随焊旋转挤压控制铝合金薄板焊接应力变形及防热裂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次提出了随焊旋转挤压(WTRE)控制铝合金薄板焊件残余应力变形及防止热裂纹新方法。通过一特定形状的挤压头对电弧后方的焊缝区金属进行旋转挤压,其所产生的塑性延展能够降低焊缝区的纵向残余拉应力水平,从而起到减小甚至消除焊接残余变形的作用。该方法还能有效抑制铝合金焊接热裂纹的产生和扩展,从而为解决高强铝合金薄板焊件的大变形和高热裂问题提供了一种行之有效的新工艺。
     根据随焊旋转挤压工作原理,搭建了WTRE装置设计框图,并研制出能很好满足试验要求的WTRE装置。
     采用三维弹塑性有限元法对2A12T4铝合金薄板常规焊件和WTRE焊件的焊接应力和变形进行了模拟,并揭示了随焊旋转挤压控制焊接残余变形的机理:挤压头对焊缝区金属的塑性延展能够减小该区域中的纵向残余拉应力,根据内应力平衡原则,WTRE焊件的纵向平均压应力值也被降低,当其低于板件的临界失稳应力时,就能消除焊接失稳变形。对于尺寸为270mm×130mm×2mm的2A12T4铝合金薄板焊件,采用适当的随焊旋转挤压工艺能够将其最大纵向挠度降至0.3mm以下,只有常规焊状态的4%。
     挤压头与焊枪的距离、挤压头对焊件的垂直压力、挤压头的直径、挤压头的转速和其在焊件上的作用位置是影响焊接变形控制效果的重要参数。挤压头与焊枪距离的确定原则为:在保证焊件挤压后冷却过程中不产生会导致失稳变形的残余压应力的前提下,挤压头与焊枪的距离应尽可能小。旋转挤压过程产生的摩擦热从两个相反的方面影响焊接变形的控制效果,少量的摩擦热能够提高挤压头下方金属的塑性,因而有利于焊接变形的控制,但过多的摩擦热会带来不期望的应力应变场,从而不利于焊接变形的控制。保持其它工艺参数不变,挤压头对焊件的垂直压力有一个最佳范围,在此范围内焊接变形的控制效果较好,过大或过小的垂直压力均不利于焊接变形的控制。旋转挤压对焊接变形的有效控制区域是焊缝和近缝区,当焊缝和近缝区金属均能被挤压头充分延展时,才能获得理想的变形控制效果。
     根据BTR区间焊缝金属横向应变的产生机制,提出了横向拘束控制焊接热裂纹的方法。该方法控制焊接热裂纹的机理主要包括两个方面,一是通过限制焊件回转变形来减小BTR区间焊缝金属的横向拉伸应变,二是通过增加熔池两侧受热压缩区金属横向不均匀膨胀程度来增大BTR区间焊缝金属的横向压缩应变。
     随焊旋转挤压能够有效抑制铝合金焊接热裂纹的产生和扩展,其机理基于对起弧端热裂纹的压合和对焊件回转变形的拘束作用。试验结果表明,挤压头对焊件的垂直压力和杆枪距是决定焊接热裂纹控制效果的两个重要参数,在合适的参数规范下,可获得无热裂纹的2A12T4铝合金焊件。
     随焊旋转挤压对铝合金焊缝的表面形貌影响很大,常规焊缝表面比较粗糙,在焊趾部位存在明显应力集中,而随焊旋转挤压焊缝表面由均匀细密排列的圆环纹组成,表面较为平整光滑,降低了几何缺口效应的影响。
     拉伸和疲劳试验结果表明,2A12T4铝合金WTRE接头的抗拉强度比常规焊接头平均提高了约40MPa,前者的疲劳寿命也明显高于后者。金相组织和拉伸断口形貌观察表明,随焊旋转挤压能够细化晶粒,减少气孔等焊接缺陷。
In this dissertation, a new method named Welding with Trailing Rotating Extrusion (WTRE) is proposed to control welding stress, deformation and hot cracking of aluminum alloy thin-plate weldments. This method makes use of a extrusion head with given form of end face to exert proper pressure, while the extrusion head is rotating, on metals in and around the weld behind the welding arc to produce plastic elongation, which can reduce the level of longitudinal residual tensile stress in the weld and its neighbouring zone, so mitigate or even eliminate welding residual deformation. WTRE can also restrain effectively the germination and expansion of hot cracks in aluminum alloy weldments and so comes forth to be an innovative technology used for solving the buckling distortion and hot cracking problems of high-strength aluminum alloy thin-plate weldments.
