转基因白桦微繁过程中DNA甲基化的变异机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选取不同整合方式的转基因白桦无性系,以其微繁过程中不同发育阶段(腋芽、幼嫩愈伤组织、老化愈伤组织、出芽愈伤、再生芽、根)及特殊状态愈伤组织(花药愈伤组织、红斑状愈伤组织、木质化愈伤)作为研究材料。测定其POD、SOD、CAT、木质素、可溶性糖、可溶性蛋白、丙二醛等生理生化指标。利用甲基化敏感多态性(methylation-sensitive amplified polymorphism, MSAP)检测微繁过程中DNA甲基化水平和模式的变化。以酶联免疫技术(ELISA)测定甲基转移酶活性的变化,应用荧光定量PCR技术测定甲基转移酶相关基因(DRM和MET, DRM是重头甲基化酶(de novo methyltransferases)的基因,MET是维持甲基化酶(maintenance methyltransferase)的基因)及外源基因(BGT)的表达水平。从而揭示微繁再生过程中的DNA甲基化变异机制。所得结果如下:
     1.微繁过程中(脱分化和再分化),POD、SOD和CAT三个保护酶活性、可溶性糖含量、呈先升高(1~2倍)后降低(0.3~0.7倍)趋势,而木质素和可溶性糖呈先降低后升高趋势。老化愈伤组织保护酶活性、可溶性糖降低仅为幼嫩愈伤组织的0.2~0.4倍。愈伤组织老化阶段保护酶活性、木质素和可溶性总蛋白含量显著降低(0.3~0.7倍),MDA含量升高(1.5倍)。
     2.DNA甲基化水平分析表明,微繁过程中不同阶段的转基因Tp46号株系为9.93%~14.77%,转基因Tp74号株系为13.33%~21.22%,非转基因对照(CK)为11.92%~17.03%,3个无性系变化趋势相似,在微繁过程中(脱分化和再分化),呈先降低后升高的趋势,平均值由13.62%下降至11.89%,又上升至13.42%,腋芽诱导形成愈伤组织阶段主要发生去甲基化,其MSAP模式变化以出现新条带为主(64.52%~92.59%)。再生芽诱导生根阶段,DNA甲基化平均值由14.70%升高到16.79%, MSAP模式以条带消失为主(79%)。老化愈伤组织DNA甲基化平均值(15.06%)高于幼嫩愈伤组织(11.89%),其MSAP模式变化以条带消失为主(55.56%)。红斑状愈伤组织和木质化愈伤组织甲基化水平略高于幼嫩愈伤组织。MSAP模式中内外侧甲基化位点转换频率最低,幼嫩愈伤组织形成再生芽过程最高仅为6.85%。
     3.甲基转移酶基因表达,微繁过程(脱分化和再分化),除Tp46号MET基因表达含量升高外,3个无性系两个甲基转移酶基因表达都降低,最低仅为腋芽的0.06倍,愈伤组织形成再生芽过程中,甲基转移酶基因表达水平升高,最高为腋芽的6.73倍。特殊状态愈伤组织甲基转移酶活性均高于幼嫩愈伤组织,最高老化愈伤组织为幼嫩愈伤的20倍。
     4.外源基因表达,在微繁过程(脱分化和再分化)外源基因表达先升高后降低,升高倍数约为1.2倍,生根过程外源基因表达显著降低,根中仅为腋芽的0.36倍。老化愈伤组织、花药愈伤组织的外源基因表达水平低于幼嫩愈伤,约为幼嫩愈伤组织的0.6倍。
In this study, We selected different transgenic birch clones, including different stages of micropropagation process(buds, young callus, aging callus, sprouting callus, buds, roots)and the special status of callus(anther callus, erythema-like callus, lignified callus, the red callus). The POD activity, SOD activity, CAT activity, lignin content, soluble sugar content, soluble protein content, MDA content were measured. DNA methylation level and patterns were revealed by MSAP. The methyltransferase activity changes and methyltransferase gene(DRM and MET) and the foreign gene(BGT) changes in expression levels were analyzed by ELISA and real-time PCR. The results were as follows:
     1. In the process of micropropagation(dedifferentiation and regeneration), the activity of POD, SOD and CAT and soluble sugar were first increased(1 to 2 times than control) and then decreased(0.3 to 0.7 times than control). The content of lignin and soluble sugar were opposite. The POD, SOD, CAT activity, lignin and soluble protein content in aging callus were significantly decreased, but the MDA content was increased(1.5 times).
