diagnostic reagent and genetic engineering vaccine.
    Canditate: Song Yan
    Speciality: Preventive Veterinary Science
    Supervisor: Prof.Li Yijing
引文
丁再棣,何家惠,徐之昌等. 四株猪轮状病毒蚀斑特性试验[J]. 病毒学杂志. 1989,4(1): 97-99
    黄文林主编. 分子病毒学(供研究生用)[M]. 人民卫生出版社. 2002,84-85、321-333
    黄旭雯, 周淑兰, 肖驰. 鸡血清对轮状病毒增殖的研究[J]. 畜禽业. 1998, 7: 14-16
    霍云文, 钱渊, 李国华等. 轮状病毒地方株VP4基因的序列分析和原核表达的初步研究[J]. 中华微生物学和免疫学杂志.2000, 20(1)26-28
    金奇, 曾力宇, Jing H等. 世界范围内A组轮状病毒G1型毒株VP7基因及VP4基因高变区的分析[J]. 中华实验和临床病毒学杂志. 1997, 11(1): 3-7
    庞其方, 丘富禧, 俞富荣等. 婴幼儿秋季急胃肠炎病原的轮状病毒的研究[J]. 中华医学杂志, 1979,59:589-591
    彭世勇, 王健伟, 温乐英等. 人类轮状病毒基因DNA免疫的初步研究[J]. 中国病毒学. 2002, 17(1): 38-41
    J萨姆布鲁克, D W 拉塞尔著. 分子克隆实验指南[M]. 第三版.北京:科学出版社, 2002, 518-528
    宋岩, 李一经, 师东方等. 猪轮状病毒JL94株VP4基因克隆与序列分析中国预防兽医学报[J]. 2004,6(1)89-92
    斯特劳 B E, 阿莱尔 S D, 蒙加林 W L主编. 猪病学[M]. 第八版. 中国农业大学出版社, 2000:263-276
    苏琦华. 轮状病毒蛋白的作用[J]. 天津医科大学学报. 2001, 7(2): 299-300
    孙茂盛, Susana Giambiagi, Oscar Burrone. 重组杆状病毒表达轮状病毒SAII株VP4蛋白. 中国医学科学院学报.1997,19 (1)48-53
    王鹏雁, 陈创夫, 余兴龙等. 轮状病毒VP4蛋白与肠产毒性大肠杆菌热稳定肠毒素蛋白的融合表达[J]. 中国人兽共患病杂志. 2003,19(1) 76-81
    王健伟, 何雅青, 洪涛等. 人轮状病毒NSP4基因变异与功能关系的初步研究[J]. 病毒学报. 2002,18(2):113-116
    温乐英. 轮状病毒蛋白的研究进展[J]. 国外医学病毒学分册. 1996, 3(3): 65-67
    肖玮,钱渊. 人A组轮状病毒北京地方株VP4血清型特异性片段的序列分析[J]. 微生物学报.1998,38,(3):196-203
    杨国峰, 周鹏, 王健伟. 轮状病毒疫苗的研究进展及其转基因植物疫苗的开发前景[J]. 生物技术通报. 2001, (1): 16-19
    殷震, 刘景华主编. 动物病毒学[M]. 第二版. 北京:科学出版社, 1997: 562-571
    于恩庶主编, 中国人兽共患病学[M]. 第二版. 福建科学技术出版社, 1996:672-683
    周旭, 李益民, 侯玲等. 轮状病毒DNA疫苗的制备及其抗体应答[J]. 中国生物制品学杂志. 1999, 12(2): 72-74
    周绪斌摘译. 轮状病毒致病性研究进展[J]. 动物医学进展. 1999, 20(1): 32-34
    郑丽舒. 轮状病毒疫苗发展与现状[J]. 国外医学病毒学分册. 2003, 10(1): 1-4
    
    吴乃虎编著. 基因工程原理(下册)[M]. 第二版. 科学出版社, 2001: 135
    Adams,Kraft. Epizootic diarrhea of infant mice: indentification of the etiologic agent[J]. Science. 1963.141:359-360.