     According to basic principle of WTRE, the design block diagram of WTRE device was set up and a workable WTRE device that meets the experimental requirement well was developed.
     Three-dimensional elastic-plasticity FEM was adopted to simulate stress and deformation of conventional weldment and WTRE weldment in 2A12T4 aluminum alloy. The mechanism of controlling welding residual deformation by WTRE was disclosed that the plastic elongation of metals in and around the weld due to the action of extrusion head can reduce longitudinal residual tensile stress in the weld and its neighboring zone, and as a result decrease the level of average longitudinal residual compressive stress in the whole weldment. The buckling distortion of thin-plate weldments will disappear if only the average longitudinal residual compressive stress can be decreased to below of critical buckling stress by WTRE treatment. As for thin-plate weldments made of 2A12T4 aluminum alloy sheets of 2mm thickness, 130mm width and 270mm length, WTRE treatment can decrease their maximum longitudinal deflection to below 0.3mm, only 4% of conventional as-welded.
     The control effect of welding residual deformation depends on some technical parameters, such as the distance between extrusion head and welding gun, the vertical pressure exerted on workpieces, the diameter of extrusion head, the rotary speed of extrusion head, and the force position of extrusion head. The distance between extrusion head and welding gun is determined by the principle that, on the premise of guaranteeing the weldments not to generate overmuch compressive stress that may result in buckling distortion after the rotating extrusion treatment, the distance between extrusion head and welding gun should be as near as possible. The friction heat produced in the process of rotating extrusion influences the control effect of welding deformation from two opposite aspects. A small quantity of friction heat avail the deformation control due to the contribution of heat to the enhancement of metal plasticity, but too much of it will bring about an unexpected stress-strain field, which goes against the mitigation of welding residual deformation. Under the condition of keeping other technical parameters unchanged, the vertical pressure exerted on workpieces has an optimal range. Either excessive pressure or deficient one goes against the control effect of welding residual deformation. The effective force area for WTRE treatment is the weld and its neighbouring zone. Only when metals both in and around the weld are elongated by extrusion head can an ideal control effect of welding residual deformation be attained.
     On the basis of the generation mechanism of transverse strain in weld metal which temperature is in BTR, a new method that exerts transverse restraint on weldments to reduce the tendency of welding hot cracking is proposed in this dissertation. The mechanism of transverse restraint method includes two aspects: one is to decrease transverse tensile strain in BTR weld metal through restricting externally-expanded deformation of weldments; another is to increase transverse compressive strain in BTR weld metal through heightening the extent of non-uniform heat expansion in metal of heat compressional zone beside molten pool.
     WTRE can inhibit the germination and expansion of welding hot cracks based on the mechanism of merging the inceptive cracks in the arc-starting end and restricting externally-expanded deformation of weldments. Experimental results showed that the vertical pressure exerted on weldments and the distance between extrusion head and welding gun are important technological parameters that have close relationship with control effect of welding hot cracking. When appropriate technological parameters are adopted, 2A12T4 aluminum alloy welds treated with WTRE have no hot cracks.
     WTRE has positive effect on surface quality of aluminum alloy welds. The surface of conventional welds is rough and there exists sharp stress concentration at the weld toes, while the surface of WTRE welds is flat and composed of regularly distributed ring stripes, which decreases disadvantageous influence of geometric notch effect.
     The results of tensile test showed that the tensile strength of 2A12T4 alum-inum alloy WTRE welded joints is about 40MPa more than that of conventional welded joints. The fatigue test revealed that WTRE can enhance fatigue life of aluminum alloy welded joints evidently. The observation of metallurgical structures and tensile fractures confirmed the efficiency of WTRE in refining crystal grains as well as reducing air holes and other welding defects.