     2. The DNA methylation level of Tp46 wes from 9.93% to 14.77%, the Tp74 was from 13.33% to 21.22%, CK was from 11.92% to 17.03% in the micropropagation process(dedifferentiation and regeneration). The average DNA methylation level reduced from 13.62% to 11.89% first, then increase to 13.42%. The phase of buds induced into callus mainly demethylatied, whereas the pattern of MSAP is increasing bands (64.52%-92.59%). The average of DNA methylation in rooting stage were increased from 14.70% to 16.79%, while the main MSAP pattern was decreasing bands(55.56%). The methylation level of red callus and lignified callus were higher than young callus. The conversion of insite and outsite methylation was the lowers, the young callus indeced into regenerated bud only up to 6.85%.
     3. DRM is the gene of de novo methyltransferases, while, MET is the gene of maintenance methyltransferase. During the micropropagation process, the phase of bud induced into callus, the expression levels of MET and DRM were increased except MET of Tp46. The methyltransferase activiti of special status callus were higher than the young callus, the highest was the aging callus, about 20 times to young callus.
     4. The expression of exogenous gene BGT during the micropropagation (dedifferentiation and regeneration) was first increased(1.2 times), then decreased. During rooting stage, the expression of BGT was significantly reduced only to 0.36 times than control. The special status calluses were lower than the young callus (0.6 times).
引文
[1]郑万均.中国树木志.北京:中国林业出版社,1983,1~5
    [2]何武江,王淑坤,王艳霞.几种珍贵森林树种的栽培技术及其园林应用.中国林副产,2004,71(4):48~50.
    [3]杨德浩,杨敏生,王进茂.白桦种源及繁殖的研究现状.河北农业大学学报,2003,26(z1):101~104.
    [4]詹亚光,王玉成,王志英等.白桦的遗传转化及转基因植株的抗虫性.植物生理与分子生物学学报,2003,29(5):380~386.
    [5]孙刚,王雪萍.红桦白桦二种野生植物籽油的脂肪酸成分的研究.青海农林科技,2000,3:7~8.
    [6]陶静,詹亚光.白桦组培再生系统的研究.东北林业大学学报.1998,26(5):6~9.
    [7]崔艳霞.白桦树皮化学成分的研究.东北林业大学学报.1994,22(4):56~60.
    [8]詹亚光,曾凡锁,李彩华.转基因白桦的遗传变异分析.中国生物工程杂志,2005,25(1):59~64.
    [9]王志英,范海娟,薛珍等.转基因白桦抗性等级划分及其对幼虫中肠的影响.东北林业大学学报,33(3):38~39,66.
    [10]曾凡锁,詹亚光.转基因植物中外源基因的整合特性及其研究策略.植物学通报,2004,21(5):565~577.
    [11]Y.I. Buryanov, T.V. Shevchuk. DNA methyltransferases and structural-functional specificity of eukaryotic DNA modification. Biochemistry (Moscow),2005,70(7): 885~899.
    [12]R.J. Klose, A.P.Bird. Genomic DNA methylation:the mark and its mediators. Trends Bioche Sci,2006,31(2):89~97.
    [13]B.F. Vanyushin. DNA methylation in plants. Curr Top Microbiol Immunol,2006,301(11): 67~122.
    [14]陈小强,王春国.植物DNA甲基化及其表观遗传作用.细胞生物学杂志,2007,29:519~524.
    [15]P.E. Jullien, T. Kinoshita, N. Ohad, F. Berger. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell,2006, 18(6):1360~1372.
    [16]J.A. Jeddeloh, T.L. Stokes, E.J. Richards. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet,1999,22:94~97.
    [17]M. Okuwaki, A. Verreault. Maintenance DNA Methylation of Nucleosome Core Particles. J BiolChem,2004,279:2904~2912.
    [18]Y. Wada, H. Ohya, Y. Yamaguchi, N. Koizumi, H. Sano. Preferential de Novo Methylation of cytosine residues in non-CpG sequences by a domains rearranged DNA methytransferase from tobacco plants. J Biol Chem,2003,278(43):42386~42393.
