输电线路绝缘子泄漏电流去噪和特征提取的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泄漏电流适合作为在线监测输电线路绝缘子状态的方法。虽然国内外已有学者对泄漏电流的去噪问题和特征提取问题进行了研究,并采用模式识别方法实现了泄漏电流分类和绝缘子状态预测,但是,这些方法均存在缺陷,仍有许多问题有待解决。为了弥补已有方法的不足,本文对泄漏电流去噪和特征提取,以及采用更完善的模式识别方法实现泄漏电流分类等问题展开了研究。
     论文提出了采用小波变换去除输电线路绝缘子泄漏电流噪声时分解层数的计算方法,给出了最优小波基和最佳阈值。根据采用小波阈值法去噪时要对小波系数进行量化、泄漏电流的能量主要集中在低频成分上的事实,提出了小波变换去除泄漏电流噪声时最佳分解层数的判据;并以此判据为基础,提出并证明了计算小波分解层数的公式。根据对泄漏电流的分析,确定了最优小波基和最佳阈值。
     为了实现对输电线路绝缘子泄漏电流的自适应去噪,论文对固有时间尺度分解(Intrinsic Time-Scale Decomposition, ITD)进行了改进,并提出了基于改进ITD的泄漏电流去噪方法。通过引入距离尺度解决了ITD方法的旋转混叠问题;通过引入两端延拓解决了ITD方法的端点效应问题。提出了采用改进ITD对泄漏电流去噪时分解次数的计算公式;在借鉴小波阈值合理性的基础上,结合改进ITD方法的特殊性,给出了去除泄漏电流噪声时的阈值和去噪过程。
     论文提出了采用时域熵作为输电线路绝缘子泄漏电流时域的新特征量。在采样频率和数据长度一定的情况下,泄漏电流绝对值在不同范围内分布的点数不同。据此,论文提出了分布密度的概念,并根据熵能反映变量分布规律的特点,提出采用时域熵作为泄漏电流时域新特征量,并给出了计算时域熵的过程。
     论文提出了采用频域熵作为输电线路绝缘子泄漏电流频域的新特征量。泄漏电流除了在基波和谐波处的幅值特征明显外,在其它频率成分处的幅值也可能剧烈变化。为了自适应反映现场泄漏电流不同频域成分的变化规律,论文提出采用频域熵作为泄漏电流新的频域特征量,并给出了计算频域熵的过程。
     论文提出采用多分类相关向量机作为识别输电线路绝缘子泄漏电流波形类别的方法。确定了多分类相关向量机的输入向量、输出向量和核函数,并给出了识别绝缘子泄漏电流所属类别的过程。
The leakage current method is a good way to monitor the states of the online insulators on the transmission line. The de-noising and the feature extracting of the leakage current have been studied by some domestic and foreign scholars. And the pattern recognition methods also have been used to calssify the leakage current and to forecast the states of the insualtors. While, the methods have some faults. And many problems don't be solved. In order to make up the faults of the methods, this paper studies not only the de-noising and the feature extracting of the leakage current but also the better pattern recognition for the leakage current classification.
     When the wavelet transform is used to de-noise the leakage current of the insulators on the transmission line, the calculation method of the best decompositon level number is proposed, and the best wavelet basis and the best threshold are given in this paper. During the de-noising with the wavelet threshold method, the wavelet coefficient is truncated with the threshold. The energy of the leakage current concentrates on the low frequency compocents. Based on the above two facts, the criterion judging the best decomposition level number is proposed. Based on this criterion, the formula is proposed and proved, which is used to calcalate the best docomposition level number of the wavelet transform. According to the analysis for the leakage current, the best wavelet basis and the best threshold are given.
     In order to de-noise the leakage current of the insulators on the transmission line adaptively, the intrinsic time-scale decomposition (ITD) method is improved, and the de-noising method based on the improved ITD is proposed. The distance scale is introduced to solve the rotation mixing problem of the ITD. And the extension of the two ends is introduced to solve the end effect problem. When the improved ITD is used to de-noise the leakage current, the formula calculating the decomposition number is proposed. Based on the wavelet threshold and the special characteristics of the improved ITD, the threshold and the de-noising process are given.
     The time domain entropy is proposed as the new feature of the insulator leakage current on the transmission line in the time domain in this paper. When the sampling frequency and the length of the leakage current are constant, the numbers of the absolute values of the leakage current in the different ranges are different. So, the concept distribution density is proposed. The entropy can reflect the distribution of the variables. Based on this concept "distritution density" and the characteristics of the entropy, the calculation process of the time doman entopy is given, which is proposed as the new method to extract the time domain feature of the leakage current.
     The frequency domain entropy is proposed as the new feature of the insulator leakage current on the transmission line in the frequency domain in this paper. The leakage current have obvious characteristics not only on their fundamental and the harmonic but also on their other frequency components. In order to reflect the change of the different frequency components of the field leakage current adaptively, the calcalation process of the frequency domain entropy is given, which is proposed as the method to extract the frequency domain feature of the leakage current.
