黄鳝性逆转调控途径的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄鳝(Monopterus albus Zuiew),俗称鳝鱼、田鳗和长鱼等,它是一种淡水硬骨鱼类,广泛分布于中国、印度、马来西亚和印度尼西亚。已在中国中南部开展大面积的养殖。中国目前的养殖总产量已经达到18万吨,由于其生长快,成活率高以及对网箱养殖条件的适应性好,它被当作中国水产养殖的首选品种之一。鳝肉质细嫩,鲜美可口,营养价值高,具有滋补强身和药用功能,是人们喜爱的滋补水产品,深受中国消费者的青睐。
     然而,中国的黄鳝养殖还停留在初级阶段,养殖依然依赖捕捞野生苗种,随着养殖规模和捕捞强度的加大,野生苗种资源急剧下降,成功地解决黄鳝的人工繁殖技术将成为发展其规模养殖的先决条件。但黄鳝具有特殊的性逆转现象:它是一种雌雄同体鱼类,在其生命的早期发育阶段为雌性,产卵后变为间性个体,然后进入雄性阶段,在进行黄鳝苗种人工繁育过程中,存在的主要问题是黄鳝具有性逆转的特性,即刚成熟的个体为雌性,但随着黄鳝的生长和繁殖,又逐步转为雄性,使得在黄鳝繁殖群体中,雌性个体小,怀卵量少,繁殖力很低;亲鱼选配时,雌雄鳝的比例和大小还难以搭配协调,亲鳝难选,繁殖数量难以提高,极大地限制了黄鳝人工繁殖规模和水平,必须进行黄鳝性逆转的研究。
     本研究主要是通过营养、外源性激素以及环境因子等,使用组织学、细胞学、内分泌学和放射免疫学等相关学科知识,探讨黄鳝性逆转的人工调控技术,希望能够找到减少性逆转比例的途径,延长性逆转时间,大幅度提高黄鳝的怀卵量及繁殖力,解决黄鳝苗种的规模化繁殖的关键问题,而黄鳝性逆转调控研究所取得的进展,必将给黄鳝的人工繁殖和养殖带来新的突破,促进我国黄鳝养殖业的可持续发展。
     1.黄鳝体长、体重、年龄与性比和怀卵量关系
     在湖北省汉川市汈汊湖水域,随机采取12个月的黄鳝样品,总数258尾黄鳝,雌性152尾,占58.91%;间性44尾,占17.05%;雄性62尾,占24.04%。
     在总体黄鳝标本中,其体长范围为9.4-76.8cm,其中雌性体长为9.4-60.5cm,平均体长为39.6cm,20cm以下全部为雌性;雌雄间体体长为27.1-63.3cm,平均体长为44.5cm;雄性体长范围为29.4-76.8cm,平均体长为51.63cm,其中70cm以上全部为雄性。雌性分布最多的区域是20-50cm,占雌性总数的93.42%,雌雄间体分布最多的区域是30-50cm,占间体总数的72.73%。雄性分布最多的区域是40cm以上,占雄性总数的75.81%。结果表明:在汉川市汈汊湖水域体长25cm左右是黄鳝性逆转的起点。
     其体重范围为0.48-753.60g,其中雌性体重为250g以下,平均体重为58.46g,23.70g以下全部为雌性;雌雄间体体重范围25.40g-206.30g,平均体重为76.45g;雄性体重范围为29.65-753.60g,平均体重为144.38g,其中250g以上全部为雄性。雌性分布最多的区域是20-100g,占雌性总数的75.00%,雌雄间体分布最多的区域是40-100g,占间体总数的70.45%。雄性分布最多的区域是100g以上,占雄性总数的72.58%。结果表明在汈汊湖水域体重25g左右是黄鳝性逆转的起点。
     其年龄范围为0-Ⅶ龄,其中Ⅱ龄以下雌性占92.17%,Ⅰ龄以下全部为雌性;雌雄间体年龄范围Ⅱ-Ⅴ龄,Ⅲ-Ⅳ龄占间体总数的70.45%,Ⅲ-Ⅳ龄为黄鳝性逆转的高峰期;雄性年龄范围为Ⅱ-Ⅶ龄,Ⅱ龄以下雄性只占其年龄段总数的2.00%,Ⅳ-Ⅶ龄占雄性总数的77.42%,其中Ⅵ龄以上全部为雄性。结果表明:黄鳝的性逆转的起点时间应该略早于Ⅱ周年。
     黄鳝怀卵量范围是41-1267粒/尾,20-30cm的体长段怀卵率最高,随着体长的增长,黄鳝的怀卵率急剧下降,绝对怀卵量以30-40cm体长段的黄鳝较高,平均怀卵强度随着体长的增长而增长。由于大个体黄鳝怀卵率较少,但平均怀卵强度较大,如:60-70cm之间,怀卵率只有2.5%,但最大个体怀卵量达到1267粒/尾。
     2.饲料中不同蛋白质含量对黄鳝性逆转的影响
     本实验从营养的角度探讨了不同的饲料蛋白水平(25%、35%、45%、55%)对雌性黄鳝性腺发育及性逆转的影响,试验鱼体长26.5±2.6cm,体重21.93±2.05g,试验鱼都为雌性(在繁殖季节挑选)研究发现黄鳝的性腺发育与饲料蛋白水平密切相关。
     在适宜的蛋白质水平的范围内,黄鳝的怀卵量随着饲料蛋白水平的增加而升高,蛋白质25%的试验组黄鳝的平均怀卵量最低,只有390.67±58.71粒/尾,而45%的试验组黄鳝的平均怀卵量最高,达到1331.67±287.77粒/尾;但55%(663.00±71.86)试验组的怀卵量与35%试验组(736.33±49.52)的怀卵量无显著性差异。
     通过长时间投喂不同蛋白质组饲料对黄鳝的性逆转比例也存在较大的差异,25%的蛋白组转为雄性和间体的比例分别为38.65±1.34%,17.61±1.47%;35%的蛋白组转为雄性和间体的比例分别为24.15±6.55%,11.20±1.45%;而45%的蛋白组只有7.61±1.43%和5.21±1.25%的黄鳝转为雄性和雌雄间体,有87.18±1.21%的黄鳝仍然保持雌性。55%的蛋白组转为雄性和间体的比例分别为14.21±5.52%,7.18±0.96%,其他三组雌性个体比例都少于45%的蛋白组,说明45%的蛋白质饲料能较好地维持黄鳝的雌性发育。
     通过对黄鳝血清雌二醇(E_2)影响的研究表明:随着蛋白质水平的升高(在45%蛋白质含量范围内),雌鳝个体的E_2水平显著升高,其中蛋白质45%的饲料组各月的E_2水平最高。产卵前三个月蛋白质35%、45%的饲料组E_2水平显著高于25%、55%饲料组,在6月四组的E_2水平达到最大值分别为435.05±46.15pg/ml、539.76±29.26pg/ml、944.5±449.25pg/ml、526.72±60.93 pg/ml,说明适宜的饲料蛋白质含量能够维持较高的黄鳝血清E_2的分泌,而较高的E_2水平是维持雌性发育的先决条件。
     试验表明:饲料蛋白含量(45%)能够较好地维持黄鳝的雌性发育,提高黄鳝的怀卵量,并且能够在一定程度上延缓黄鳝的性逆转。
     3饲料中不同脂肪含量对黄鳝性逆转的影响
     用鱼油作为脂肪源,按照添加后脂肪占饲料重量的5%、10%、15%的比例投喂黄鳝(蛋白质都是35%)12个月,结果表明:10%的鱼油添加量能够维持较高的E_2的分泌,15%脂肪水平能促进黄鳝血清睾酮的分泌,5%脂肪水平能使睾酮值维持较低的水平。较高的饲料脂肪含量能使黄鳝的肝脏指数迅速升高,而4、5、6三个月的肝脏指数的降低,说明黄鳝的性腺发育在卵黄积累和卵细胞成熟阶段,需要大量动用肝脏中储存的营养物质和能量。
     15%的脂肪组转为雄性和间体的比例分别为30.52±3.66%,12.31±1.05%;10%的脂肪组转为雄性和间体的比例分别为26.46±2.12%,9.18±3.06%;而5%的脂肪组转为雄性和间体的比例分别为13.24±1.25%,6.37±1.64%,有80.39±1.65%的黄鳝仍然保持雌性。说明在蛋白质相同的情况下,随着饲料脂肪含量的升高黄鳝的性逆转程度上升,较低的脂肪饲料(5%)能较好地维持黄鳝的雌性发育。
     脂肪15%的试验组黄鳝的平均怀卵量最低,只有391.27±47.61粒/尾,而5%的试验组黄鳝的平均怀卵量最高,达到875.39±143.50粒/尾,但10%试验组的怀卵量与15%试验组的怀卵量无显著性差异,说明过高的脂肪含量对提高黄鳝的怀卵量是十分不利的,5%左右的饲料脂肪含量能够较好地维持黄鳝的雌性发育,并能够相应地提高雌鳝的怀卵量。
     4.外源丙酸睾酮对黄鳝性腺发育及性逆转的影响
     饲料中添加0mg/kg、10mg/kg和30mg/kg丙酸睾酮,投喂黄鳝12个月,结果表明:30mg/kg中有18.51%的雌鳝转变为雄黄鳝,高于0mg/kg、10mg/kg组14.81%的转雄比例,但三组的雄性和雌雄间体并无显著性差异,三组保持雌性的比例分别为74.07%、70.37%和70.37%,说明在本实验条件下,不同的丙酸睾酮对雌性黄鳝的性逆转无显著的影响。
     5.外源戊酸雌二醇对黄鳝性逆转的影响
     本试验研究了外源戊酸雌二醇对雌性黄鳝性类固醇激素的分泌以及延缓黄鳝性逆转的影响,试验鱼体长26.5±2.6cm,体重21.93±2.05g,它们都为雌性,用含不同浓度(0mg/kg,10 mg/kg,50 mg/kg)的戊酸雌二醇饲料投喂试验鱼12个月,试验鱼喂养在固定于池塘中的网箱(2m×1m×1.5m)。
