染料敏化太阳能电池用聚苯胺电解质及对电极的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(DSSCs)的研究对解决我国能源紧缺局面和新能源材料的研究开发有着重要的现实意义。然而,常用的液态电解质,由于其易挥发,流动性大,导致电解质易泄漏,影响电池的使用寿命。而传统的对电极是导电玻璃基的镀铂电极,其制造成本昂贵,玻璃基体易碎,限制了染料敏化太阳能电池的生产应用。针对上述问题,本论文工作采用导电聚苯胺(PANI)制备染料敏化太阳能电池用固态电解质和对电极,对于液态电解质的封装难问题和对电极的生产成本的降低提供了新的解决方案。利用扫描电镜、红外光谱分析和电导率测试等手段分别对聚苯胺电解质和对电极的微观形貌、分子结构和导电性能进行了表征,分析了不同基体材料上聚苯胺生长速度和形貌对该对电极结构和性能的影响,最后初步探讨了聚苯胺的生长机理。主要研究内容如下:
     (1)采用化学氧化法在染料敏化的TiO_2光阳极表面原位合成聚苯胺固态电解质,并对组装的固态染料敏化太阳能电池进行光电性能测试。结果表明,樟脑磺酸掺杂、0℃聚合2h的聚苯胺电解质电导率最高,掺杂效果最佳,具有理想的开路电压,其电池的光电转换效率达到液态DSSC的33%。并且该电解质可充分填充到TiO_2光阳极中,有效增加了电解质与光阳极的接触性。
     (2)制备一种新型聚苯胺/乙炔黑复合电解质,以进一步提高聚苯胺电解质与对电极的接触性。研究表明,通过加入乙炔黑粒子,不仅可以提高固态电解质的空穴迁移率,而且改善了电解质的浸润性,加强了电解质与两电极间的界面接触,从而获得更高的固态染料敏化太阳能电池的光电转换效率。当加入50wt%乙炔黑时,聚苯胺复合电解质DSSC电池的光电转换效率最优,达到了液态DSSC的47%,为固态电解质的制备提供了一条新途径。
     (3)分别研究以恒电位法在ITO导电玻璃、导电PET塑料和不锈钢(SS)基体表面合成聚苯胺对电极。结果表明,在不同基体表面电化学聚合聚苯胺的最佳工艺参数均为1.0V恒电位下聚合500s,可获得一层与基体结合紧密的聚苯胺致密膜,其导电性和电催化性能最佳。随着聚合电位的升高和聚合时间的延长,聚苯胺逐步形成大的颗粒球和一维纳米棒的疏松膜,其导电性及电池光电性能也明显下降。
     (4)基体材料的性质不同,影响了聚苯胺的生长速度和电极的界面接触电阻,导致电池光电转换效率各不相同。以导电PET塑料为基体可制备透光性较好的聚苯胺柔性对电极,但是基体电阻较大,组装的DSSC电池光电转换效率不高,仅为传统铂电极效率的78%。而不锈钢材料成本低、柔性好、面电阻小,以不锈钢为基体的聚苯胺对电极不但可以降低生产成本,而且获得了比铂电极(4.51%)更好的光电转换效率,最高达6.08%。因此,聚苯胺/不锈钢对电极有望在未来的染料敏化电池产业中,取代传统铂电极,成为最具发展潜力的低成本、柔性对电极。
Dye sensitized solar cells (DSSCs) has a great practical significance to solve the energy shortage problem and develop new energy materials. However, the use of conventional liquid electrolyte in DSSCs owing to the disadvantages of fluidity and volatility results in the leakage of electrolyte, which limits the long-term performance of devices. In addition, the traditional counter electrode is composed of a platinum thin film formed on a transparent conductive glass substrate, which is relatively expensive and frangible. Considering these problems, the preparation of conducting polyaniline (PANI) used as a solid electrolyte and counter electrode for DSSCs was studied in this work. Then, the morphology, molecule structure and conductive properties of PANI were characterized respectively by Scanning Electron Microscopy, Fourier Transform Infrared spectroscopy, and four probe instrument. The growth rate of PANI synthesized on different substrate materials, and the effect of PANI morphology on the performance of the counter electrode were also analyzed. Finally, the growth mechanism of polyaniline film was preliminarily discussed. The main results are as follows:
     (1) A conductive polyaniline solid electrolyte was in-situ synthesized on the surface of sensitized TiO_2 anode by means of chemical oxidation polymerization. Then the photoelectrical property of solid DSSC with this PANI electrolyte was also measured. The results showed that PANI film with the best conductivity and doping effect was synthesized at 0℃for 2 hours with camphor sulfonic acid doping. Moreover, the DSSC using PANI solid electrolyte had an ideal open-circuit voltage, and 33% photo-electric conversion efficiency of the liquid DSSC. The PANI electrolyte was fully filled in TiO_2 anode, which can improve the interface contact between the electrolyte and photo anode.