     The multiclass relevance vector machine (m-RVM) is proposed as the mothod to recognize the insulator leakage current. The input vector, the output vector and the kernel function of the m-RVM are given. The process of recognizing the insulator leakage current is given.
引文
[1]李璟延.污秽绝缘子泄漏电流特性与污秽预警方法研究[D].重庆:重庆大学,2010
    [2]贺博,林辉.基于泄漏电流的污秽绝缘子闪络风险预测[J].高电压技术,2006,36(11):22-25
    [3]王黎明,李治,陈永明.基于泄漏电流的绝缘子染污状态在线监测技术的发展[J].电力设备,2003,4(6):14-17
    [4]杨敏,邓雨荣,吴荣.绝缘子泄漏电流在线监测装置在广西电网的应用[J].广西电力,2009,5:8-11
    [5]黄新波,刘家兵,程荣贵.绝缘子泄漏电流在线监测系统的设计与应用[J]电测与仪表,2007,44(497):9-14
    [6]黄新波,程荣贵,王小敬,刘家兵.绝缘子泄漏电流在线监测系统的联网方案与实施[J].广东电力,2007,20(4):65-67
    [7]石岩,蒋兴良,黄欢.污秽瓷绝缘子泄漏电流的估算方法[J].高电压技术,2009,35(6):1350-1355
    [8]Rirk F.A.M. Mathematical model for polluted flashover[J]. Electra,1981, 78:101-116
    [9]蒋兴亮,舒立春,孙才新.电力系统污秽与覆冰绝缘[M].北京:中国电力出版社,2009
    [10]汪金刚,林伟,何为等.基于紫外脉冲法与SMS的绝缘子污秽实时监测系统[J].电力系统保护与控制,2011,39(3):95-99
    [11]熊兰,刘钰,姚树友等.污秽绝缘子紫外在线监测系统[J].电工技术学报,2010,25(7):186-191
    [12]何洪英,杨迎建,姚建刚等.利用红外热像检测高压绝缘子污秽度的影响因素研究[J].高电压技术,2010,36(7):1730-1736
    [13]蒋兴良,夏强峰.污秽对红外成像法检测劣化绝缘子的影响[J].高电压技术,2010,36(7):1619-1624
    [14]李和明,王胜辉,律方成等.基于放电紫外成像参量的绝缘子污秽状态评估[J].电工技术学报,2010,25(12):22-29
    [15]李红玲,文习山,舒乃秋,姚刚.小波变换去噪在绝缘子污秽放电声发射监测中的应用[J].电力系统保护与控制,2012,38(6):56-59
    [16]李红玲,文习山.绝缘子污秽放电声发射的统计指纹分析[J].高电压技术, 2010,36(11):2705-2710
    [17]王成江,李光.基于声发射技术的绝缘子放电识别用特征量研究[J].电力自动化设备,2012,32(7):143-148
    [18]林聚财,韩军,陈舫明等.基于彩色图像的玻璃绝缘子缺陷诊断[J].电网技术,2011,35(1):127-133
    [19]律方成,戴日俊,王胜辉,牛英博.基于紫外成像图像信息的绝缘子表面放电量化方法[J].电工技术学报,2012,27(2):262-268
    [20]李佐胜,李文利,姚建刚,杨迎建.应用绝缘子红外热像处理的现场污秽等级检测方法[J].中国电机工程学报,2012,30(4):132-138
    [21]弓建新,陈君诚,张天兴等.高压网绝缘子泄漏电流在线监测系统[J].电测与仪表,2002,29(444):25-28,12
    [22]黄达伟.架空线路绝缘子表面泄漏电流在线监测系统[J].中国科技博览,2010,(27),50-51
    [23]丁晓飞,于文华,王鹏丽。输电线路绝缘子泄漏电流远程监测系统[J].工矿自动化,2011,(4):45-48
    [24]黄新波,刘家兵,程荣贵.绝缘子泄漏电流在线监测系统的设计与应用[J].电测与仪表,2007,44(497):9-14
    [25]李丽芬,朱永利,黄建才,于永华.基于无线传感器网络的绝缘子泄漏电流在线监测系统[J].电力系统保护与控制,2011,39(10):74-79
    [26]朱永利,李丽芬.长链树状无线传感器网络中遗传蚁群路由优化算法[J].小型微型计算机系统,2012,4(4):833-838
    [27]李丽芬,张君艳,朱永利,于永华.基于多蚁群算法的无线传感器网络路由的跨层设计[J].计算机科学,2011,38(2):59-62,94
    [28]李丽芬,朱永利,于永华.基于长链树状无线传感器网络实现输电线路在线监测数据传输[J].电网技术,2011,35(6):199-203
    [29]李丽芬,于永华,朱永利.输电线路在线监测的无线传感器网络抗干扰分析[J].高电压技术,2011,37(5):1180-1185
    [30]张君艳,朱永利,李丽芬,彭伟.长链型无线传感器网络QoS路由优化的研究[J].计算机应用研究,2010,27(7):2720-2723
    [31]李丽芬,朱永利,张君艳.基于隶属云蚁群算法的长链型无线传感器网络路由优化[J].计算机工程与科学,2010,32(11):10-14
    [32]惠阿丽,林辉.高压绝缘子泄漏电流的线调频小波分形特征[J].高电压技术,2010,36(5):1160-1166
    [33]陈伟根,夏青,孙才新,李立涅.绝缘子放电区段划分及污秽预测的泄漏电 流分形维数研究[J].中国电机工程学报,2011,31(13):121-127
    [34]陈伟根,夏青,罗兵,李立涅.用于绝缘子污秽度预测的泄漏电流分形特征[J].高电压技术,2011,37(5):1136-1141
    [35]惠阿丽.高压染污绝缘子泄漏电流的频谱特征[J].高电压技术,2011,37(2):325-332
    [36]惠阿丽,林辉.高压绝缘子泄漏电流的分形特征[J].高电压技术,2008,34(6):1271-1276
    [37]徐志钮,律方成.基于独立分量分析的绝缘子泄漏电流取样方式的研究[J].仪器仪表学报,2010,31(12):2861-2866
    [38]孙金宝,朱永利,刘丽,黄建才.基于EMD的绝缘子泄漏电流去除噪声研究[J].华北电力大学,2010,37(6):1-5,22
    [39]Jiang Xiaolei, Zhu Yongli, Huang Jiancai. Insulator Leakage current Denoising Using EMD and Domain-Transform Filtering[C]. Electric Information and Control Engineering,2012:1097-1100
    [40]魏利民,孙金宝,朱永利.基于EEMD的绝缘子泄漏电流消噪方法[J].华北电力大学学报,2012,39(2):17-22
    [41]刘涤尘,夏利民,商志会.自适应噪声对消应用于高压绝缘子泄漏电流检测的研究[J].武汉大学学报(工学版),2001,34(4):96-99
    [42]赵汉表,林辉,谢利理,邓正龙.基于高压侧测量的输电线绝缘子泄漏电流在线监测系统[J].电力系统自动化,2004,28(22):78-82