    [19]A. Bird. DNA methylation patterns and epigenetic memory. Genes & Dev,2002,16:6~21.
    [20]Y. Fu, A.P.Hsia, L. Guo, P.S. Schnable. types and frequencies of sequencing errors in methyl-filtered and high cot maize genome survey sequences. Plant Physiol,2004,135(4): 2040~2045.
    [21]T. Kakutani, J.A. Jeddeloh, S.K.Flowera, E.J. Richards. Developmental abnormalities and epimutations associated with DNA pomethylation mutations. Proc Natl Acad Sci USA, 1996,93(22):12406~12411.
    [22]E.J. Finnegan, W.J. Peacock, E.S. Dennis. DNA methylation, a key regulation of plant development and other processes. Curr Opion Genet Develop,2000,10(2):217~223.
    [23]M.J. Ronemus, M. Galbiati, C. Ticknor. Demethylation-induced developmental plieotropy in Arabidopsis. Science,1996,273 (2):654-657.
    [24]李晓毓,赵德刚,李丰伯.一种适用于木本植物RNA提取的方法,安徽农学通报,2007,13(23):42,56.
    [25]G.J. King. Morphological development in brassica oleraceais modulated by in vivo treatment with 5-azacytidine. Jourm Horticul Sci,1995,70(2):333~342.
    [26]H.V. Sano, I. Kamada. S.Youssefian, M.Katsumi, H.Wabiko. A single treatment of rice seedling with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA. Molecular Genetics and Genomics,1990,220(3):441~447.
    [27]L.J. Nie, Z.C. Wang. The molecular mechanism and application of DNA methylation inhibitor in the developmental biology of plants.Journal of Nuclear Agricultural Sciences, 2007,21(4):362-365.
    [28]E. Taline, P. Florence, V. Herve. Arabidopsis RPA2:A Genetic Link among Transcriptional Gene Silencing, DNA Repair, and DNA Replication. Current Biology,2005,15(21): 1919~1925.
    [29]I. Broer. Stress inactivation of foreign genes in transgenic plants. Field Crops Research, 1996,45(1-3):19~25.
    [30]J. Clemens, R.E. Henriod, D.G. Bailey, P.E. Jameson. Vegetative phase change in metrosideros:shoot and root restrictiopn. Plant Gro Regul,1999,28(3):207~214.
    [31]P.V. Aderkas, J.M. Bonga. Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment.Tree Physiol, 2000,20(14):921~928.
    [32]郭长花,康向阳.树木发育中的阶段转变研究进展.生物技术通讯,2008,19(5):784~786.
    [33]M. Wassenegger. RNA-directed DNA methylation. Plant Mol Biol,2004,43(2-3):203~220.
    [34]A.H. Ishfaq, A.L. Li, S.L. Zhang. DNA-Methylation variation at some loxi in transition from juvenile to mature phase of crab apple. JAgric Res,2000,38(1):43~52.
    [35]Y.Y. Ford, J.M. Taylor, P.S. Blake, T.R. Marks. Gibberellin A3 stimulates adventitious rooting of cuttings from cherry (Prunus acium). Plant Growth Regul,2002,37(2): 127~133.
    [36]H. Andres, B. Fernandez, R. Rodriguez, A. Rodriguez. Phytohormone contents in Corylus avellana and their relationship to age and other develomengtal processes. Plant Cell Tiss Organ Cult,2002,70(2):173~180.
    [37]E. Tanimoto. Regulation of root growth by plant hormones-roles for auxin and gibberllin.Crit Rev Plant Sci,2005,24(4):249~265.
    [38]V. Luis, H. Rodrigo, M. Monica, L.R. Jose, S. Esterlla, V. Marcos, B. Maria, F.Isabel, F. F. Mario, J.C. Maria. Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tiss Organ Cult,2007,91(2):75~86.
    [39]O. Monteuuis. Maturation concept and possible rejuvenation of arborescent species. Limits and promises of shoot apical meristems to ensure successful cloning. In:Breeding tropical trees:population structure and genetic improvement strategies in clonal and seedling forestry. Proc Conference IUFRO,1989,28:106~118.