     (2) A new PANI/acetylene black composite was fabricated as a solid electrolyte in order to enhance the interface contact between the electrolyte and counter electrode. The results showed that the incorporation of acetylene black into the polymer electrolyte improved the photovoltaic behavior of solid-state DSSC significantly, owing to the increase of the hole mobility of PANI electrolyte, the improvement of the wetting quality of the composite electrolyte, and the reinforcement of interface contact between both electrodes and the electrolyte. Finally, the DSSC with PANI-50wt% acetylene black electrolyte had 47% of the overall energy conversion efficiency of liquid DSSC. Therefore, the PANI-acetylene black composition provides one new approach for the preparation of solid electrolyte.
     (3) PANI counter electrodes were synthetized by potentiostatic technique on the surface of ITO conductive glasses, conductive PET, and stainless steel (SS) substrate, respectively. The results showed that the optimum processing parameters of PANI film electrodeposited on these substrates were at 1.0V for 500s, and the PANI formed a compact layer on the substrate, obtaining the highest conductivity and electrocatalytic activity. As the polymerization potential and time increasing, PANI gradually formed a loose film with the large particles or one dimension nanorods, and the conductivity and photoelectric property of PANI counter electrode were significantly decreased.
     (4) Owing to the intrinsic diversity of substrates, the growth rate of PANI and the contact resistance on the interface of substrates were different, which had an effect on the energy conversion efficiencies of DSSCs. The PANI flexible counter electrode with a good transparence was prepared on conductive PET plastic substrate. However, owing to the large resistance of PET substrate, the conversion efficiency of DSSC was low, which was 78% efficiency of traditional Pt electrode. And the PANI counter electrode based on the SS substrate with the advantages of low material cost, excellent flexibility and low resistance, not only reduced greatly the production cost, but also increased the efficiency of DSSC. The photoelectric measure results indicated the efficiency of DSSC with PANI/SS electrode reached 6.08%, which was higher than that with Pt electrode (4.51%). Therefore, the PANI/SS counter electrode will be a potential substitute for platinized electrode to develop a low cost, flexible counter electrode of DSSC in the future.
引文
[1] Becquerel E, Acad C R. Mémoire sur les effetsélectriques produits sous l'influence des rayons solaires. Science, 1839,9:561~561.
    [2] Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell. Journal of Applied Physics, 1954,25(5):676~677.
    [3] O' Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films. Nature, 1991,353(6346):737~740.
    [4] Gr?tzel M. The artificial leaf, molecular photovoltaics achieve efficient generation of electricity from sunlight. Coordination Chemistry Reviews, 1991,111(6):167~174.
    [5] Hagfeldt A, Gr?tzel M. Light-induced redox reactions in nanocrystalline systems. Chemical Reviews, 1995,95(1):49~68.
    [6] Wen C, Ishikawa K, Kishima M, et al. Effects of silver particles on the photovoltaic properties of dye-sensitized TiO_2 thin films. Solar Energy Materials Solar Cells, 2000, 61(4):339~351.
    [7]张晓.染料敏化太阳能电池中电解质的研究和染料的量子设计, [博士学位论文].上海:复旦大学, 2007.
    [8] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthe-nium(Ⅱ) Charge-Transfer Sensitizers (X=C?, Br?, ?, C?, and SC?) on Nanocrystalline TiO_2 Electrodes. Journal of the American Chemical Society, 1993,115(14):6382~6390.
    [9] Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO_2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702):583~585.
    [10] Nazeeruddin M K, Péchy P, Renouard T, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO_2-based solar cells. Journal of American Chemical Society, 2001, 123(8):1613~1624.
    [11] Wang P, Zakeeruddin S M, Moser J E, et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2003, 2(6): 402~407.
    [12] Wang P, Zakeeruddin S M, Moser J E, et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2003, 2(6):498~498.
    [13] Gr?tzel M. Photoelectrochemical cells. Nature, 2001,414(6861):338~344.
    [14] Tan S X, Zhai J, Wan M X, et al. Influence of small molecules in conducting polyaniline on the photovoltaic properties of solid-state dye-sensitized solar cells. Journal of Physical Chemistry B, 2004, 108 (48):18693~18697.
    [15] Grünwald R, Tributsch H. Mechanisms of instability in Ru-based dye sensitization solar cells. Journal of Physical Chemistry B, 1997,101(14):2564~2575.
    [16]陈志钢.光功能纳米材料的制备及其在光电转换和生物检测中的应用, [博士学位论文].上海:复旦大学, 2008.
    [17] Nogueira A F, Longo C, De Paoli M A. Polymers in dye sensitized solar cells: overview and perspectives. Coordination Chemistry Reviews, 2004,248(13-14):1455~1468.