     结果表明:黄鳝的性腺发育对不同的外源戊酸雌二醇反应存在季节性差异,不同的戊酸雌二醇对黄鳝性类固醇激素的分泌也存在差异,低浓度(10 mg/kg)的戊酸雌二醇对黄鳝的性逆转存在一定的抑制作用,但仍然存在性逆转个体,雌雄间体和雄性个体分别为12.00±1.25%、10.05±0.85%。高浓度的戊酸雌二醇能促进血清雌二醇的分泌,降低睾酮的分泌,2龄试验鱼在经历12个月体重达到168.81±42.81g时仍然保持雌性,而对照组雌雄间体和雄性个体分别为16.90±1.35%,28.75±1.65%。并且已经性逆转的雄性个体的精巢发育完善,试验表明较高浓度(50 mg/kg)的戊酸雌二醇能延缓黄鳝的性逆转。
     6.外源复方炔诺酮对黄鳝生长及性逆转的影响
     饲料中添加0片/kg、10片/kg和30片/kg复方炔诺酮,投喂黄鳝12个月,结果表明:在饲料中添加复方炔诺酮对黄鳝的体长和体重无显著性影响。高剂量能在4、5、6三个月降低血清E_2和T的水平,性逆转比例低于对照组。
     7.生态环境胁迫—无栖息巢对黄鳝性逆转的影响
     试验开始第一个月无栖息巢组的E_2水平急剧下降,自第二个月与对照组下降的幅度无显著性差异,无栖息巢组在第二年4月就达到其最大值618.18±30.05pg/ml显著高于对照组262.26±18.75 pg/ml,对照组在5月底才达到其最大值。本研究表明环境胁迫—无栖息巢能显著影响黄鳝血清E_2的分泌,与对照组相比,开始时下降速度较快,至翌年比对照组整整提早1各月达到最大值。
     无栖息巢组的T值在翌年5月就达到最大值6.75±0.85 ng/ml,对照组的T值要推迟1个月才达到最大值5.25±0.31 ng/ml,研究表明无栖息巢能够显著影响黄鳝血清T的分泌。表现在秋季对睾酮的分泌产生抑制,早春迅速促进血清睾酮值上升。
     另外,不管是体长还是体重,有栖息巢都显著快于无栖息巢组。
     历经12个月,无栖息巢组有38.85±0.85%的黄鳝转为雄性,只有47.14±3.50%保持雌性;而对照组只有24.6±1.37%的黄鳝转为雄性,有61.18±2.31%的黄鳝还是保持雌性,两者的间性比例无显著性差异,说明环境胁迫—无栖息巢能显著促进黄鳝从雌性向雄性转变。
     在黄鳝性逆转启动的时间方面,通过1000多个性腺组织切片的证实,在雌性黄鳝卵细胞发育到第Ⅳ期,潜伏在雌性性腺生殖褶上的雄性原始精原细胞开始发育并逐渐形成精小囊,散布在卵细胞的间隙中间,也就是说在黄鳝排卵前雄性生殖细胞已经开始启动发育(国内学者普遍认为黄鳝的性逆转在产卵后才启动),同时卵母细胞从第Ⅳ期逐渐发育到第Ⅴ期。黄鳝产卵后,卵母细胞不断退化,位于生殖褶上的多个精小囊内的生精细胞发育成初级精母细胞,这时生殖囊内还可见到Ⅱ、Ⅲ时相的卵母细胞;随着雄性生殖细胞的发育,卵细胞的进一步退化,进入雄性发育阶段。并且,在鱼类性腺中首次发现了卵黄卵(Ⅳ期)和成熟精子细胞并存的现象。
The rice field eel(Monopterus albus) can be found in China,India,Malaysia and Indonesia,and has been popularly cage cultured in central and southern China.The total output of China has reached 180,000 tons.It was a popular and highly appreciated fish on the Chinese market,and it has been selected as a target species for Chinese aquaculture due to its rapid growth,good survival rate and easy adaptation to cage culture conditions.
     However,Chinese rice field eel aquaculture was still at an elementary stage.Farming activities still rely on the capture of wild juveniles.With the increased fishing,the wild juvenile resources declined sharply.The achievement of controlled reproduction techniques of this species remains an essential prerequisite for domestication and development of farming activities for rice field eel.However,it has a special phenomenon of sex reversal:It was a hermaphroditical fish,early stages of development of life were females.After spawning,it became intersex,then entered male stage.The mainly spawning period was from May to June.When body length reached 35-45cm,it began to change its sex.Because of sex reversal,individuals of female were smaller. Absolutely fecundity was lower.Large-scale artificial breeding has not solved,therefore, the study of sex reversal played a very important role in solving the artificial breeding of the fish.
     The present study aimed to find the way of the manual control technology of sex reversal in M.albus,by using nutrition,exogenous hormone and environmental factors. The study could bring new breakthrough in breeding and promote the sustainable development of aquaculture industry.
     1.The studies on the relations of body length,weight,age and sex ratio and fecundity in M.albus
     During 12 months,samples were collected in Diao-cha lake,Hubei province.The total number was 258.The number of females was 152(accounted for 58.91%),intersexes 44 (17.05%),males 62(24.04%).
     Total body length was 9.4-76.8 cm.Body length of female was 9.4-60.5 cm,average 39.6 cm.Those below 20cm were all females.Intersexual body length was 27.1-63.3 cm, average 44.5 cm.Body length of male was 29.4-76.8 cm,average 51.63 cm.Those 70 cm above were all males.The results show that 25 cm was the starting point of body length of sex reversal in M.albus.