    [43]赵汉表,林辉,廖胜蓝,谢利理.小波变换在绝缘子泄漏电流检测中的应用[J].高电压技术,2005,31(4):34-36
    [44]贺博,林辉.基于泄漏电流的污秽绝缘子闪络风险预测[J].高电压技术,2006,32(11):22-25
    [45]李璟延,司马文霞,姚陈果,孙才新.染污绝缘子安全区泄漏电流检测中去除信号干扰方法[J].电力系统自动化,2008,32(5):85-89
    [46]周兴韬,王玮,倪平浩等.高压绝缘子污秽泄漏电流采集装置的设计与实现[J].电力系统保护与控制,2010,38(6):100-103,114
    [47]杨建明,时卫东,董春.污秽绝缘子泄漏电流检测中滤波器的设计[J].电子设计,2009,25(4-2):290-293
    [48]冯彦斌.超高压直流输电对无线电业务干扰的研究[J].中国无线电,2007,10:35-36
    [49]陈水明,王磊,何金良.多回高压输电线路产生的无线电干扰分析[J].电波科学学报,2002,17(6):677-681
    [50]范函.用Adaline网络实现电力线载波机的同频带全双工通信[J].继电器, 2006,34(14):50-52
    [51]李建岐,胡岚,米硕.低压电力线载波通信宽带耦合技术及其装置[J].电力系统通信,2004,4:7-10
    [52]郝玉东,梁德成.10kV电力线载波通信窄带结合滤波器的设计[J].华北电力技术,2005,(5):18-20
    [53]郑学生.新型全数字电力线载波机技术及应用[J].电力系统通信,2006,27(169):12-17
    [54]刘明杰,苏霁欣.调频广播在东丰县发展中的优越性[J].现代营销(学苑版),2011,7:185
    [55]肖社生.调频广播信号对民航通信频率的干扰评估及应对措施[J].广播与电视技术,2012,6:120-123
    [56]姜亮齐.调频广播1300W功放故障分析和检修[J].科技信息,2008,32:105
    [57]梅冰笑,舒立春,蒋兴良等.污秽绝缘子交流试验泄漏电流分离研究[J].高电压技术,2005,31(9):18-20
    [58]徐志钮,律方成.绝缘子交流泄漏电流中周期与陡脉冲分量分离方法的研究[J].高压电器,2012,48(2):12-18
    [59]陈伟根,夏青,李璨延等.绝缘子污秽预测新特征量的泄漏电流时频特性分析[J].高电压技术,2010,36(5):1107-1112
    [60]蒋兴良,石岩,黄欢,孙才新.污秽绝缘子泄漏电流频率和相位特征的试验研究[J].中国电机工程学报,2010,30(7):118-124
    [61]刘勇,杜伯学,刘弘景,王荣亮.泄漏电流相角变化特征与绝缘子运行状态的相关分析[J].高电压技术,2012,38(4):831-837
    [62]Kim J.H., Song W.C., Lee J.H., Park Y.K., Cho H.G., Yoo Y.S., Yang K.J.. Leakage Current Monitoring and Outdoor Degradation of Silicone Rubber[J]. IEEE Trans. Dielectr. Electrical Insulat.,2001,8(6):1108-1115
    [63]Suda T.. Frequency characteristics of leakage current waveforms of an artificially polluted suspension insulator[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2001,8(4):705-710
    [64]Suda T., S. Member. Frequency characteristics of leakage current waveforms of a string of suspension insulators[J]. IEEE Transactions on Power Delivery,2005, 20(1):481-488
    [65]Fierro-Chavez J. L,Ramirez-Vazquez I.,Montoya-Tena G.On-line leakage current monitoring of 400 kV insulator strings inpolluted areas [J].IEE Proc:Generation,Transmission and Distribution,1996,143(6):560-564
    [66]Oliveira S. C., Fontana E., Cavalcanti F. J. M. M.. Leakage current activity on glass-type insulators of overhead transmission lines in the northeast region of Brazil[J] IEEE Trans. Power Del.,2009,24(2):822-827
    [67]Montoya G., Ramirez I., Hernandez R.. T he leakage current as a diagnostic tool for outdoor insulation[C]. IEEE Trans. Dielectr. Electr., Bogota,2008,1-4
    [68]Devendranath D., Channakeshava RajkumarA.D.. Leakage Current and Charge in Rtv Coated Insulators Under Pollution Conditions[C]. IEEE Trans. Dielectr. Electr. Insul.,2002,9(2):294-299
    [69]Homma H., Takahashi T., Taniguchi T., Izumi K.. Study on Surface Degradation of Polymer Insulating Materials caused by Leakage Current[C]. Conference on Electrical Insulation and Dielectric Phenomena, Arlington, TX,1994:373-378
    [70]Sato M., Nakajima A., Komukai T., Oyamada T.. Spectral Analysis of Leakage Current on Contaminated Insulators by Auto Regressive Method[C]. IEEE Conference on Electrical Insulation and Dielectric Phenomena,1998:64-66
    [71]Fernando M.A.R.M., Gubanski S.M.. Ageing of Silicone Rubber Insulators in Costal and Inland Tropical Environment[J] IEEE Trans. on Dielectrics and Electrical Insulation,2010,17(2):326-333