引文
1第一机械工业部哈尔滨焊接研究所.焊接裂缝金相分析图谱.黑龙江科学技术出版社.1981:1~55
    2 J.Canas, R.Picon and F.Paris. Experimental and Numerical Analysis of Residual Stresses in Welded Al-5083-O Aluminium Plates. Welding Journal.1994,8(1):30~35
    3 J.Krebs, M.Kassner. Influence of Welding Residual Stresses on Fatigue Design of Welded Joints and Components. Welding in the Worl-d.2007,51(7/8):54~68
    4 H.T.Kang, Y.L.Lee and X.J.Sun. Effects of Residual Stress and heat treatment on fatigue strength of weldments. Materials Science and Engineering A.2008,(497):37~43
    5中国机械工程学会焊接学会编.焊接手册(第二版)第3卷(焊接结构).机械工业出版社.2001:103~250
    6奥凯尔勃洛姆HO.焊接应力与变形.中国工业出版社.1958:36~41
    7库兹米偌夫.船体结构的焊接变形.国防工业出版社.1978:23~29
    8王者昌.关于焊接应力应变问题的再探讨.焊接学报.2006,27(8): 108~112
    9汪建华,陆皓.焊接残余应力形成机制与消除原理若干问题的讨论.焊接学报.2002,23(3):75~79
    10王者昌.焊接应力变形原理若干问题的探讨(一).焊接学报.2008,29(6):73~76
    11王者昌.焊接应力变形原理若干问题的探讨(二).焊接学报.2008,29(7):69~72
    12杨建国,张学秋,刘雪松,方洪渊.关于焊接残余应力与应变问题的分析与探讨.焊接.2008,(4):7~10
    13 R.H.Leggatt. Residual Stresses in Welded Structures. International Journal of Pressure Vessels and Piping.2008,(85):144~151
    14董俊慧,霍立兴,张玉凤.环焊缝管道焊接应力应变三维有限元分析.机械工程学报.2001,37(12):86~90
    15张建强,张国栋,赵海燕,岳红杰,张海泉,鹿安理.铝合金薄板焊接应力三维有限元模拟.焊接学报.2007,28(6):5~9
    16侯志刚.薄板结构焊接变形的预测与控制.华中科技大学博士学位论文.2005:44~110
    17岳红杰,赵海燕,蔡志鹏,张建强,林健,倪淑凤.铝合金薄板焊后碾压控制焊接应力变形的数值模拟.机械工程学报.2006,42(6):217~220
    18陆皓,陈俊梅,陈家本.薄板结构焊接变形数值模拟及其应用.电焊机.2007,37(6):71~74
    19 M.Slovacek, V.Divis and L.Junek. Numerical Simulation of Welding Process Distortion and Residual Stress Prediction, Heat Source Model Determination. Welding in the World.2005,49(11/12):15~29
    20 D.Siegele, M.Brand and C.Veneziano. Numerical Welding Simulation of an Aluminium Automotive Component. Welding in the World.2008, 52(1/2):27~33
    21 Y.Mikami, M.Mochizuki, M.Toyoda and Y.Morikage. Measurement and Numerical Simulation of Angular Distortion of Fillet Welded T-joints. Welding International.2007,21(8):547~560
    22 M.Mochizuki, J.Katsuyama and R.Higuchi. Study of Residual Stress Distribution at Start-finish Point of Circumferential Welding Studied by 3D-FEM Analysis. Welding in the World.2005,49(11/12):40~49
    23 W.Liang, D.Deng, S.Sone and H.Murakawa. Prediction of Welding Distortion by Elastic Finite Element Analysis Using Inherent Deformation Estimated through Inverse Analysis. Welding in the World.2005, 49(11/12):30~39
    24 D.Deng, H.Murakawa. Prediction of Welding Distortion and Residual Stress in a Thin Plate Butt-welded Joint. Computational Materials Science.2008,(43):353~365
    25 M.Brand, D.Siegele. Numerical Analysis of Distortion and Residual Stresses by Usage of Finite Element Analyses of Modern Dual Phase Steels While Welding. Welding in the World.2005,49(spec.):344~359
    26余淑荣.不等厚铝合金薄板激光拼焊及数值模拟.兰州理工大学博士学位论文.2007:91~105
    27 F.M.Morales, A.D.Scott and M.R.Perez.Stress Determination in Fillet Weld, of a Reinforced and Pressurized Pipe, Employing Elastic and Elastic-plastic Material Models, through Finite Element Analysis. Welding International.2008,22(12):840~846