     Total body weight was 0.48-753.60 g.The average weight of females was 58.46 g. Those below 23.70g were all females.Intersexual body weight was 25.40 g-206.30g, average 76.45 g.The weight of males was 29.65-753.60g,average 144.38 g.Those 250 g above were all males.The results show that 25 g was the starting point of body weight of sex reversal in M.albus.
     The number of females below 2 years accounted for 92.17%of the total females. Intersexual individuals were 2-5 years,and 3-4 years were the peak period.Males were 2-7 years.The number of males,2 years,only accounted for 2.00%of the total males. Those above 6 years were all males.The results show that 2 years was the starting point of the age of sex reversal in M.albus.
     The number of impregnated eggs was 41-1267.Those 20-30 cm had the highest impregnated rate.
     2.Effects of different protein level diets on sex reversal of M.albus
     The study was conducted to investigate the effect of different protein levels(25%, 35%,45%and 55%) on sex reversal of M.albus.The study indicated that the gonadal development of M.albus was closely related with the protein levels in diets.In a short period(one month),the GSI of different groups was not significantly different.In the end of June next year,the GSI was significantly different.They were 1.45±1.05%,3.00±2.36%,7.71±1.67%,2.35±0.81%,respectively.GSI was closely related with the protein levels in diets.
     Within the appropriate context,the absolute intensity was increased with the protein levels in diets.
     The ratios of sex reversal individuals in different groups were different.25%protein levels groups,38.65±1.34%changed its sex to male,and 17.61±1.47%to intersex. 35%protein levels groups,24.15±6.55%changed its sex to male,and 11.20±1.45%to intersex.45%protein levels groups,7.61±1.43%changed its sex to male,5.21±1.25% to intersex,and 87.18±1.21%maintain female.55%protein level groups,14.21±5.52%changed its sex to male,about 7.18±0.96%to intersex,and the ratio of female in the groups was less than that of 45%groups.The study indicated that 45%protein level in diets could be favorable for gonadal development of female M.albus.
     In the studies on section of serum estradiol(E_2),E_2 of 45%protein level groups was the highest.E_2 of 35%and 45%groups were significantly higher than that of 25%,55% groups in April,May and June,and reached their peak value in June.The study indicated that it high section of serum E_2 could be maintained with the suitable protein levels in diets.It could delay the sex reversal of M.albus in some degree.
     3.Effects of different lipid level diets on sex reversal of M.albus
     The experiment was conducted to investigate the effect of different lipid levels(5%, 10%and 15%) on sex reversal of M.albus.The study indicated that the ratio of sex reversal of M.albus was increased with fat level in the same protein level diets.5%fat level in diets could be favorable for gonadal development of female M.albus and increase the absolute intensity.
     4.Effects of different concentrations of exogenous testosterone propionate (TP) diets on sex reversal of M.albus
     The study aimed to investigate the effect of different dose of TP(0 mg / kg,10mg / kg and 30 mg / kg) on sex reversal of M.albus.18.51%individuals in 30 mg / kg groups changed its sex to male,higher than that of 0 mg / kg and 10mg / kg groups,but the total ratio of male and intersual was no significant difference.The study indicated that different dose of TP has no significantly effects on sex reversal of the fish.
     5.Effects of different concentrations of exogenous estradiol valerate diets on sex reversal of M.albus
     Fishes were treated with different concentrations of estradiol valerate in diets,0mg/kg, 10mg/kg and 50mg/kg,for 12 months.Lower concentrations(10mg/kg) of estrsdiol valerate in diets could inhibit the sex reversal of the rice-field eel in some degree.Higher concentration of estradiol valerate in diets could reduce the secretion of T while the concentration of serum E_2 kept higher levels.The sex steroid hormonal profiles and experimental data lead to the conclusion that treatment of diets of estradiol valerate (50mg/kg) could delay the process of sex reversal in rice-field eel.
     6.Effects of different concentrations of exogenous Compound norethindrone diets on sex reversal of M.albus
     The study aimed to investigate the effect of different dose of compound norethindrone (0 piece/kg,10 pieces/kg and 30 pieces/kg) on sex reversal of M.albus.The study indicated that treatment of diets of compound norethindrone could delay the process of sex reversal in rice-field eel.It has no significantly effects on body-length and body-weight of the fish.
     7.Effects of Eco-environmental stress(no habitat nest) on the sex reversal of M.albus
     The E_2 levels without habitat nest groups were declined sharply in the first month.It reached peak value(618.18±30.05pg/ml) in April of the next year and significantly higher than that of controls.This study showed that environmental stress-no nest habitat could significantly affect the secretion of serum E_2 of M.albus.T levels without habitat nest groups reached its peak value(6.75±0.85 ng/ml) in May of the next year while controls reached its peak value(5.25±0.31 ng/ml) in June of the next year.The study indicated that no habitat nest could significantly affect the T secretion.
     Besides,the study showed that environmental stress-no habitat nest can significantly affect the growth of body-length,weight and the sex reversal of M.albus.After 12 months,38.85±0.85%individuals of the group without habitat nest changed their sex to male,47.14±3.50%maintained female.24.6±1.37%of the controls changed their sex to male,61.18±2.31%maintained female.
     It was confirmed that the starting time of sex reversal in the fish was at stageⅣthrough more than 1,000 biopsy of gonadal tissue.The original spermatogonia hidden in female gonads gradually began to develop a small testis capsule and spread in the gap among oocytes.Then oocytes from the stageⅣgradually developed intoⅤ.Oocytes degenerated after spawning.Spermatogenic cells developed into primary spermatocytes and reproductive capsule could be seen with oocytes ofⅡ,Ⅲstages.With the development of male reproductive cells,oocytes degradated and started the male developmental stage.The phenomenon that eggs with yolk(Ⅳstage) and mature sperm cells co-existence in gonads was first found in fish.
引文
1.白东清,龙良启.黄鳝肠组织消化酶初探.湖北农业科学,1997,(5):56-59
    2.邴旭文.模仿自然繁殖条件下的黄鳝人工繁殖试验.水产学报,2005,29(2):285-288
    3.曹克驹,舒妙安等.黄鳝个体生殖力与第一批产卵量的研究.水产科学,1988,(3):1-6
    4.常重杰,杜启艳,路淑霞.泥鳅和大鳞副泥鳅性腺细胞H-Y抗原的检测.河南师范大学学报(自然科学版),1994,(3):60-63
    5.陈昌福,毛德华.黄鳝锥体虫和隐藏新棘虫的流行病学调查.水产养殖,1993,(3):17-20
    6.陈芳,杨代勤,方长琰.饲料添加胆碱对黄鳝生长及肌肉和肝脏脂肪含量的影响.湖北农学院学报,2002,22(4):27-30
    7.陈慧,黄鳝的年龄鉴定和生长.水产学报,1998,22(4):296-302
    8.陈丽莉,肖亚梅,刘筠。黄鳝一种新的生殖腺发育状况的报道.水生生物学报,2006,30(5):621-623
    9.陈丽莉,肖亚梅.ERK/JNK在黄鳝雌、雄发育阶段生殖腺中的表达和定位.动物学报,2007,53(2):325-331
    10.陈鹏飞,伍莉,许南萍.不同外源激素促进黄鳝排卵的效果比较.淡水渔业,2001,31(3):54-55
    11.陈卫星,曹克驹.黄鳝分批产卵模式的研究.水利渔业,1993,(4):28-31
    12.戴贤君,舒妙安.黄鳝不同生长阶段消化器官及其消化酶的变化.上海交通大学学报,2002,20(2):113-116
    13.丁斌鹰,崔冬霞,李智勇。猪肝和蚯蚓对黄鳝诱食效果的研究.中国饲料,2002,(13):26。
    14.董元凯,谢家鑫,楼亦工.黄鳝人工繁殖的初步研究.水利渔业,1989,5:46-48
    15.方建平,彭勇.黄鳝怀卵量的调查和比较分析.水利渔业,2000,(3):10-12
    16.方永强.17α-甲基睾酮对赤点石斑鱼性逆转的影响.水产学报,1992,16(2):171-174
    17.高书堂,高令秋,岳朝霞.泥鳅原始生殖细胞的发生、迁移和性腺分化.武汉大学学报(自然科学版),1998,44(4):477-80
    18.高璇,何焱,张雷.黄鳝性腺高表达的核糖体蛋白基因.遗传,2005,27(2):227-230
    19.苟兴能,苟清碧,李虎,徐大伟.黄鳝人工孵化方法的试验研究.水利渔业,2004,24(5):37
    20.韩名竹,白利平,史扬白.黄鳝人工繁殖技术的研究.水产养殖,1988,1:1-4
    21.洪磊,张秀梅.环境胁迫对鱼类生理机能的影响.海洋科学进展,2004,(1):224-222.