    [72]Vosloo W. L., Holtzhausen J. P., Roediger A. H. A.. Leakage Current Performance Of Naturally Aged Non-Ceramic Insulators Under A Severe Marine Environment[C]. IEEE 4th Africon Conf., Stellenbosch,1996,1:489-495
    [73]Chrzan K.L.. Leakage current on Naturally Contaminated Porcelain and Silicone Insulators[J]. IEEE Transactions on Power Delivery,2010,25(2):940-910
    [74]Marungsri B., Komiya H., Aoyama I., Ishikawa A., Matsuoka R.. Salt Fog Ageing Test of Silicone Rubber for Outdoor Polymer Insulators[C]. Proceedings of the 7th ICPADM,2003, 1(P2-24):393-396
    [75]Siderakis K., Agoris D.. Performance or RTV silicone rubber coatings in coastal systems[J]. Electr. Power Syst. Res.,2008,78:248-254
    [76]Lopes I.J.S., Jayaram S.H., Cherney E.A.. A Method for Detection the Transitionfrom Corona from Water Droplets to Dry-Band Arcing on Silicone Rubber Insulators[J]. IEEE Trans. Dielectr. Electr. Insul.2002,9(6):964-971
    [77]Li J., Sun C., Sima W., Yang Q., Hu J.. Contamination Level Prediction of Insulators Based on the Characteristics of Leakage Current[J]. IEEE Trans. Power Delivery,2010,25(1):417-424
    [78]Metwally I.A., Al-Maqrashi A., Al-Sumry S., Al-Harthy S.. Performance improvement of 33 kV line-post insulators in harsh environment[J]. Electr. PowerSyst. Res.,2006,76 (9-10):778-785
    [79]Reddy B. S., Nagabhushana G. R.. Study of leakage current behaviour on artificially polluted surface of ceramic insulator[J].Plasma Science and Technology,2003,5(4):1921-1926
    [80]Otsubo M., Hashiguchi T., Honda C., Takenouchi O., Sakoda T., Hashimoto Y. Evaluation of insulation performance of polymeric surface using a novel separation technique of leakage current [J]. IEEE Trans. Dielectr. Electr. Insul., 2003,10:1053-1060
    [81]El-Hag A.H.. Leakage current characterization for estimating the conditions of non-ceramic insulators'surfaces[J]. Electr. PowerSyst. Res.,2007,77:379-384
    [82]Homma H., Kuroyagi T., Takahashi T., Obtsuka S., Ohtsuka M., Hikita M.. Algorithm for determining the surface leakage current on polymer insulating materials based on current waveform distortion[C]. Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2002:676-679
    [83]Sarathi R., Chandrasekar S., Yoshimura N.. Investigations Into the Surface Conditions of Silicone Rubber Insulation Material Using Multiresolution Signal Decomposition[J]. IEEE Trans. Power Deliv.,2006,21(1):243-252
    [84]Meyer L. H., Jayaram S. H., Cherney E. A.. Correlation of Damage, Dry Band Arcing Energy, and Temperature in Inclined Plane Testing of Silicone Rubber for Outdoor Insulation[J] IEEE Trans. Dielectr. Electr. Insul.,2004,11(3):424-432
    [85]Meghnefi F., Volat C., Farzaneh M.. Temporal and Frequency Analysis of the Leakage Current of a station Post Insulator during Ice Accretion[J] IEEE Trans. Dielectr. Electr. Insul.,2007,14(6):1381-1389
    [86]Volat C., Meghnefi F., Farzaneh M., Ezzaidi H.. Monitoring Leakage Current of Ice-covered Station Post Insulators using Artificial Neural Networks", IEEE Trans. Dielectr. Electr. Insul.,2010,17(2):443-450
    [87]Amarh F., Karady G. G., Sundararajan R.. Linear Stochastic Analysis of Polluted Insulator Leakage Current[J] IEEE Trans. Power Deliv.,2002,17(4):1063-1069