    Afrikanova J, Fabbretti E, Miozzo M C. Rotavirus NSP5 phosphorylation is up-regulated by interaction with NSP2[J]. Gen Virol. 1998, 79(11): 2679-2686
    Allen A M, Desselberger U. Reassortment of human rotavirus carrying rearranged gemones with bovine rotavirus[J]. Gen Virol. 1985, 66: 2703
    Angel J, Tang B, Feng N, et al. Studies of the role for NSP4 in the pathogenesis of homologous murine rotavirus diarrhea[J]. Infect Dis. 1998, 177(2): 455-458
    Bass D M, Mackow E R, Greenberg H B. NS35 and not vp7 is the soluble rotavirus protein which binds to target cells[J]. Virol. 1990,64 (1): 322-330.
    Beards G M. Polymorphism of genomic RNAs within rotavirus serotypes and subgroups[J]. Arch Virol. 1982, 74(1): 65-70
    Blackhall J, Munoz M, Fuentes A, et al. Analysis of rotavirus nonstructural protein NSP5 phosphosylation[J]. Virol. 1998, 72(8): 639
    Clare L J, Birgit M B, Ian H H et al. Rotavirus Infection of MA104 Cells Is Inhibited by Ricinus Lectin and Separately Expressed Single Binding Domains[J]. Virology. 2000, 275 (1): 89-97
    Conner M E, Zarley C D, Hu B et al. Virus-like particles as a rotavirus subunit vaccine[J]. Infect Dis. 1996, 174 (suppl): 88-92
    Desslberger U, Mccrae M A. The rotavirus genome[J]. Microbiology immunol. 1994, 185: 31-60
    Dubois E, Le Guyader F, Haugarreau L. Molecular epidemiological survey of rotaviruses in sewage by reversetranscriptase seminested PCR and restriction fragment length polymorpHism assay[J]. Appl Environ Microbiol. 1997,63 (5): 1794-1800
    Estes M K, Cohen J, et al. Rotavirus gene structure and function[J]. Microbiol Rev. 1989, 53(4): 410-449
    Espul C, Cuello H, Navarta L M, et al. Characterization of antigenic types of circulating rotaviruses in Mendoza, Argentina based on typing of the external VP7 capsid protein[J]. Acta Gastroenterol Latinoam. 1993.23 (4): 211-216.
    Eequivel F R, Lopez S, Arias C.The internal rotavirus protein VP6 primes for an enhanced neutralizing antibody response[J]. Arch Virol. 2000,145 (4): 813-25.
    Gorziglia M, Larralde G, Kapikian A Z, et al. Antigenic relationships among human rotaviruses as determined by outer capsid protein VP4[J]. Proc Natl Acad Sci U S A. 1990.87(18): 7155-7159.
    Gorziglia M, Larralde G, Kapikian A Z et al. Identification of group A rotaviruss gene 4 types by polymerase chain reaction[J]. Proc Natl Acad Sci USA. 1996,87:7250-7257
    Gomblod J L. Analysis of reassortment of segment in mice mixedly infected with rotavirus
    
    
    SA11 and RRV[J]. Virol, 1986.57: 110
    Grabarg-Chenon A. Study of genetic reassortment between two human rotavirus[J]. Virology. 1984,139: 358
    Greenberg H B. Rescue of noncultivatable human rotavirus by gene reassortment during mixed infection in with mutant of a cultivatable bovine rotavirus[J]. Pror Natl Acad Sci.1981,78: 420
    Hesse R A, Couture L P, Ellsworth S R. Production and characterization of VP4/VP7 reassortant swine rotaviruses derived from Gottfried and OSU parental strains[J]. Am J Vet Res 1993, 54(10): 1623-1629
    Herrmann J E, Chen S C, fynan E F et al. Protection against rotavirus infections by DNA vaccination[J]. Infect Dis. 1996, 174(l): 93-97
    Hoshino Y, Kapikian A Z. Classification of rotavirus VP4 and VP7 serotypes[J]. Arch Virol Suppl, 1996, 12: 99-111.