    22.何正侃,戚隽渊,肖雨,印骏,林惠山,刘淑梅,孙振中.黄鳝体内睾酮、雌二醇和炔诺酮含量的检测分析.水产科技情报,2003,30(2):58-60
    23.江信红,唐云明.黄鳝肠道蛋白酶的分离纯化及其性质.中国水产科学,2005,12(3):329-335
    24.江信红,唐云明.黄鳝蛋白酶的化学修饰.西南师范大学学报,2005,30(2):346-349
    25.蒋雄龙,怀明德,虞快.上海地区黄鳝人工繁殖的初步研究.上海师范大学学报(自然科学版),1994,23(4):84-88
    26.介子林,李传圣.集约化养殖鱼类肝脏疾病的防治田.河南水产,2002,4:59.
    27.李瑾,何瑞国,张世萍.黄鳝幼鱼饲料蛋白源氨基酸平衡的研究.饲料广角,2001,(22):18-20
    28.李瑾,何瑞国,张世萍.不同饲料蛋白源对幼鳝生长和饲料利用的影响初探.饲料工业,2001,22(8):11-14
    29.李黎,曹振东,付世建.环境缺氧及其对鱼类影响的研究进展田.现代渔业信息,2005,6(20):6-9.
    30.李瑾,何瑞国,张世萍等。不同饵料对幼鳝消化系统内淀粉酶活性的影响.饲料工业,2003,23(12):48-50
    31.林浩然.鱼类生理学.广东高等教育出版社,1999:146-148,188-191
    32.林浩然.神经内分泌因子调控鱼类生殖和生长的相互作用.动物学研究,2000,21(1):12-16
    33.刘金,颜亨梅,曾伯平.黄鳝体内寄生虫生态学研究进展.生命科学研究, 2004,8(4):102-107
    34.刘金,曾伯平.黄鳝体内寄生虫感染对血液若干生化指标的影响.湖南师范大学自然科学学报,2005,28(1):67-69
    35.刘凌云.黄鳝染色体G带带型的研究.遗传学报,1983,(3):230-234
    36.刘少军.革胡子鲶原始生殖细胞的起源、迁移及性腺分化.水生生物学报,1991,15(1):1-7
    37.刘修业,崔同昌,王良臣.黄鳝性逆转时生殖腺的组织学与超微结构的变化.水生生物学报,1990,14(2):166-169
    38.刘修业,王良臣.黄鳝性别与年龄、体长、体重等的关系及性腺的组织变化.淡水渔业,1987,6:12-14
    39.刘筠.中国养殖鱼类繁殖生理学[M]。北京:农业出版社,1993,29-42,42-46,53-55
    40.刘利,郭一清,周荣家.黄鳝Sox9基因的克隆及其鉴定分析.遗传学报,2001,28(6):535-539
    41.楼允东.组织胚胎学.中国农业出版社,1999,126-136
    42.芦小娟.戊酸雌二醇对克罗米芬周期中子宫、生殖激素及妊娠率的影响.第四军医大学,2003,16-18
    43.卢健民,卢玲,蔺玉华.低pH水平对鲤鱼生长及血糖浓度影响的研究山.水产学杂志,2001,14(1):51-53.
    44.吕道远,宋平,陈云贵,彭茂宇,桂建芳.黄鳝性腺自然逆转过程中vasa基因的表达分析.动物学报,2005,51(3):469-475
    45.罗宇良,刘小玲,张桂荣.2种寄生虫感染黄鳝引起的血细胞变化.水利渔业,1999,(5):41-43
    46.马广智,唐玫,徐军.低pH值对草鱼鳃和肝组织超氧化物歧化酶(SOD)活性的影响.中国水产科学,2002,3(2):23-25.
    46.潘建林.黄鳝规模养殖关键技术.南京:江苏科学技术出版社,2002
    48.彭茂宇,宋平,桂建芳.黄鳝DEAD-box家族PL10基因的克隆与序列分析.武汉大学学报,2005,51(2):227-234
    49.彭勇,罗盛章.不同品种黄鳝怀卵量的比较.郧阳师范高等专科学校学报,2002,22(4):98-100
    50.商璇,何焱,张雷.黄鳝性腺高表达的核糖体蛋白基因.遗传,2005,27(2):227-230
    51.石琼,林浩然,邓柏礼.外源性褪黑激素对黄鳝性腺发育及性腺激素分泌的影响.动物学报,1998,44(4):435-442
    52.石琼,林浩然,邓柏礼.饥饿对黄鳝性腺发育及血清褪黑激素水平的影响.北京师范大学学报(自然科学版),1998,34(3):395-398
    53.石琼,林浩然,邓柏礼.黄鳝血清褪黑激素水平周期性与季节性变化的节律.上海水产大学学报,1999,8(1):37-42
    54.石琼,颜远义,胡敏.环境因子对黄鳝血清褪黑激素水平的影响.华中农业大学学报,2003,22(4):385-388
    55.施琼芳.鱼类生理学.北京:农业出版社,1991:300-319
    56.舒妙安,马有智,张建成.黄鳝肌肉营养成分的分析.水产科学,2000,24(4):339-344
    57.宋卉,王树迎.鱼类原始生殖细胞的研究进展.吉林畜牧兽医,2004,4:16-17
    58.宋平,李建宏,贾熙华。黄鳝性逆转与性腺蛋白关系的分析.动物学杂志,1994,29(1):15-17
    59.孙德文,詹勇,许梓荣.微生态制剂在水产养殖中的应用.淡水渔业,2002,32(3):54-57.
    60.陶亚雄,林浩然.黄鳝自然性反转的研究.水生生物学报,1991,15(3):274-278
    61.陶亚雄,林浩然.外源激素对雌性黄鳝血清类固醇激素的影响.动物学报,1993,39(3):315-321
    62.陶亚雄,林浩然.外源激素对雄性黄鳝性类固醇激素分泌的影响.水生生物学报,1994,18(2):189-191
    63.王浩,刘荣臻.雌性特异蛋白质复合物促进黄鳝性腺发育、提高黄鳝孵化率.水产学报,1989,13(4):353-355
    64.王良臣.黄鳝生物学因素关系的研究.鱼类学论文集(第四辑),北京:科学出版社,1985,147-153
    65.王良臣.黄鳝垂体腺嗜碱性细胞组织化学的研究.鱼类学论文集(第五辑),北京:科学出版社,1986,29-34
    66.王文彬,曾伯平,韩庆等。洞庭湖黄鳝体内胃瘤线虫的感染研究.水利渔业,2003,23(3):62-63
    67.王文博,李爱华.环境胁迫对鱼类免疫系统影响的研究概况.水产学报2002,26(4):368-374.