    [88]Kumagai S., Yoshimura N.. Leakage Current Characterization for Estimating the Conditions of Ceramic and Polymeric Insulating Surfaces[J] IEEE Trans. Dielectr. Electr. Insul.,2004,11:681-690
    [89]Kumagai S., Marungsri B., Sinokubo H., Matsuoka R., Yoshimura N.. Comparison of Leakage Current and Aging of Silicone Rubbers and Porcelain in both Field and Salt-fog Tests[J] IEEE Trans. Dielectr. Electr. Insul.,2006,13(6): 1286-1302
    [90]Zhu Y., Yamashita S., Anami N., Otsubo M.. Leakage Current Analysis and Electric Field Calculation in Salt Fog Ageing Test on Polymer Insulation Material[C]. Annual Report Conference on Electrical Insulation and Dielectrc Phenomena,2003,92-95
    [91]El-Hag A. H., Jayaram S. H., Cherney E. A.. Fundamental and low frequency harmonic components of leakage current as a diagnostic tool to study aging of RTV and HTV silicone rubber in salt-fog[J] IEEE Trans. Dielectr. Electr. Insul., 2003,10:128-136
    [92]EI-Hag A. H., Jahromi A. N., Sanaye-Pasand M.. Prediction of Leakage Current of Non-ceramic Insulators in Early Aging Period[J] Electr. Power Syst. Res., 2008,78:1686-1692
    [93]Bashir N., Ahmad H.. Odd Harmonics and Third to Fifth Harmonic Ratios of Leakage current as Diagnostic tools to study the Ageing of Glass insulators[J] IEEE Trans. Dielectr. Electr. Insul.,2010,17(3):819-832
    [94]Du B. X., Liu Y.. Recurrent Plot Analysis of Leakage Current on Flashover Performance of Rime-iced Composite Insulator[J] IEEE Trans. Dielectr. Electr. Insul.,2010,17(2):465-472
    [95]Siderakis K., Agoris D., Pyrgioti E.., Thalassinakis E.. Investigation of leakage Current on High Voltage Insulators-Field Measurements[J] WSEAS Transactions on Circuits and Systems,2004,5(3):1188-1191
    [96]Du B. X., Liu Y., Liu H.J., Yang Y. J.. Recurrent Plot Analysis of Leakage Current for Monitoring Outdoor Insulator Performance [J] IEEE Trans. Dielectr. Electr. Insul.,2009,16:139-146
    [97]Kordkheili H. H., Abravesh H., Tabasi N., Dakhem M, Abravesh M. M.. Determining the Probability of Flashover Occurrence in Composite Insulators by Using Leakage Current Harmonic Components[J] IEEE Trans. Dielectr. Electr. Insul.,2010,17(2):502-512
    [98]Ugur M., Auckland D. W., Varlow B. R., Emin Z.. Neural Networks To Analyze Surface Tracking On Solid Insulators[J] IEEE Trans. Dielectr. Electr. Insul.,1997, 4:763-766
    [99]Richards C. S., Benner C. L., Butler-Purry K. L., Russell B. D.. Electrical Behavior of Contaminated Distribution Insulators Exposed to Natural Wetting[J]. IEEE Trans. Power Deliv.,2003,18(2):551-558
    [100]Jiang X., Shi Y., Sun C., Zhang Z.. Evaluating the Safety Condition of Porcelain Insulators by the Time and Frequency Characteristics of LC Based on Artificial Pollution Tests[J]. IEEE Trans. Dielectr. Electr. Insul.,2010,17(2): 481-489
    [101]Li J., Sima W., Sun C., Sebo S. A.. Use of Leakage Current of Insulators to Determine the Stage Characteristics of the Flashover Process and Contamination Level Prediction[J]. IEEE Trans. Dielectr. Electr. Insul.,2012,17(2):490-501
    [102]Chandrasekar S., Kalaivanan C., Cavallini A., Montanari G. C. Investigations on Leakage Current and Phase Angle Characteristics of Porcelain and Polymeric Insulator under Contaminated Conditions[J] IEEE Trans. Dielectr. Electr. Insul.,2009,16(2):574-583