    28 M.Z.Abdein, D.Nelias, J.F.Jullien and D.Deloison. Prediction of Laser Beam Welding-induced Distortions and Residual Stresses by Numerical Simulation for Aeronautic Application. Journal of Materials Processing Technology.2009,(209):2907~2917
    29 G.A.Moraitis, G.N.Labeas. Prediction of Residual Stresses and Dist-ortions due to Laser Beam Welding of Butt Joints in Pressure Vessels. International Journal of Pressure Vessels and Piping.2009,(86):133~142
    30史耀武.焊接技术手册.福建科学技术出版社.2005:515~526
    31关桥,吴谦,邵亦陈,彭文秀,郭汝华,沈世梅.预变形工艺研究.航空学报(工程版).1986,(4):5~10
    32关桥.钛合金薄壁构件的焊接应力与变形.国际航空.1979,(2):5~10
    33 L.M.洛巴诺夫.巴顿焊接研究所在结构焊接及强度领域的最新研究方向.第九次全国焊接会议论文集.天津,1999:D48~D61
    34方洪渊.焊接结构学.机械工业出版社.2008:114~119
    35关桥.推广应用焊缝滚压工艺中的几个问题.航空工艺技术.1980: 21~26
    36范成磊.随焊冲击碾压控制焊接应力变形及接头质量的研究.哈尔滨工业大学博士学位论文.2004:2~71
    37饶德林,陈立功,倪纯珍,顾振波.振动时效技术的研究现状.焊接.2004,(11):5~7
    38蔡杰,王元良,陈明鸣.大型焊接结构残余应力测试及振动消除.焊接学报.1991,12(2):89~95
    39高翔,柯新和.振动处理对铝合金焊接结构变形与内应力的影响.宇航材料工艺.1999,(2):38~42
    40周承波,刘志民.钢结构焊接变形的火焰矫正施工方法.内蒙古科技与经济.2009,(180):93~95
    41谭胜禹,梁殿军.爆炸法消除三峡引水压力钢管焊接残余应力.爆破.2004,21(4):77~78
    42 C.G.Schmidt, D.A.Shockey. Reduction of Residual Stresses in Weld-ments with Explosive Treatments. Welding Journal.1992,71(12): 443s~446s
    43唐非,鹿安理,方慧珍,罗湘军.一种降低残余应力的新方法-脉冲磁处理法.焊接学报.2000,21(2):29~31
    44林健,黄士卫,蔡志鹏,赵海燕,鹿安理.磁处理对低碳钢焊接残余应力作用规律的实验研究.机械工程学报.2006,42(5):208~213
    45 Y.Sano, M.Obata and T.Yamamoto. Residual Stress Improvement of Weldment by Laser Peening.Welding International.2006,20(8):598~601
    46 V.I.Pavlovsky, K.Masubuchi. Residual Stress and Distortion in Welded Structures. WRC Bulletin.1994,388(1):10~16
    47 P.M.Levlev. Tension of Welded Butt Edges as a Means of Preventing Distortion in Thin Sheets. Trudy TsNIIRechFlot.1995,(31):87~100
    48 L.M.Lobanov, V.I.Pavlovsky. Deformation-free Welding of Thin-walled Structures in Aluminum Alloys. Welded Structure Proceedings of the International Conference. Kiev, Nauk. Dumka,1990: 47~50
    49李敬勇,章明明,李鹰,李建国.预拉伸对铝合金焊接残余应力和变形的影响.热加工工艺. 2005,(12):15~17
    50赵耀邦.双向预置应力控制焊接变形及防止热裂纹研究.哈尔滨工业大学硕士学位论文. 2007:16
    51 G.T.Zhou, X.S.Liu, J.G.Yang and H.Y.Fang. Welding Deformation Controlling of Aluminum-alloy Thin Plate by Two-direction Pre-stress Method. Materials Science and Engineering A.2009,(499):147~152
    52 Q.Guan. A Survey of Development in Welding Stress and Distortion Controlling in Aerospace Manufacturing Engineering in China. Welding in the World.1999,43(1):64~74
    53郭绍庆,徐文立,刘雪松,田锡唐.温差拉伸控制铝合金薄板的焊接变形.焊接学报.1999,20(1):34~42
    54 S.Q.Guo, X.H.Li, W.L.Xu and X.T.Tian. Welding Distortion Con-trol of Thin Aluminum Alloy Plate by Static Thermal Tensioning. Journal of Material Science & Technology. 2001,17(1):163~164
    55 M.V.Deo, P.Michaleris and J.Sun. Prediction of Buckling Distortionof Welding Structures. Science and Technology of Welding and Joining. 2003,(8):55~61