    68.魏绍君,刘路训.黄鳝肠道寄生隐藏新棘虫的组织病理研究.水利渔业,1998,(1):14-16
    69.温海深,林浩然,肖东.野生鲇鱼生长激素分泌的季节变化及其神经内分泌调控.动物学报,2002,48(2):213-220
    70.温海深,林浩然.激素缓释制剂诱导海水养殖鱼类性腺发育成熟与生殖行为的研究.中国水产科学,2002,9(2):177-182
    71.伍莉,陈鹏飞.黄鳝适口性饲料的初步研究.四川畜牧兽医,2002,29(1):22-24
    72.肖亚梅.黄鳝繁殖生物学研究Ⅰ:黄鳝生殖腺早期发生及其结构变化.湖南师范大学自然科学学报,1993,16(4):346-349
    73.肖亚梅.黄鳝繁殖生物学研究Ⅱ:黄鳝的雌性发育.湖南师范大学(自然科学学报),1995,18(4):45-51
    74.肖亚梅,陈丽莉.黄鳝生殖干细胞在性逆转生殖发育过程中的变化.分子细胞生物学报,2007,40(3):196-204
    75.肖亚梅,刘筠.黄鳝由间性发育逆转为雄性发育的细胞生物学研究.水产学报,1995,19(14):297-301
    76.徐宏发,朱大军.黄鳝的生殖习性和人工繁殖.水产科技情报,1987,(6):14-15
    77.徐晋林,马飞,徐沁.黄鳝性逆转过程中同工酶的分析研究.遗传学报,1994,21(2):104-111
    78.徐在宽,潘建林,费志良,唐建清.黄鳝的人工温控养殖的初步研究.中国水产,2001,8:48-49
    79.杨代勤,陈芳,李道霞.黄鳝生长特殊性的初步研究.湖北农学院学报,1993,(3):194-199
    80.杨代勤,陈芳,李道霞.黄鳝食性的初步研究.水生生物学报,1997,21(1):24-30
    81.杨代勤,陈芳,李道霞.黄鳝的胚胎发育及鱼苗培育.湖北农学院学报,1999, 19(2):149-153
    82.杨代勤,陈芳,李道霞,刘百韬.黄鳝的营养素需要量及饲料最适能量蛋白比.水产学报,2002,24(3):259-262
    83.杨代勤,陈芳,刘百韬.黄鳝产卵类型及繁殖力的研究.湖北农学院学报,1994,14(3):40-44
    84.杨代勤,严安生,陈芳.几种氨基酸及香味物质对黄鳝诱食活性的初步研究.水生生物学报,2002,26(2):205-208
    85.杨明生。黄鳝年龄鉴定方法和种群年龄结构的初步研究.孝感师专学报,1991,(4):41-44
    86.杨文云,顾忠旗,王春华,董武子.黄鳝性逆转过程中性腺形态学初步研究.动物医学进展,2004,25(6):113-115
    87.殷名称.渔类生态学,北京:中国农业出版社,1995.113-114
    88.尹绍武,周工健,刘筠.黄鳝孵卵泡的生化成分及生理作用.水生生物学报,2004,28(2):197-201
    89.尹绍武,周工健,刘筠.黄鳝的繁殖生态学研究.生态学报,2005,25(3):435-440
    90.尹绍武.黄鳝的繁殖生态生理学及其群体遗传多样性的研究.[博士学位论文].广州:中山大学图书馆,2005
    91.曾伯平,刘春艳.黄鳝体内新棘衣棘头虫的感染研究.湘潭师范学院学报,1996,17(6):43-47
    92.张培军.海水鱼类繁殖发育和养殖生物学.济南:山东科学技术出版社,1999,20-23
    93.张磊,赵志刚.自身污染和密度胁迫对鱼类的影响及对策.北京水产,2006(4):7-11
    94.张玉洁.长期服用复方左炔诺孕酮避孕药妇女100例的调查分析.锦州医学院学报,2003,24(4):73-74
    95.张小雪,董元凯.黄鳝性腺发生与分化的研究.水利渔业,1994,75(3):53-55
    96.张勇,陈淳,顾建新.黄鳝性别决定与SRY基因不相关.自然科学进展,2001,11(4):365-367
    97.赵云芳,柯熏陶.外源激素诱导黄鳝性转化的效果.西南农业学报,1992,5(1): 74-78
    98.赵卫红,洪万树,张其永.中华乌塘鳢(Bostrichthys sinensis)和大弹涂鱼(Boleophthalmus pectinirostris)成熟产卵过程中17α—羟基孕酮和前列腺素水平的研究.海洋与湖沼,2004,35(1):69-73
    99.周定刚,傅天佑.人工诱导黄鳝排卵的初步研究.水生生物学报,1990,(3):280-282
    100.周定刚,谭永洪,曹五七.黄鳝精巢发育的周年变化.四川农业大学学报,2002,20(3):256-261
    101.周工健.特种水产养殖.长沙:湖南科技出版社,1994
    102.周秋白,吴华东,吴红翔.产卵与黄鳝性转化关联的研究.经济动物学报,2004,8(2):89-91
    103.周秋白,张燕萍,杨发群,吴红翔,李新华.鄱阳湖区黄鳝精子活力周年观察.江西农业大学学报,2004,26(6):843-846
    104.周天元,赵淑芬.黄鳝高密度快速养殖技术.上海:上海科学普及出版社,1987,17-21
    105.邹记兴.黄鳝的人繁技术及胚胎发育.水产科技情报,1996,23(1):27-30
    106.邹记兴.黄鳝H-Y抗原的研究.水产科技情报,1999,26(4):177-181
    109.邹记兴.黄鳝性逆转与血清蛋白关系的分析.水利渔业,2000,20(1):13-15
    110.Aerie R V,Runnalls T J,Tyler C R.Ontogeny of gonadal sex development relative to growth in fathead minnow.Journal offish biology,2004,64:355-369
    111.Agius R V,Watanabe T,Satoh S.Supplementation of paprika as a carotenoid source in soft-dry pellets for broodstock yellowttail Seriola quinqueradiata.Aquaculture Research,2001,32:263-272
    112.Amano M,Yamanome T,Yamada H.Effects of photoperiod on gonadotropin-releasing honmone levels in the brain and pituitary of underyealing male barfin founder.Fisheries science,2004,70:812-818
    113.Aste C B,Noue J D L.Effects of temperature and salinity on the reproductive success of Arctic chart,Salvelinus alpinus(L.):egg composition,milt characteristics and fry survival.Aquaculture Research,2002,33:299-309
    114.Berglund I.Goetz F W,Thomas P.Effect of spring temperature and feeding regime on sexual maturation in Atlantic salmon male parr. In: Reproduction Physiology of Fish. Austin: University of Texas. 1995,170-172
    115. Berta P, Hawkings J R, Sinclair A H. Genetic evidence equating SRY and the testis determing factor. Nature, 1990, 348: 448-450
    116. Blancas-Arroyo G A, Figueroa-Lucero G, Barriga-Sosa L A. Effects of an artificial photothermal cycle on the reproduction of the shortfin silverside, Chirostoma humboldtianum, Valenciennes. Aquaculture, 2004, 241: 575-585
    117. Bell G, Sargent J R, Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture, 2003,218: 494-499
    118. Chang C Y. Hormonal influences on sex differentiation in the toad, Bufo americanus. Anat Rec, 1955, 123:467-468
    119. Chang C, Yueh W. Annual cycle of gonadal histology and steroid profile in the juvenile males and adult females of the protandrous black porgy. Aquaculture, 1990, 91: 179-196
    120. Channing C P. Comparative activities of mammalian, reptilian and piscine gonadotropins in monkey granulose oell oulture. Gen Comp Endocrinal, 1974, 22: 137-145
    121. Chan S T H, P J G The structure of the gonad during natural sex reversal in Monopterus albus. Zool Lond, 1967, 151: 129-141
    122. Chan S T H and Phillips J G. The biosynthesis of steroids by the gonads of the ricefield eel Monopterus albus at various phases during natural sex reversal. General and Comparative Endocrinology, 1969,12:619-636
    123. Chan S T H, WS O, Tang F, Loffs B. Biopsy studies on the natural sex reversal in Monopterus albus. Zool Lond, 1972, 167: 415-421
    124. Chan S T H, Wai-sum O and Hui W B. The interrenal gland and ACTH and prolactin cells in the adenohypophysis of Monopterus and their roles in osmoregulations.General and Comparative Endocrinology, 1975, 27:95-110
    125. Chan S T H and Yeung S B. Sex control and sex reversal in fish under natural conditions. Fish Physiology, 1983,9:171-222
    126. Chan S T H and Yeung W S B. A new method for the simultaneous determination of androstenedione, testosterone, 11-oxotestosterone and 11~2-OH-testosterone in fish plasma using combined techniques of Celite chromatography and radioimmunoassay. Journal of Steroid Biochemistry, 1986, 25:1013-1021
    127. Chan S T H and S. B. Yeung. Sex steroids in intersexual fisher. Fish Physiology and Biochemistry, 1989, 7: 229-235
    128. Chang J P, Van G F, Acharya S. Influences of norepinephrine, and adrenergic agonists and antagonist on gonadotropin secretion from dispersed pituitary cells of goldfish, carassius auratus. Neuroendocrinol, 1991,54: 202-210
    129. Chang C. F, Lan S C, Pan B S. Feed administration of estradiol 17-beta stimulates female differentiation in juvenile grey mullet Mugil cephalus. Taiwan Zoological studies, 1995, 34: 257-264.