    [103]孙金宝.绝缘子泄漏电流的Hilbert谱分析及特征提取[D].保定:华北电力大学,2011
    [104]翟学明,赵丽娜,刘鹏,朱永利,张盼.基于EMD时频熵的绝缘子泄漏电流特征量的研究[J].广东电力,2012,40(6):1027-1032
    [105]Pylarinos D., Siderakis K., Pyrgioti E.. MEASURING AND ANALYZING LEAKAGE CURRENT FOR OUTDOOR INSULATORS AND SPECIMENS [J] Review Advanced Material Science,2011,29:31-53
    [106]耿江海,贾伯岩,徐志钮,王平.强风环境下绝缘子闪络特性分析[J].高电压技术,2011,37(1):227-233
    [107]Pylarinos D., Siderakis K., Pyrgioti E. ea al.. Automating the Classification of Field Leakage Current Waveforms[J]. Enigeering, Technology & Applied Science research,2011,1(1):8-12
    [108]毛颖科,关志成,王黎明,乐波.基于BP人工神经网络的绝缘子泄漏电流预测[J].中国电机工程学报,2007,27(27):7-12
    [109]焦尚斌,刘丁,郑岗,张青.基于模糊逻辑方法的高压绝缘子污秽程度评定[J].电力系统自动化,2005,29(7):84-87,107
    [110]聂一雄,尹项根,刘青,文远芳.用模糊逻辑方法对绝缘子串在线检测结果的评定[J].中国电机工程学报,2003,23(3):131-136
    [111]焦尚斌,刘丁,郑岗,张青.基于最小二乘支持向量机的绝缘子等值附盐密度预测[J].2006,2(2):149-153
    [112]姜长元.模糊神经网络模型及其应用研究[D].南京:南京师范大学,2005
    [113]孙即祥.现代模式识别[M].北京:高等教育出版社,2008:454-494
    [114]Tipping, M E. The Relevance Vector Machine[J]. Advances in Neural Information Processing Systems,2001,12:652-658
    [115]Bishop C M, Tipping M E. Variational relevance vector machines[C]. Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann,2000:46-53
    [116]Tipping M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research,2001,1:211-244
    [117]何创新,李彦明,刘成良,等.基于滑动平均与相关向量机的齿轮早期故障智能诊断[J].振动与冲击,2010,29(12):89-92
    [118]HE Chuang-xin, LI Yan-ming, LIU Cheng-liang, et al. Incipient fault diagnosis based on moving average and relevance vector machine[J]. Journal of Vibration and Shock,2010,29(12):89-92
    [119]杨成福,章毅.相关向量机及在说话人识别应用中的研究电子[J].科技大学学报,2010,39(2):311-315
    [120]YANG Cheng-fu, ZHANG Yi. Study to Speaker Recognition Using RVM[J]. Journal of University of Electronic Science and Technology of China,2010,39(2): 311-315
    [121]陶新民,徐晶,杜宝祥,等.基于相空间RVM的轴承故障检测方法[J].振动与冲击,2008,27(10):6-10
    [122]TAO Xin-min, XU jing, DU Bao-xiang, et al. Bearing Fault Detection Based on RVM Using Phase Space[J]. Journal of Vibration and Shock,2008,27(10): 6-10
    [123]Demir B, Erturk S. Hyperspectral Image Classification Using Relevance Vector Machines[J]. IEEE Geoscience and Remote Sensing Letters,2007,4(4): 586-590
    [124]Gholami B, Haddad W M, Tannenbaum A R. Relevance Vector Machine Learning for Neonate Pain Intensity Assessment Using Digital Imaging[J]. IEEE Transactions on Biomedical Engineering,2010,57(6):1457-1466
    [125]Huang N. E., Zhang S, Long S. R.. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. The Royal Society,1998,454:903-995
    [126]Wu Z., Huang N. E.. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009,1(1):1-41
    [127]Frei M G, Osorio I. Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals[J]. Proceedings of the Royal Society A,2007,463:321-342
    [128]Ma X., Zhou C., Kemp I.J.. Automated wavelet selection and threshold for PD detection[J]. Electrical Insulation Magazine,2002,18(2):37-45
    [129]Fernando, S.N., Raghuveer, M.R., ziomek, W.. Optimal wavelet selection to identify faults during impulse tests[C]. IEEE Conference on Electrical Insulation and Dielectric Phenomena, in Kansas City, MO,2006:77-80
    [130]Jian Li, Tianyan Jiang, Grizybowski, S., Changkui Cheng. Scale dependent wavelet selection for de-noising of partial discharge detection[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(6):1705-1714