    56 M.V.Deo, P.Michaleris. Mitigation of Welding Induced Buckling Distortion Using Transient Thermal Tensioning. Science and Technology of Welding and Joining.2003,(8):49~54
    57关桥,张崇显,郭德伦.动态控制的低应力无变形焊接新技术.焊接学报.1994,15(1):8~15
    58 Q.Guan, C.X.Zhang. Dynamic Control of Welding Distortion by Moving Spot Heat Sink. Welding in the World.1999,33(4):308~313
    59姚君山,张彦华,张崇显,郭德伦.有源强化传热控制薄板焊接压曲变形的研究.机械工程学报. 2000,36(9):55~60
    60郭绍庆,田锡唐,徐文立.随焊激冷减小铝合金薄板的焊接变形.焊接.1998,(9):8~11
    61 S.Q.Guo, W.L.Xu, X.H.Li, X.Wan and X.T.Tian. Finite Element Analysis of Welding Distortion Control by Trailing Intense Cooling. China Welding.2000,9(2): 127~134
    62徐文立.随焊锤击控制铝合金薄板焊接应力变形及接头质量的研究.哈尔滨工业大学博士学位论文. 2001:25~27
    63徐文立,黎明,刘雪松,田锡唐.动态低应力小变形无热裂随焊锤击焊接技术研究.材料科学与工艺. 2001,9(1):6~10
    64 W.L.Xu, C.L.Fan, H.Y.Fang and X.T.Tian. New Development in Welding Thin-shell Aluminum Alloy Structures with High Strength. China Welding. 2004,13(1):27~30
    65С.А.Куркин.Устранениекороблениясварныхтонкостенныхэлемен-товизалюминиевыхсплавовАМг6и1201путемпрокаткишвароликомвследзасварочнойдргой.СварочноеПроизводство. 1984, (10):32~34
    66 S.A.Kurkin, V.I.Anufriev. Preventing Distortion of Welded Thin-walled Members of AMg6 and 1201 Alloys by Rolling the Weld with a Roller behind the Welding Arc. Svar. Proiz.1984,(10):32~34
    67 G.F.Kondakov, A.N.Martynov. Effect of Methods of Local Deform-ation on Residual Stresses and Properties of Welded Joints. Svar.Proiz.1986,(5):18~20
    68范成磊,方洪渊,杨建国,王霄腾,黎明.随焊冲击碾压控制焊接应力变形新方法.机械工程学报.2004,40(8):87~90
    69范成磊,方洪渊,陶军,田应涛,黎明.随焊冲击碾压控制平面封闭焊缝残余变形研究.哈尔滨工程大学学报.2005,26(2):238~241
    70 T.Zacharia. Dynamic Stresses in Weld Metal Hot Cracking. Welding Journal.1994,73 (7):164s~172s
    71 Z.L.Feng. A Computational Analysis of Thermal and Mechanical Conditions for Weld Metal Solidification Cracking. Welding in the World.1994,33(5):340~347
    72 H.Herold, M.Streitenberger and A.Pchennikov. Hot Cracking Theory by Prokhorov and Modeling of the PVR Test. Welding in the World.2001,45 (3/4):17~22
    73周振丰,张文钺.焊接冶金与金属的焊接性.机械工业出版社.1988:198~206
    74 J.Schuster. Fundamental Considerations with Regard to the Formation of Hot Cracks. Welding Research Abroad.1999,45 (2):2~7
    75郭绍庆,田锡唐,徐文立.不同拘束条件下高强铝合金LY12CZ焊接热裂纹倾向的研究.材料科学与工艺.1998,6(3):61~65
    76 E.Cicala, G.Duffet, H.Andrzejewski and D.Grevey. Hot Cracking in Al-Mg-Si Alloy Laser Welding-Operating Parameters and Their Effects. Materials Science and Engineering A.2005,(395):1~9
    77 F.Matsuda, K.Nakata. Moving Characteristics of Weld Edges during Solidification in Relation to Solidification Cracking in GTA weld of Aluminum Alloy Thin Sheet. Transactions of JWRI.1980,l9(2):83~93
    78 A.Ankara, H.B.Ari. Determination of Hot Crack Susceptibility in Various Kinds of Steels. Material & Design.1996,17(5/6):261~265
    79 J.H.Dudas, F.R.Collins. Preventing Weld Cracking in High Strength Aluminum Alloys. Welding Journal.1966,45(6):241~249
    80 V.Ploshikhin, A.Prikhodovsky, A.Llin and M.Makhutin. Influence of the Weld Metal Chemical Composition on the Solidification Cracking Susceptibility of AA6056-T4 alloy. Welding Journal.2006,50(11/12):46~50