    130. Cheung K C, Leung H M, Kong K Y and Wong M H. Residual levels of DDTs and PAHs in freshwater and marine fish from Hong Kong markets and their health risk assessment. Chemosphere, 2007,66(3): 460-468
    131. Ciereszko A, Dabrowski K, lin F. Protective rote of ascorbic acid against damage to male germ cells in rainbow trout. Canadian Journal of Fisheries and Aquatic Science, 1999, 56 (2): 178-183
    132. Crim L W, Evans D W. Influence of testosterone and/or luteinzing hormone releasing hormone analogue oprecocious sexual development in the juvenile rainbow trout. Biol Reprod, 1983,29: 137-142
    133. Dabrowski K, Rinchard J, Lee K J. Effects of diets containing gossypol on reproductive capacity of rainbowtrout (Oncorhynchus mykiss). Biology of reproduction, 2000, 62(2): 227-234
    134. Dabrowski K, Cierrszko A. Ascorbic acid and reproduction in fish: endocrine regulation and gamete quality. Aquaculture Research, 2001, 32: 623-638
    135. Deleeu W R, Goos H J T, Richter C J J. Pimzide-LHRHa-induced breeding of the african catfish, darias gariepinus (Burchell). Aquaculture, 1985, 44: 295-302
    136. Deleeu W R, Goos H J T, Vanoordt P G W J. The regulation of gonadotorpin release by neurohormones and gonadal steroids in the African catfish, clarias gariepirus.Aquaculture,1987,63:43-58
    137.Deleeu W R,Conn PM,Vant Veer C.Characterization of the receptor for gonadotropin-releasing hormone in the pituitary of the African catfish,Clarias gariepinus.Fish physiology and Biochemstry,1988,5:99-107
    138.Drummond A E,Baillie A J,Findlay J K.Cell Ovarian estrogen receptor alpha and beta mRNA expression:impact of development and estrogen.Endocrinol,1999,149(1-2):153-161
    139.El-Sayed A M,Mansour C R,Ezzat A A.Effects of dietary protein level on spewing performance of Nile tiiapia(Oreochromis niloticus) broodstock reared at different water salinities.Aquaculture,2003,220:619-632
    140.Edmund w R,Shelia D,and Matthews G.Sex reversal in pairs of Lythrypnus dalli;behavioral and morphological changes.The Biological Bulletin,2005,208:120-126
    141.Emata A C,Borlongan I G,Darnaso J E Dietary vitamin C and E supplementation and reproduction of milkfish Chanos chanos Forsskal.Aquaculture Research,2000,31:557-564
    142.Femandez-Palacios H,Izquierdo M S,Robaina L.Effect of n-3HUFA level in roodstock diets on egg quality of gilthead sea bream(Sparus aurata L.).Aquaculture,1995,132(3-4):325-337
    143.Fishelson L.Protogynous sex reversal in the fish Anthias squamipinnis(Teleostei,Anthiidae) regulated by the presence or absence of a male fish.Nature,1970,90:227-240
    144.Frantzen M,Arnesen A M,Damsgard B.Effects of photoperiod on sex steroids and gonad maturation in Arctic chary.Aquaculture,2004,204:561-574
    145.Fumio Yamazaki.Sex control and manipulation in fish.Aquaculture,1983,33:329-354
    146.Furuita H,Tanaka H,Yamamoto T.Effects of high dose of vitamin A on reproduction and egg quality of Japanese flounder Paralichthys olivaceus.Fisheries Science,2001,67:606-613
    147.Furuita H,Tanaka H,amamoto T.Effects of high levels of n-3HUFA in broodstock diet on egg quality and egg fatty acid composition of Japanese flounder, Paralichthys olivaceus. Aquaculture, 2002, 210: 323-333
    148. Furuita H, Ohta H, Unuma T. Biochemical composition of eggs in relation to egg quality in the Japanese eel, Anguilla japonica. Fish physiology and biochemistry, 2003, 29: 37-46
    149. Furuita H, Tanaka H, Yamamoto T. Supplemental effect of vitamin A in diet on the reproductive performance and egg quality of the Japanese flounder Paralichthys olibaceus. Aquaculture Research, 2003, 34: 461-467
    150. Furuita H, Yamamoto T, Shima T. Effect of arachidonic acid levels in broodstock diet on larval and egg quality of Japanese flounder Paralichthys olivaceus. Aquaculture, 2003,220, (1-4): 725-735
    151. Gardner T D, Hagen C O, Young I and Lewis S J (2003) Dietary Supplements of soya flour lower serum testosterone concentrations and improve markers of oxidative stress in men. European Journal of clinical nutrition, 2003, 57: 100-106
    152. Gelina S D, Pitoc G A, Callard G V. Isolation of a goldfish brain cytochrome P450 aromatase cDNA: mRNA expression during seasonal cycle and after steroid treatment. Mol cell Endocrinol, 1998,138: 81-93
    153. Ghosh B R, Wu J C, Strah B D. Inhibin and estradiol alter Gonadotropes differentially in ovine numbers and pituitary cultures: changing calcium responses to gonadotropin-releasing hormone. Endocrinology. 1996, 137(11): 5144-5154
    154. Gunasekera K F, Shim T, Lam J. Effect of dietary protein level on puberty, oocyte growth, and egg chemical composition in the tilapia, Oreochrornis nitoticus (L.). Aquaculture, 1995, 134: 169-183
    155. Gunasekera K F, Lam J. Influence of dietary protein level on ovarian recrudescence in Nile tilapia, Oreochromis nitoticus Aquaculture, 1997, 149: 57-69
    156. Hamaguchi S. Asymmetrical development of the gonads in the embryos and fry of the fish (Oryzias celebensis). Development, Growth and Differentiation, 1983, 25 (6): 553-561
    157.Hanuman S.Interaction of xenobiotics with reproductive endocrine functions in a protogynous teleost,Monopterus albus.Marine Environmental Research,1989,28:285-289
    158.Hanuman S.Effects of malathion on steroidogenesis and sex reversal in Monopterus albus.Marine Environmental Research,1993,35(1-2):159-164
    159.Harahap H P,Takemura A,Nakamura S.Histological evidence of lunar-synchronized ovarian development and spawning in the spiny rabbitfish Siganus spnus(Linnaeus) around the Ryukyus.Fisheries Science,2001,67:888-893
    160.Izquierdo M S,Femandez-Palacios H,Tacon A G J.Effect of broodstock nutrition on reproductive performance of fish.Aquaculture,2001,197:25-42
    161.Jang S H,Zhou F,Xia L X,Zhao W,Cheng H H and Zhou R J.Construction of a BAC library and identification of Dmrt1 gene of the rice field eel,Monopterus albus.Biochemical and Biophysical Research Communications,2006,348(2):775-780
    162.Kazufumi M,Chiemi N F,Toshitaka F.Universal Occurrence of the Vasa-Related Genes among Metazoans and their Germ line Expression in Hydra.Dev Genes Evol,2001,211:299-308
    163.Kloc M,Bilinski S,Chan A P.Mitochondria ribosomal RNA in the germinal granules in Xenopus embryos.Differentiation,2000,67:80-83