    [40]M.F. Fraga, R. Rodriguez, M.T. Canal. In Vitro morphogenic potential of differently aged Pinus radiate trees correlates with polyamines and DNA methylation levels.Plant Cell Tiss Org Cult,2002,70(2):139~145.
    [41]F.C. Baurens, J. Nicolleau, T. Legavre, et al. Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker.Tree Physiol,2004,24(4):401-407.
    [42]侯雷平,李梅兰.DNA甲基化与植物的生长发育.植物生理学通讯,2001,37(6):584~588.
    [43]J.E. Burn, D.J. Bagnall, J.D. Metzger, E.S. Dennis, W.J. Peacock. DNA methylation, vernalization, and the initiation of flowering.Proc Natl Acad Sci USA,1993,90(1): 287~291.
    [44]R. Hasbun, L. Valledor, M. Berdasco, E. Santamaria, M.J. Canal, R. Rodriguez, D. Rios, M. Sanchez. In vitro proliferation and Genome DNA methylation in adult chestuts. Act Hort, 2005,693:333~339.
    [45]K. Manning, M. Tor, M. Poole, Y. Hong, A.J. Thompson, G.J. King, J.J. Giovannoni, G.B. Seymour. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Natu Genet,2006,38(8):948~952.
    [46]E. Teyssier, G. Bernacchia, S. Maury, A.H. Kit, L.S. Bert, D. Rolin, P. Gallusci. Tissue dependent variations of DNA methylation and endoreduplication levels during tomato fruit development and ripening. Planta,2008,228(3):391~399.
    [47]M.L. Xu, X.Q. Li, S.S. Korban. DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose(Rosa hybrida L).Theor Appl Genet,2004, 109(5):899~910.
    [48]B.S. Ahloowalia, Sherington J. Transmission of somadonal variation in wheat. Euphitca, 1989,34(2):525~537.
    [49]D.J. Heinz, Mee GWP. Plant differentiation from callus tissue of Saccharum species. Crop Sci,1969,9:346~348.
    [50]P. Devaux, A. Kilian, A. Kleinhofs. Anther culture and hordeum bulbosum-derived barley double haploids:mutations and methylation. Mole & Gener Genet MGG,1993, 241(5-6):674~679.
    [51]P.T.H. Brown. DNA methylation in plants and its role in tissue culture. Genome,1989, 31(2):717~729.
    [52]K. Harding. The methylation status of DNA derived from potato p lants recovered from slow growth. Plant Cell Tiss Org Cult,1994,37(1):31-38.
    [53]A. Causevic, M.V. Gentil, A. Delaunay, W.A. E. Soud, Z. Garcia, C. Pannetier, F. Brignolas, D. Hagege, S. Maury. Relationship between DNA methylation and histone acetylation levels, cell redox and cell differentiation states in sugarbeet lines. Planta,2006, 224(4):812~827.
    [54]M.J.M. Smulders, W.R. Kortekaas, B. Vosman. Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants. Theo Appl Genet, 1995,91(8):1257~1264.
    [55]L.P. Smykal. Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). Plant Cell Rep,2007,26(11):1985~1998
    [56]聂丽娟,王子成,何艳霞.菊花组织培养继代过程中的DNA甲基化变化.园艺学报,2008,35(11):1689~1694.
    [57]O. Monteuuis. Analyses microscopiques de points vegetatifs de Sequoiadendron giganteum jeunes et ages durant le reposvegetatif et lors du debourrement. Bull Soc Bot Fr 136, Lettres Bot,1989, (4-5):317~326.
    [58]O. Monteuuis, S. Genestier. Analyse cytophotometrique comparee des parois du mesophylle de feuilles de Sequoiadendron giganteum jeunes et ages. Bull Soc Bot Fr 136, Lettres Bot,1989,2:103~107.
    [59]O. Monteuuis. La multiplication vegetative du sequoia geant envue du clonage. Annales AFOCEL,1984,139~171.
    [60]S.M. Jain. Tissue culture-derived variation in crop improvement. Euphytica,2001, 118(2):153~166.
    [61]W.L. Guo, R. Wu, Y.F. Zhang, X.M. Liu, H.Y. Wang, L.Gong, Z.H. Zhang, B.Liu. Tissue culture-induced locus-specific alteration in DNA methylation and its correlation with genetic variation in Codonopsis lanceolata Benth. et Hook.f. Plant Cell reports,2007, 26(8):1297~1307.