    [131]Atkinson, I., Kamalabadi, F.. Basis Selection for Wavelet Processing of Sparse Source Signals[C]. IEEE International Conference on Acoustics, speech and Signal Processing, in Honolulu, HI,2007:Ⅲ-1461-Ⅲ-1464
    [132]Shajeemohan, B.S., Govindan, V.K., Vijilin, B.. A Scheme for Image Classification and Adaptive Mother Wavelet Selection[C]. International Conference on Advanced Computing and Communications, in Surathkal,2006: 308-313
    [133]Irijanti, E., Yap, V.V., Nayan, M.Y.. Neural network for the best wavelet selection on color image compression[C]. International Symposium on Information Technology, in Kuala Lumpur,2008:1-8
    [134]Megahed, A.I., Monem Moussa, A., Elrefaie, H.B., Marghany, Y.M.. Selection of a suitable mother wavelet for analyzing power system fault transients[C]. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, in Pittsburgh, PA,2008:1-7
    [135]Li Suyi, Ji Yanju, Liu Guangda. Optimal Wavelet Basis Seletion of Wavelet Shrinkage for ECG De-Noising[C], International Conference on Management and Service Science, in Wuhan,2009:1-4
    [136]Arafat, S., Skubic, M.. Modeling Fuzziness measures for Best Wavelet Selection[J]. Fuzzy Systems,2008,16(5):1259-1270
    [137]Li Yue-qin, Wang Jian-fang, Li Jin-ping. The Selection of Optimal Wavelet Basis for Radio Fuze Jamming Identification[C]. Second International Conference on Modeling, Simulation and Visualization Methods, in Sanya,2010:90-93
    [138]Desai, C., Brown, K., Desmulliez, M., Sutherland, A.. Selection of Wavelet for De-noising PD waveforms for Prognostics and Diagnostics of Aircraft Wiring[C]. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, in Quebec, QC,2008:17-20
    [139]Zhou X., Zhou C., Kemp I. J.. An Improved Methodology for Application of Wavelet Transform to Partial Discharge Measurement Denoising[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,3 (12):586-594
    [140]Satish L., Nazneen B.. Wavelet-based Denoising of Partial Discharge Signals Buried in Excessive Noise and Interference [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2003,2(10):354-367
    [141]Zhang H., Blackburn T. R., Phung B. T., Sen D.. A Novel Wavelet Transform Technique for On-line Partial Discharge Measurements Parti:WT De-noising Algorithm[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2007, 1(14):3-14
    [142]张吉先,钟秋海,戴亚平.小波门限消噪法应用中分解层数及阈值的确定[J].中国电机工程学报,2004,24(2):118-122
    [143]El-Sheimy N., Nassar S., Noureldin A.. Wavelet De-Noising for IMU Alignment[J]. IEEE Aerospace and Electronic Systems Magazine,2004,10(9): 32-39
    [144]姚陈果,李璨延,米彦,孙才新,李先志.绝缘子安全区泄漏电流频谱特征提取及污秽状态预测[J].中国电机工程学报,2007,27(30):1-8
    [145]肖涵,李友荣,吕勇.基于递归定量分析与高斯混合模型的齿轮故障识别[J].振动工程学报,2011,24(1):84-88
    [146]Damoulas T, Ying Y, Girolami M A, et al. Inferring Sparse Kernel Combinations and Relevance Vectors:An application to subcellular localization of proteins[C]. In Proceedings of the 7th International Conference on Machine Learning and Applications (ICMLA2008), San Diego, USA,2008
    [147]Psorakis I, Damoulas T, Girolami M A. Multiclass Relevance Vector Machines:Sparsity and Accuracy[J]. IEEE Transactions on Neural Networks, 2010,21(10):1588-1598
    [148]文康珍.基于映射与双谱的绝缘子信息提取故障诊断的理论与方法[D].武汉:华中科技大学,2010