    81 G.D.Janaki Ram, T.K.Mitra and M.K.Raju. Use of Inoculants to Refi-ne Weld Solidification Structure and Improve Weldability in Type 2090 Al-Li Alloy. Materials Science and Engineering A.2000,(276):48~57
    82高大路,贺运佳,王引真.铈含量对2090合金焊缝结晶裂纹倾向的影响.第七届全国焊接学术会议论文集(第四册).青岛,1993:295~299
    83凌泽民.含稀土钇的LY12CZ焊接接头热裂纹和应力腐蚀开裂性能.哈尔滨工业大学硕士学位论文. 1988:46~51
    84方洪渊,董志波,徐文立.随焊锤击防止薄板焊接热裂纹的工艺研究.焊接. 2002,(3):17~20
    85彭云,田锡唐,钟国柱.随焊碾压防止铝合金焊接热裂纹的云纹模拟和试验研究.物理测试.1995,(2):8~11
    86范成磊,方洪渊,陶军,黎明.随焊冲击碾压控制焊接应力变形防止热裂纹机理.清华大学学报.2005,45(2):159~162
    87范成磊,方洪渊,陶军,王霄腾.随焊冲击碾压减小应力变形防止热裂纹应变场分析.焊接学报.2004,25(6):47~50
    88 W.Liu, X.Tian and X.Zhang. Preventing Welding Hot Cracking bySynchronous Rolling during Welding. Welding Journal.1996,75(9): 297s~304s
    89刘伟平,田锡唐,张修智.一种防止高强铝合金焊接热裂纹产生的新方法.焊接学报.1995,16(2):106~111
    90王者昌.局部快冷在熔化焊接中的应用.第九次全国焊接会议论文集.天津,1999:2-66~2-69
    91田锡唐,郭绍庆,徐文立.随焊激冷对LY12CZ铝合金焊接热裂纹倾向影响的研究.宇航材料工艺.1998,(5):48~52
    92郭绍庆,徐文立,李晓红,田锡唐.随焊激冷防止高强铝合金焊接热裂纹的数值模拟.材料科学与工艺.1999,7(增刊):116~120
    93 Y.P.Yang, P.Dong and J.Zhang. A Hot-cracking Mitigation Technique for Welding High-strength Aluminum Alloy. Welding Journal.2000, 79(1): 9s~17s
    94 H.Sekiguchi, H.Miyake. Prevention of Welding Cracks through a Local Heating Process. Journal of Japan Welding Soc.1982,6(1):59~64
    95 I.E.Hernandez, D.H.North. The Influence of External Local Heating in Preventing Cracking during Welding of Aluminum Alloy Sheet. Welding Journal.1984,(3):84s~90s
    96王者昌,崔岩,高季明.逆向焊接温度场原理及应用.宇航材料工艺.1996,(1):22~26
    97 W.Xu, H.Y.Fang, J.G.Yang, D.Xu and W.L.Xu. New Technique to Control Welding Hot Cracking with Trailing Impactive Electromagnetic Force. Materials Science and Engineering A.2008,(488):39~44
    98 W.Xu, H.Y.Fang, D.Xu, W.L.Xu, X.S.Liu and J.G.Yang. Controlling Welding Hot Cracking Based on Electromagnetic Force. Science and Technology of Welding and Joining. 2007,12(7):659~663
    99徐达,许威,徐文立,方洪渊.电磁力随焊控制焊接应力装置的研制及应用.焊接学报.2008,29(1): 9~12
    100 W.Czernysz, R.Ryzow and E.Turyk. Influence of the Electromagnetic Effect in Welding on the Increase in Weld Resistance to Hot Cracking. Welding International.2004,18(4):257~264
    101 D.拉达伊.焊接热效应.机械工业出版社.1997:189~191
    102薛大为.板壳理论.北京工业学院出版社.1988:55~58
    103 J.Goldak, A.Chakravarti and M.Bibby. A New Finite Element Model for Welding Heat Sources. Metallurgical Transactions B.1984,15B:299~305
    104汪建华,姚舜,魏良武,戚新海.搅拌摩擦焊接的传热和力学计算模型.焊接学报.2000,21(4): 61~64
    105 J.Senkara, H.Zhang. Cracking in Spot Welding of Aluminum Alloy AA5754. Welding Journal. 2000,79(7):194s~201s
    106 S.Shimizu, E.Yamanaka and H.Okuda. Study on Cracking in Electron Beam Welding of A6061. Welding International.2001,15(10):776~782
    107 H.Herold,M.Streitenberger and A.Pchennikov. Modelling of One Sided Welding to Describe Hot Cracking at the End of Longer Butt Weld Seams. Welding in the World.1999,43(2):56~64
    108刘会杰.焊接冶金与焊接性.机械工业出版社.2007:209~215