    [62]覃拥灵.植物组织培养技术及其应用.河池师专学报,2003,4(7):23~27
    [63]陈洁君,王劲,宛煜嵩,金芜军.转基因作物安全性评价与商品化前景分析.中国农业科技导报,2007,9(3):38~43
    [64]S.E. Kubis, A.M. Castilho, A.V. Vershinin, J.Seymour,H. Harrison. Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation. Plant Mole Biol,2003,52(1):69~79.
    [65]B. Miroslav. DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell Tiss Organ Cult,2009,101 (1):11-22.
    [66]O. Monteuuis, S. Doulbeau, J.L. Verdeil. DNA methylation in different origin clonal offspring from a mature Sequoiadendron giganteum genotype. Trees,2008,22(6):779~784.
    [67]李丽琴,付春华,赵春芳.红豆杉脱分化过程中的遗传和表观遗传变异.植物生理学通讯,2009,45(6):544~548.
    [68]X.Q. Li, M.L. Xu, S.S. Korban. DNA methylation profiles differ between field-and in vitro grown leaves of apple. J Plant Physiol,2002,159(11):1229~1234.
    [69]孟海军.柑橘胚胎发生过程中DNA甲基化/去甲基化研究及SSR标记开发.华中农业大学博士学位论文,2006:16~25.
    [70]E. Jaligot, A. Rival, T. Beule, S. Dussert, J.L. Verdeil. Somaclonal variation in oil palm (Elaeis guineensis Jacq.):the DNA methylation hypothesis. Plant Cell Rep,2000, 19(7):684~690.
    [71]S.M. Kaeppler, R.L. Phillips. Tissue culture-induced DNA methylation variation in maize. Proc Natl Acad Sci USA,1993,90(19):8773~8776.
    [72]Z.L. Liu, Y.M. Wang, Y. Shen, W. Guo, S. Hao, B. Liu. Extensive alterations in DNA methylation and transcription in rice caused by introgression from Zizania latifolia. Plant Mol Biol,2004,54(4):571~582.
    [73]M. Matthes, R. Singh, S.C. Cheah, A. Karp. Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes. Theor Appl Genet,2001,102(6-7):971~979.
    [74]P. Smy'kal, L. Valledor, R. Rod(?)guez, M. Griga. Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). Plant Cell Rep, 2007,26(11):1985~1998.
    [75]F.S. Zeng, J.J. Qian, W. Luo, Y.G. Zhan, Y. Xin, C.P. Yang. Stability of transgenes in long-term micropropagation of plants of transgenic birch (Betula platyphylla). Biote Lett,2010, 32(1):151-156.
    [76]K. Klimaszewska, C. Noceda, G. Pelletier, P. Label, R. Rodriguez, M.A.L. Walter. Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.). In Vitro Cell & Dev. Biol-Plant,2009,45(1):20-33.
    [77]Y.J. Hao, X.X. Deng. Stress treatments and DNA methylation affected the somatic embryogenesis of citrus callus. Acta Botan Sini,2002,44(6):673~677.
    [78]E.J. Finnegan, K.A. Kovac. Plant DNA methytransferases. Plant Mol Biol,2000,43(2-3):189~201.
    [79]E. Finnegan, E.S. Dennis. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res,1993,21(10): 2383~2388.
    [80]E.J. Finnegan, W.J. Peacock, E.S. Dennis. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA,1996, 93(16):8449~8454.
    [81]M.W. Kakel, D.E. Ramsey, T.L. Stokes, S.K. Flowers, J.R. Haag, J.A. Jeddeloh, N.C. Riddle, M.L. Verbsky, E.J. Richards. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics,2003,163(3):1109~1122.
    [82]W. Aufsatz, M.F. Mette, A.J.Matzke, M. Matzke. The role of MET1 in RNA-directed de novo and maintenance methylation of CG dinucleotides. Plant Mol Biol,2004, 54(6):793~804.
    [83]R. Fujimoto, T. Sasaki, T. Nishio. Characterization of DNA methyltransferase genes in Brassica rapa. Genes Genet Syst,2006,81(4):235~242.