    [149]康玉梅.基于小波分析的岩石类材料声发射源定位方法研究[D].沈阳:东北大学,2009
    [150]蒋庆.巨型框架结构的地震反应及基于小波分析的损伤研究[D].合肥:合肥工业大学,2011
    [151]毛艳辉.小波去噪在语音识别预处理中的应用[D].上海:上海交通大学,2010
    [152]李剑,程昌奎,江天炎等.遗传算法用于局部放电小波自适应阈值去噪[J].高电压技术,2009,35(9):2114-2119
    [153]朱文涛.基于SURE理论的小波闽值去噪算法研究[D].秦皇岛:燕山大学,2010
    [154]邓玉娟.基于小波变换的语音阂值去噪算法研究[D].重庆:重庆大学,2009
    [155]杜欣慧,戴云航,王志刚,宫改花.饱和受潮条件下的绝缘子泄漏电流特性[J].高电压技术,2007,33(9):6-9
    [156]GB/T4585-2004/IEC60507交流系统用高压绝缘子的人工污秽试验[S].中华人民共和国国家质量监督检验检疫总局和中华人民国家标准化管理委员会联合发布,北京:中国标准出版社,1991
    [157]DL/T859高压交流系统用复合绝缘子人工污秽试验[S].中华人民共和国国家发展和改革委员会发布,北京:中国电力出版社,2004
    [158]International Standard,Selection and dimensioning of high-voltage insulators intended for use in polluted conditions-Part 1:Definations,information and general principles[S].IEC Publication, IEC 60518,2008
    [159]International Standard,Artificial pollution tests on high voltage insulators(a.c.)[S]. IEC Publication, IEC 60507,1991
    [160]梅红伟,毛颖科,卞星明等.相对湿度对绝缘子泄漏电流最大值的影响[J].高电压技术,2010,36(3):627-631
    [161]方春华,王建国,操平梅,王康.污秽绝缘子泄漏电流与环境温、湿度相 关分析[J].高电压技术,2012,38(4):885-891
    [162]张晋,汲胜昌,欧小波,沈琪,王春杰,汪伟.基于泄漏电流阻性分量的绝缘子污秽度表示方法的研究[J].高压电器,2010,46(6):29-33,39
    [163]李璟延,姚陈果,胡建林,等.染污绝缘子放电发展区段与污闪预警的实验研究[J].中国电机工程学报,2008,28(13):8-14
    [164]顾小昕.基于固有时间尺度分解的信号分析与干扰抑制技术研究[D].西安:西安电子科技大学,2010
    [165][16]李雪.基于固有时间尺度分解的数字调制识别[D].西安:西安电子科技大学,2010
    [166]司马文霞,李璟延,孙才新.染污绝缘子污闪全过程泄漏电流波形及谐波特性分析[J].高电压技术,2010,36(5):1101-1106
    [167]Bashir N. and Ahmad H.. Odd Harmonics and Third-and-fifth Harmonic Ratios of Leakage Current as Diagnostic Tools to Study Ageing of Glass Insulators [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010, 17(3):819-832
    [168]刘华文.基于信息熵的特征选择算法研究[D].长春:吉林大学,2010
    [169]Pylarinos D., Sidierakis K., Pyrgioti E. et al.. Automating the Classificatioin of Field Leakage Current Waveforms [J]. Engineering, Technology & applied Science Research,2011,1(1):8-12
    [170]Alpaydin E.. Introduction to Machine Learning[M]. Cambridge, MA:The MIT Press,2004
    [171]Bishop C. M.. Pattern Recognition and Machine Learning[M]. New York: Springer,2006
    [172]Albert J. H., Chib S.. Bayesian analysis of binary and polychotomous response data[J]. Journal of American Statistical Association,1993,88:669-679
    [173]Damoulas T., Girolami M. A.. Probabilistic multi-class multi-kernel learning: On protein fold recognition and remote homology detection [J]. Bioinformatics, 2008,24(10):1264-1270
    [174]Girolami M. A., Rogers S.. Hierarchic Bayesian models for kernel learning[C]. In Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany,2005:241-248
    [175]Tipping M.. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research,2001:211-244
    [176]Damoulas T., Girolami M. A.. Combining feature spaces for classification[J] Pattern Recognition,2009,42(11):2671-2683
    [177]Tipping M., Faul A.. Fast marginal likelihood maximization for sparse Bayesian models[C]. In Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, Florida, Jan.2003:3-6
    [178]李盼池,许少华.支持向量在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304
    [179]潘峰,程浩忠.基于RBF核函数的SVM方法在短期电力负荷预测中的应用[J].供用电,2006,23(1):16-18
    [180]He Weihua, Yow Kin Choong, Guo Yongcai. Recognition of human activities using a multiclass relevance vector machine[J]. Optical Engineering,2012,51(1): 1-12