    164.Korsgaard.Influence of natural vitellogeneis and estradiol-17βtreatment on protein systhesis and glucogensis in isolated hepatocytes of Zoarces viviparous,Reproduction Physiology ofFish.1995,365
    165.Kratochvil L,kubicka L and Landova E.Yolk hormone levels in the synchronously developing eggs of paroedura picta,a gecko with genetic sex determination.Canadian Journal of zoology,2006,84:1683-1687
    166.Kuo CM.Induced sex reversal and spawning of bluespotted grouper,Epinephelus fario.Aquaculture,1988,74:113-126
    167.Lance V,Scanes S,Callard I P.Plasma testosterone levels in male turtles,Chrysemys picta,following single injection of mammalian,avian and teleostean gonadotropins. Gen Comp Endocrinol, 1977, 31: 435-441
    168. Lee Y D, Park S H, Takcmura A. Lunar-related spewing cycles in the female honeycomb grouper Epinephelus merra in Okinawan waters. Fisheries Science, 2002, 68: 872-877
    169. Lee K J, Dabrowski K. Long-term effects and interactions of dietary vitamins C and E on growth and reproduction of yellow perch, Perm flavescens. Aquaculture, 2004, 230: 377-389
    170. Liem K F. Sex reversal as a natural process in the Synbranchiform fish Monopterus albus. Copiea, 1963, 303-312
    171. Liem K F. Geographical and taxonomic variation in the pattern of natural sex reversal in the teleost fish order Synbranchiformes. Zool, 1968, 156: 225-238
    172. Liu C K. Rudimentary hermaphroditism in the symbranchoid eel, Monopterus javanensis, Sinensia, 1944, 15: 1-8
    173. Liu C K, Ku K Y. Histological changes in the gonad of monopterus during sex transformation. Sinensia, 1951, 2: 85-109
    174. Maeland A, Ronestad L, Waagbo R. Folate in eggs and developing larvae of Atlantic halibut Hippoglossus hippoglossus L. Aquaculture Nutrition, 2003, 9: 185-188
    175. Maite M, Nadine B, Judy A K, Robert P M and Sylvie D. Differential regulation of the forms of gonadotropin-releasing hormone (mGnRH and cGnRH- II by sex steroids in the European female silver eel (Anguilla anguilla). Neuroendocrinology, 1995, 61: 525-535
    176. Mandich A, Massari A, Bottero S, Pizzicori P, Goos H and Marino G Plasma sex steroid and vitellogenin profiles during gonad development in wild Mediterranean amber jack (Seriold dunarilii). Marine biology, 2004, 144: 127-138
    177. Manissery J K, Krishnamurthy D, Gangadhara B. Effect of varied levels of dietray protein on the breeding performance of Common Carp Cyprinus carpio. Asian Fisheries Science, 2001,14: 317-322
    178. Martin-Robichaud D J, Berlinsky D L. The effects of photothermal manipulation on reproductive development in female haddock Melanogrammus aeglefinus L. Aquaculture research, 2004, 35: 465-472
    179. Masaru N. Effects of Estradiol-17β on gonadal sex differentiation in two species of salmonids the masus Salmon, oncorhynchus masou and the chum salmon Okata. Aquaculture, 1998,43: 83-90
    180. Matsuzaki S, Fukaya T, Suzuki T. Oestrogen receptor alpha and beta mRNA expression in human endometrium throught the menstrual cycle. Mol Hum Reprod, 1999, 5(6): 559-564
    181. Mazorra C,Bruce M, Bell J G Dietary lipid enhancement of broodstock reproductive performance and egg and Larval quality in Atlantic halibut (Hippoglossus hippoglossus). Aquaculture, 2003,27, (1-4):35-61
    182. Meinelt T, Schulz C, Wirth M. Dietary fatty acid composition influences the fertilization rate of zebfish. Journal of Applied Ichthyology, 1999,15: 19-23
    183. Nakamura M, Kobayashi T, Chang X T. Gonadal sex differentiation in teleost fish. The journal of experimental zoology, 1998,281: 362-372
    184. Naokishitata. Evidence for the sexual biopotentiality of spermatogonia in the fish, Orgzias latipes. The Jour of Exp, 2001,245: 71-77
    185. Ng T B. Pituitary extract of the ricefield eel Monopterus albus (Synbranchidae, Teleostei) exhibits gonadotropic activity in the Mammalia, Aves, Reptilia and Amphibia. Comp Biochem. Physiol, 1986, 84A: 371-381
    186. Nishihara E, Nagayama Y, Inoue S. Ontogenetic changes in the expression of estrogen receptor alpha and beta in the rat pituitary gland detected by Immunohistochemistry. Endocrinology, 2000,141 (2): 615-620
    187. Omoto N, Maebayashi M, Mitsuhashi E. Histological observations of gonadal sex differentiation in the F2 hybrid sturgeon, the bester. Fisheries Science, 2001, 67: 1104-1110
    188. Onitake K. Morphological studies of normal sex-differentiation and induced sex-reversal process of gonads in the medaka, Oryzia latipes. Annot Jap, 2001,45: 159-169.
    189. Ornsrud A R, Wargelius. Influence of egg vitamin A status and egg incubation temperature of subsequent development of the early vertebral column in Atlantic salmon fry. Journal offish biology, 2004, 64: 399-417
    190. O W S and Chan S T H. A cytological study on the structures of the pituitary gland of Monopterus albus. Gen Comp Endocinal, 1974, 24: 208-222
    191. Pereira J O B, Reis-Henriques M A, Sanchez J L. Effect of protein source on the reproductive performance of female rainbowtrout, Oncorhynchus mykiss (Walbaum)Aquaculture research, 1998, 29(10).751-760
    192. Reinboth R. Can sex inversion be environmentally induced. Biol Reprod, 1980, 22: 49-59
    193. Reinboth R. The peculiarities of gonad transformation in teleosts. Differentiation, 1983,23(Suppl.): 82-86
    194. Reinboth R. Ambisexuality in teleosts a challenge to endocrinologists. 1985, 579-581. In: B. Lofts and W. n. Holmes (eds) Current trends in comparative endocrinology, University Press, Hong Kong
    195. Reinboth R. Physiological problems of teleost ambisexuality. Env Biol Fish, 1988, 22: 249-259
    196. Rey J M, Pujol P, Dechand H. receptor-alpha splicing variants et al. Expression of oestrogen and oestrogen receptor-beta in endometrium of infertile patients. Mol Hum Reprod, 1998,4(7): 641-647
    197. Rey E B, Bianchi M S, Bettler B. Adenohypophyseal and hypothalamic GABAB receptor subunits are down regulated by estradiol in adult female rats. Life Science, 2006, 79: 342-350
    198. Sakurai H, Adams B M, Adams T E. Concentration of gonadotropin-releasing hormone receptor messenger ribonucleic acid in pituitary tissue of orchidectomized sheep: effect of passive immunization against gonadotropin-releasing hormone. Anim Sci, 1997, 75(1):189-194
    199. Salima A, Monika S M, Sylvie B, Bernadette V, Karine R and Sylvie D. Endocrine evidence that silvering, a secondary metamorphosis in the eel, is a pubertal rather than a metamorphic event. Neuroendocrinology, 2005, 82: 221-232.