    [84]D. Giannino, G. Mele, R. Cozza, L. Bruno, G. Testone, Ticconi C, Frugis G, Bitonti MB, Innocenti AM, Mariotti D. Isolation and characterization of a maintenance DNA-methyltransferase gene from peach (Prunus persica [L.] Batsch):transcript localization in vegetative and reproductive meristems of triple buds. J Exp Bot,2003,54(393):2623~2633.
    [85]P. Teerawanjchpan, M.B. Chandrasekharan, Y. Jiang, J. Narangajavana, T.C. Hall. Characterization of two rice DNA methyltransferase genes and RNAi-mediated reactivation of a silenced transgene in rice callus. Planta,2004,218(3):337~349.
    [86]S. Henikoff, L. Comai. A DNA methyltransferase homolog with a chromodomain exists in multiple polymorphic forms in Arabidopsis. Genetivs,1998,149(1):307~318.
    [87]C.M. Papa, N.M. Springer, M.G. Muszynski, R. Meeley, S.M. Kaeppier. Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation. Plant Cell, 2001,13(8):1919~1928.
    [88]A. Rival, E. Jaligot, T. Beule, E.J. Finnegan. Isolation and expression analysis of genes encoding MET, CMT, and DRM methyltransferases in oil Palm(Elaeis guineensis Jaeq.) ip relation to the'mantled'somaclonal variation. J Exp Bot,2008,59(12):3271~3281.
    [89]X. Cao, S.E. Jacobsen. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol,2002,12(13):1138~1144.
    [90]Y. Gruenbaum, M.T. Naveh, H. Cedar, A. Razin. Sequence specificity of methylation in higher Plant DNA. Nature,1981,292(5826):860~862.
    [91]J. Bender. DNA methylation and epigenetics. Annu Rev Plant Biol,2004,55(1):41~68.
    [92]L. Bartee, F. Malagnac, J. Bender. Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Gene Dev,2001,15:1753~1758.
    [93]B. Vanyushin. DNA methylation in plants. Curr Top Microbiol Immunol.2006, 301(11):67~122.
    [94]X. Cao, N.M. Springer, M.G Muszynski, R.L. Phillips, S. Kaeppler, S.E. Jacobsen. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc Natl Aead Sci USA,2000,97(9):4979~4984.
    [95]S.W. Chan, D. Zilberman, Z. Xie, L.K. Johansen, J.C. Carrington, S.E. Jaeobsen. RNA sileneing genes control de novo DNA methylation. Science,2004,303(5662):1336.
    [96]Z. Xie, L. Johansen, A. Gustafson, K.D. Kasschau, A.D. Lellis, D. Zilberman, S.E. Jacobsen, J.C. Carrington. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol,2004,2(5):642~652.
    [97]D. Zilberman, X. Cao, L.K. Johansen, Z. Xie, J.C. Carrington, S.E. Jacobsen. Role of Arabidopsis ARGONAUTE 4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol,2004,14(13):1214~1220.
    [98]A. Singh, E. Zubko, P. Meyer. CooPerative activity of DNA methyltransferases for maintenance of symmetrical and non-symmetrical cytosine methylation in Arabidopsis thaliana. plant J,2008,56 (5):814~823.
    [99]詹亚光,杨传平.白桦愈伤组织的高效诱导和不定芽分化.植物生理学通讯.2002,38(2):111~114.
    [100]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2006,1:164~169;134~261;260~261;195~197.
    [101]陈建勋,王晓峰.植物生理学实验指导.121~130.
    [102]孙彩霞,陈振华,缪璐,牛翰杰.转基因抗虫棉花木质素含量及其生物合成关键酶活性研究.东北大学学报(自然科学版).2007,28(6):867~870.
    [103]W. M. Lush, A.E. Clarke. Observations of pollen tube growth in Nicotiana alata and their implications for the mechanism of self-incompatibility, sex Plant Reprod.1997, 10(1):27~35.
    [104]徐竹筠.2,4-D浓度对胡萝卜体细胞胚胎发生及其同工酶影响.植物生理学报,1984,(11):373~380.
    [105]丁宝莲,沈曾桔,张志良,颜季琼.烟草叶肉细胞过氧化物同功酶研究.植物生理学报,1982,8(5):127~132.