    Hoshino Y, Wyatt R G, Scott F M et al. Isolation and characterization of a canine rotavirus[J]. 1982, 72(1-2): 113-125
    Hsu GG, Bellamy AR, Yeager M. Projection structure of VP6, the rotavirus inner capsid protein, and comparison with bluetongue VP7[J]. Mol Biol. 1997,272 (3): 362-368.
    Johansen K, Svensson L, Neutralization of rotavirus and recognition of immunologically important epitopes on VP4 and VP7 by human IgA[J]. Arch Virol. 1997,142(7): 1491- 1498.
    Johnson M A, Misra R M, Lardelli M. Synthesis in Escherichia coli of the major glycoprotein of human rotavirus: analysis of the antigenic regions[J]. Gene. 1989, 84 (1):73-81
    Kapikian A Z,Chanock R M. Rotaviruses.In: Field Virology[M]. 3rd ed, New York,1996, 1657-1660
    Larralde G, Gorziglia M. Distribution of conserved and specific epitopes on the VP8 subunit of rotavirus VP4[J]. Virol. 1992,66:7438-7443
    Liu M, Offit P A, Estes M K. Idetification of simian rotavirus SA11 genome segment 3 product[J]. Virol. 1988, 163: 26-32
    Prasad BV, Wang G J, Cler JPM et al. Three-demessional structure of rotavirus[J]. Mol Biol, 1988.199: 269-275
    Piec T L, Palombo E A. Sequence comparison of the VP7 of serotype G2 rotaviruses from diverse geograpHical locations[J]. DNA Seq. 1998, 9(5-6): 369-373.
    Racz M L, Kroeff S S, Munford V, et al. Molecular characterization of porcine rotaviruses from the southern region of Brazil: characterization of an atypical genotype G9 strain[J]. Clin Microbiol. 2000,38(6): 2443-2446.
    Rao C D, Gowda K, Reddy B S. Sequence analysis of VP4 and VP7 genes of nontypeable strains identifies a new pair of outer capsid proteins representing novel P and G genotypes in bovine rotaviruses[J]. Virology. 2000,276 (1): 104-113
    
    Robert E S, Sharon E K, Nadine B C. Cloning and expression of the major inner capsid protein of SA-11 simian rotavirus in Escherichia coli[J]. Gene.1989, 79 (2): 239-248
    Roy P. Genetically engineered particularte virus-like struvtures and their use as vaccine delivery systerns[J]. Intervirology. 1996,39:62-64
    Sandino A M, Jashes M, Faundex G et al. Role of the inner protein capsid on invitro human rotavirus transcription[J]. Gen Virol. 1985,60: 797-802
    Sereno M M, Gorziglia M I. The outer capsid protein VP4 of murine rotavirus Eb represents a new P type[J]. Virol. 1994,199: 500-504
    Stannard L M. Observation on the morpHology of two rotaviruses[J]. Gen.Virol.1977. (37): 435-441
    Streckert H-J, Brussow H, Werchau H et al. A synthetic peptide corresponding to the cleavage region of VP3 from rotavirus SA11 induces neutralizing antibodies[J]. virol. 1988, 62(11):4265-4269
    Valenzuela S, Pizarro J, Sandino A M, etc. PHotoaffinity labeling of rotavirus VP1 with 8-azido-ATP: identification of the viral RNA polymerase[J]. Gen Virol. 1991,65: 3964- 3967
    Ward R L. etc. Evidence for notural reassortanes of human Potaviruses belong to different genegroups[J]. Virol, 1990,64: 3219
    Wang L, Huang J A, Nagesha H S. Bacterial expression of the major antigenic regions of porcine rotavirus VP7 induces a neutralizing immune response in mice[J]. Vaccine. 1999, 17 (20-21): 2636-2645.