    200. Sandnes K, Rosenlund G, Mangor-Jensen A. Contents and organ distribution of pantothenic acid in maturing turbot(Psetla maxima).Aquaculture Nutrition,1998,4:285
    201.Santiago C B,Aldaba M B,Abuan E F.The effects of artificial diets on fry production and growth of Oreochromis niloticus breeders.Aquaculture,1985,47:193-203
    202.Santiago C B,Camacho A S and Laron M A.Growth and reproductive performance of bighead carp(Aristichthys nobilis) reared with or without feeding in floating cages.Aquaculture,1991,47:193-203
    203.Santiago C B,Gonzal A C.Effect of prepared diet and vitamins A,E and C supply on the reproductive performance of cage-reared carp Aristichthys nobilib (Richardson).Zeitschrift fur Angewandte Ichthyologie,2000,16(1):8-13
    204.Shim T,Landesman L and Lam J.Effect of dietary protein on growth,ovarian development and fecundity in the dwarf gourami.Journal of Aquaculture Tropical,1989,4:111-123
    205.Shi Q.Malatonin is involved in sex change of the rice-field eel,Monopterus albus Zuiew.Reviews in Fish Biology and Fisheries,2005,15:23-36
    206.Shimizu A.Effect of photoperiod and temperature on repriduction activity of the mummiehog,fundulus heteroclitus,during various seasons.In:Goetz F W,Thomas P,ed.Reproduction Physiology of Fish.Austin:University of Texas.1995,375
    207.Shirshew S V,G.Lyalina O,and Zamorina S A.Role of Potassiumions in Monocyte-regulating effects of chorionie gonadotropin.Bulletin of experimental biology and medicine,2000,130:566-569.
    208.Shirwalkar H,Modi D N,Maitra A.Exposure of adult rats to estradiol valerate induces ovarian cyst with early senescence of follicles.Mol Cell Endocrinol,2007,272:22-27
    209.Siddiqui A Q,AI-Hafedh Y S,Ali S A.Effect of dietary protein level on the reproductive performance of Niletilapia,Oreochromis niloticus(L.).Aquaculture research,1998,29(5):349-358
    210.Sims D W,Wearmouth V J,Genner M J.Low-temperature-driven early spawing migration of a temperate marine fish. Journal of Animal ecology, 2004, 73: 333-341
    211. Sinclair A H, Berta P, Palmer M S. A gene from the human sex-deter mining region encode a protein with homology to a conserved DNA-binding motif. Nature, 1990, 346(6281): 240-244
    212. Skynner M J, Sim J A, Herbison A E. Detection of estrogen receptor alpha and beta messenger ribonucleic acids in adult gonadotropin-releasing hormone neurons. Endocrinology. 1999,140 (11):5195-5201
    213. Swanson P, Bromage N. The effects of photoperiod and temperature on serum GtH I and GtH II and the timing of maturation in the female rainbow trout. Reproduction Physiology of Fish, 1995,1: 185
    214. Tan Q S, He R G, Xie S Q, Xie C X, Zhang S P. Effect of Dietary Supplementation of vitamins A, D3, E, and C on yearling Rice-Field eel, Monopterus albus: Serum indices, Gonad development and Metabolism of Calcium and phosphorus. Journal of the world Aquaculture Society, 2007, 38(1): 146-153
    215. Tang F, Chan S T H and Lofts B. Effect of steroid hormones on the process of natural sex reversal in the rice-field eel, Monopterus albus (Zuiew). General and Comparative Endocrinology, 1974, 24:227-241
    216. Tang F, Chan S T H and Lofts B. Effect of mammalian luteinizing hormone on the natural sex reversal of the rice-field eel, Monopterus albus (Zuiew). General and Comparative Endocrinology, 1974, 24: 242-248
    217. Tao Y X, Lin H R, Glen V D K and Richard E P. Hormonal induction of precocious sex reversal in the ricefield eel, Monopterus albus. Aquaculture, 118(1-2): 131-140
    218. Tokuda M, Yamaguchi T, Wakui K. Tocopherol affinity for serum lipoproteins of Japanese flounder Paralichthys olivaceus during the reproduction period. Fisheries Science, 2000, 66: 619-624
    219. Trudeau VL, Somoza G M, Nahornick C S. Interactions of estractions of estradiol with gonadotropin-releasing hormone and thyrotropin-releasing hormone in the control of growth hormone secretion in the goldfish,Neuroendocrinol,1992,56:483-490
    220.Tsai C L,Chang S L,Wang L H.Temperature influences the ontogenetic expression of romatase and oestrogen receptor mRNA in the developing tilapia (Oreochromis mossambicus) brain.Journal of neuroendocrinology,2003,15(1):97-102
    221.Vassallo-Agius R,Watanabe T,Yoshizaki G Quality of eggs and spermatozoa of rainbow rout fed an n-3 essential fatty acid-deficient diet and its effects on the lipid and fatty acid components of eggs,semen and livers.Fisheries Science,2001,67:818-827
    222.Vassallo R,Imaizumi H,Watanabe T.The influence of astaxanthin supplemented dry pellets on spawing of striped jack.Fisheries Science,2004,67:260-270
    223.Vishwanath W,Lilabati H and Bijen M.Biochemical,nutritional and microbiological quality of fresh and smoked mud eel fish Monopterus albus a comparative study.Food Chemistry,1998,61(1):153-156
    224.Wachtel S S.Possible role for H-Y antigen in the primary determination of sex.Nature,1975,257:235-236
    225.Wai-Sum O and Chan S T H.A study on the thyroid gland and the TSH cells in the pituitary of the ricefield eel,Monopterus albus.General and Comparative Endocrinology,1974,24:99-112
    226.Wai-Sum O and Chan S T H.A cytological study on the structure of the pituitary gland of Monopterus albus(Zuiew),General and Comparative Endocrinology,1974,24:208-222
    227.Wakahara M.Chronological changes in the accumulation of poly(A)+ RNA in developing cells of Xenopus laevis,with special reference to primordial germ cells.Development,Growth and Differentiation,1982,24(4):311-318
    228.Warner R R and Swearer S E.Social control of sex change in the bluehead wrasse,Thalassoma bifasciatum.Biol Bull 1991,181:199-204
    229.Wasson K M,Gower B A,Watts S A(2000) Responses of ovaries and testes of lytechinus variegatus(Echinodermata:Echinoidea) to dietary administration of estradiol, progesterone and testosterone. Marine biology, 2000, 137: 245-255
    230. Watanabe T, Vassallo-Agius R. Broodstock nutrition research on marine finfish in Japan. Aquaculture, 2003, 227(1-4): 63-75
    231. Wasson K M, Gower B A, Watts S A. Responses of ovaries and testes of lytechinus variegatus (Echinodermata: Echinoidea) to dietary administration of estradiol, progesterone and testosterone. Mar Biol, 2000, 137: 245-255
    232. Yasin M, Dalkin C, Haisenleder D J. Gonadotropin-releasing hormone(GnRH) pulse pattern regulates GnRH receptor gene expression: augmentation by estradiol. Endocrinology, 1991,136(4): 1559-1564
    233. Yeung W S B and Chan S T H. The plasma sex stetoid profiles in the freshwater, sex-reversing teleost fish, Monopterus albus (Zuiew). Gen Comp Endocrinol, 1987, 65: 233-242
    234. Yeung W S B, Chen H and Chan S T H. The in Vitro Metabolism of Radioactive Androstenedione and Testosterone by the Gonads of the Protogynous Monopterus albus at Different Sexual Phases: A Time-Course and Seasonal Study. General and Comparative Endocrinology, 1993, 89:313-322
    235. Yeung W S B, Chen H and Chan S T H. In Vivo Effects of LH and LHRH-Analog on Sex Reversal and Plasma Sex Steroid Profiles in the Female Monopterus albus. General and Comparative Endocrinology, 1993, 90:23-30
    236. Yii S H, Mun Y L and Tse S C. Acute toxicity of organochlorine insecticide endosulfan and its effect on behaviour and some hematological parameters of Asian swamp eel (Monopterus albus, Zuiew), Pesticide Biochemistry and Physiology, 2007, 89(1): 46-53