    [106]宋强.蛇床愈伤组织形态发生过程中过氧化物酶的变化规律研究.实验中医药学,2006,7(6):13~14.
    [107]胨少裕.膜脂过氧化对植物细胞的伤害.植物生理学通讯,1991,27(2):84~90.
    [108]孙群,郎少兰,杨玉秀.郁金香衰老过程中几种保护酶活性的变化.西北植物学报.1998,18(4):561~565.
    [109]丁志勇,许崇任,王戎疆.转Bt基因抗虫棉与常规棉中几种同工酶的比较-转基因植物安全性评价生理指标初探.生态学报,2001,21(2):331~336.
    [110]骆桂芬,高郁芳.黄瓜叶片中糖和木质素量与霜霉病诱导抗性的关系.植物病理学报,1997,27(1):65~69.
    [111]P. Oven, N. Torelli, B. Vihar. Response of the Cambial Zone in Conifers to Wounding. Phyton Horn,1999,39(3):133~137.
    [112]M. Libik, R. Konieczny, B. Pater, I. Slesak, Z. Miszalski. Differences in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant. Plant Cell Rep,2005,23(12):834-841.
    [113]龚一富,高峰,杨贤松.“渝苏303”甘薯离体形态发生过程中生理生化特性的变化.作物学报,2005,31(6):749~754.
    [114]L.W. Oberley, T.D. Obebley. Role of antioxidant enzymes in cell immortalization and transformation. Mol. Cell Biochem,1988,34(3):93-99.
    [115]杨银萍,张令梅.虎耳兰离体培养过程中的生理生化变化研究.湖南农业科学,2009,5:129~130.
    [116]张坤生,田荟琳.过氧化氢酶的功能及研究.食品科学,2007,32(1):8~10.
    [117]N.G. Lewis, E. Yamamoto. Lignin:occurrence, biogenesis and biodegradation. Ann Rev Plant Physiol. Plant Mol Biol,1990,41:455-496.
    [118]卢庆南.水稻组织培养再生过程中的生理生化特性研究.广西大学硕士学位论文.2006,16~17.
    [119]陈亚兰,王清,张健.转基因马铃薯PPO、CAT活性变化及同工酶分析.中国马铃薯,2005,19(1):6~9.
    [120]王根轩,杨成德,梁厚果.蚕豆叶片发育与衰老过程中超氧化我歧化酶活性与丙二醛含量变化.植物生理学报,1989,15(1):13~17.
    [121]王静,杨持,王铁娟.冷蒿种群在不同放牧干扰下叶绿素、可溶性糖的对比研究.内蒙古大学学报(自然科学版),2005,36(3):280~283.
    [122]F. Arenas-Huertero. A. Arroyo, L. Zhou, J. Sheen, P. Leon. Analysis of Arabidopsis glucose insensitive mutants.gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Gene Dev,2000,14, 2085~2096.
    [123]赵江涛,李晓峰,李航,徐睿态.可溶性糖在高等植物代谢调解中的生理作用.安徽农业科学,2006,34(24):6423~6425,6427.
    [124]郭玉春,余高镜,曾建敏.外引高羊茅草坪草种主要性状的周年表现与生理特性研究.农业现代化研究,2002,23(6):409~413.
    [125]李明军,张晓丽,陈明霞,徐鑫,杜琳.怀地黄叶片愈伤组织的诱导形成及其可溶性糖含量变化的研究.河南农业科学,2005,8:72~75.
    [126]吴家和,陈志贤.棉花体细胞愈伤组织诱导和增殖期间某些代谢产物的动态变化.中国棉花,1999,26(3):17~18.
    [127]路苹,郭蕊,于同泉,杨柳,赵祥云,石庆炜.切花百合鳞茎花芽形态分化期碳水化合物代谢变化.北京农学院学报.2003,18(4):259~261.
    [128]崔凯荣,任红旭.枸杞组织培养中抗氧化物酶活性与体细胞胚发生相关性的研究.兰州大学学报(自然科学版),1998,34(3):93~99.
    [129]张艳红,杨东霞,孙学东.杜鹃花花芽分化期可溶性糖和叶绿素含量的变化.辽东学院学报(自然科学版),2007,14(2):64~66.
    [130]刘天磊,江晓霞,王仑山.苜蓿组织培养中球形胚发生时特异蛋白质和同工酶分析.西北植物学报,2002,22(3):625~628.
    [131]戴均贵,周吉源.华黄芪离体形态发生过程中生理生化特性变化的研究.华中师范大学学报(自然科学版),1997,31(2):220~224.
    [132]赵洁,程井辰.石刁柏器官发生型和胚胎发生型愈伤组织增殖过程中同工酶差异的研究.华中师范大学学报(自然科学版),1993,27(3):371~377.
    [133]朱家骏,王运煌,宋玉池.凤尾丝兰子房离体培养的器官发生及植株再生.武汉植物学研究,1991,3~5.
    [134]孔祥瑞.自由基及其分子生物学研究进展.生物科学动态,1984,4:11~18.
    [135]I. Fridovich. The biology of oxygen radicals. Science,1978,201(4359):875~880.
    [136]张红梅,黄丹枫,丁明等.不同苗龄接穗的西瓜嫁接体愈合过程中的3种酶活性变化.植物生理学通讯,2005,41(3):302~304.
    [137]张宗申,利容千,王建波.草酸预处理对辣椒叶片抗热性的影响.武汉大学学报(自然科学版),2001,47(2):238~242.
    [138]邓馨,胡文玉.草莓离体叶片脱分化与再分化过程中的生理生变化.植物生理学通讯.2000,36(3):209~211.
    [139]郭维明,赵云鹏,文方德.花烛愈伤组织不同继代培养的再分化差异.园艺学报,2004,31(1):69~72.
    [140]吴光南,刘宝仁.张金渝水稻叶片蛋白水解酶的某些理化特性及其与衰老的关系.江苏农业学报,1985,1(1):1~10.
    [141]沈波,俞炳杲.离体稻苗叶片衰老过程中蛋白质组分的变化.植物生理学通讯.1990, 4:33~35.
    [142]K.E. Koch, Z. Ying, Y. Wu, W.T. Avigne. Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. J Exp Bot,2000,51 (1): 417~427.
    [143]刘明求,刘齐元,丁小维,侯思名,刘飞虎.转基因SOD, POD高表达烟草幼苗抗热性研究云南农业大学学报,2005,20(5):620~623.
    [144]L.Z. Xiong, C.G. Xu, M.A.S. Maroof, Q. Zhang. Patterns of cytosine methyaltion in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Genet Genomics,1999,261(3):439~446.
    [145]P. Vos, R. Hogers, M. Bleeker, M. Reijans, T.V.D. Lee, M. Homes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, M. Zabeau. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res,1995,23(21):4407~4414.
    [146]M. McClell, M. Nelson, E. Raschke. Effect of site specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res,1994, 22:3640~3659.
    [147]S.E. Jacobsen, E.M. Meyerowitz. Hypermethylated superman epigenetic alleles in Arabidopsis. Science,1998,277(5329):1100~1103.
    [148]J.L. Kenneth, D.S. Thomas. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-△△CT Method. Methods,2001,25(4):402~408.
    [149]H. Schmid, C.D. Cohen, A. Henger, S. Irrgang, D. Schlondorff, M. Kretzler. Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies. Kidney Int,2003,64:356~360.
    [150]常琳琳.草莓和苹果DNA甲基转移酶基因分离及表达分析.沈阳农业大学博士学位论文.2009,15~18.
    [151]R. Fujimoto, T. Sasaki, T. Nishio. Characterization of DNA methyltransferase genes in Brassica rapa. Genes Genet Syst,2006,81(4):235-242.
    [152]D. Giannino, G. Mele, R. Cozza, L. Bruno, G. Testone, C.Ticconi, G. Frugis, M.B. Bitonti, A.M. Innocenti, D. Mariotti. Isolation and charaeterization of a maintenance DNA-methyltransferase gene from peach(Prunus persica[L.]Batsch):transcript localization in vegetative and reproductive meristems of triple buds. J ExP Bot,2003,54(393):2623~2633.
    [153]S.D. Michaels, R.M. Amasino. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell,1999,11(5):949~956.
    [154]E.J. Finnegan, R.K. Genger, W.J. Peacoek, E.S. Dennis. DNA methylation in plants. Annu Rev Plant Physiol Plant Mol Biol,1998,49:223~247.