    [18] Hara K, Dan-oh Y, Kasada C, et al. Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO_2 solar cells. Langmuir, 2004, 20(10):4205~4210.
    [19] Kusama H, Arakawa H. Influence of pyrimidine additives in electrolytic solution on dye- sensitized solar cell performance. Journal of Photochemistry and Photobiology A: Chemistry, 2003,160 (3):171~179.
    [20] Cao F, Oskam G, Searson P C. A solid state, dye sensitized photoelectrochemical cell. Journal of Physical Chemistry, 1995, 99(47):17071~17073.
    [21] Kubo W, Murakoshi K, Kitamura T, et al. Quasi-solid-state dye-sensitized TiO_2 solar cells: effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine. Journal of Physical Chemistry B, 2001,105(51):12809~12815.
    [22] Kubo W, Kambe S, Nakade S, et al. Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. Journal of Physical Chemistry B, 2003, 107(18):4374~4381.
    [23] Wang P, Zakeeruddin S M, Comte P, et al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. Journal of the American Chemical Society, 2003, 125(5):1166~1167.
    [24] Wang P, Zakeeruddin S M, Moser J E, et al. A solvent-free, SeCN-/(SeCN)3- based ionic liquid electrolyte for high efficiency dye sensitized nanocrystalline solar cells. Journal of the American Chemical Society, 2004, 126(23):7164~7165.
    [25] Kim D W, Jeong Y B, Kim S H, et al. Photovoltaic performance of dye-sensitized solar cell assembled with gel polymer electrolyte. Journal of Power Sources, 2005, 149 (26):112~116.
    [26] Bandara J, Weerasinghe H. Solid-state dye-sensitized solar cell with p-type NiO as a hole collector.Solar Energy Material Solar Cells, 2005, 85(3):385~390.
    [27] O'Regan B, Lenzmann F, Muis R, et al. A solidstate dye-sensitized solar cell fabricated with pressure-treated P25-TiO_2 and CuSCN: analysis of pore filling and IV characteristics. Chemistry of Materials, 2002, 14(12):5023~5029.
    [28] Meng Q B, Takahashi K, Zhang X T, et al. Fabrication of an efficient solid-state dye-sensitized solar cell. Langmuir, 2003, 19(9):3572~3574.
    [29] Kumara G R A, Konno A, Shiratsuchi K, et al. Dye-sensitized solid-state photovoltaic cells: use of crystal growth inhibitors for deposition of the hole collector. Chemistry of Materials, 2002, 14(3):954~955.
    [30] Hagen J, Schaffrath W, Otschik P, et al. Novel hybrid solar cells sonsisting of inorganic nanoparticles and an organic hole tansport material. Synthetic Metals,1997,89(3):215~220.
    [31] Senadeera G K R, Kitamura T, Wada Y, et al. Enhanced photoresponses of polypyrrole on surface modified TiO_2 with self-assembled monolayers. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184(1-2):234~239.
    [32] Yanagida S, Senadeera G K R, Nakamura K, et al. Polythiophene-sensitized TiO_2 solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 166(1-3):75~80.
    [33] Caramori S, Cazzanti S, Marchini L, et al. Dye-sensitized solar cells based on PEDOP as a hole conductive medium. Inorganica Chimica Acta, 2008, 361(3):627~634.
    [34] Lagref J J, Nazeeruddin M K, Gr?tzel M. Molecular engineering on semiconductor surfaces: design, synthesis and application of new efficient amphiphilic ruthenium photosensitizers for nanocrystalline TiO_2 solar cells. Synthetic Metals, 2003, 138(1-2):333~339.
    [35] Lagemaat J, Frank A J. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO_2 films: transient photocurrent and random-walk modeling studies. Journal of Physical Chemistry B, 2001,105(45):11194~11205.
    [36] Tan S X, Zhai J, Wan M X, et al. Polyaniline as a hole transport material to prepare solid solar cells. Synthetic Metals, 2003,137(1-3):1511~1512.
    [37] Murai S, Mikoshiba S, Sumino H, et al. Quasi-solid dye-sensitized solar cells containing chemically cross-linked gel: How to make gels with a small amount of gelator. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148(1-3):33~39.
    [38] Imoto K, Takahashi K, Yamaguchi T, et al. High-performance cartion counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2003, 79(4):459~469.
    [39] Zhang D W, Li X D, Chen S, et al. Fabrication of double-walled carbon nanotube counter electrodesfor dye-sensitized solar sells. Journal of Solid State Electrochemistry, 2009, 14(9):1541~1546.
    [40]尹艳红,许泽辉,冯磊硕,等.染料敏化太阳能电池对电极的研究进展.材料导报, 2009, 23(5):109~112.
    [41] Fang X M, Ma T L, Guan G Q, et al. Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness. Journal of Photochemistry and Photobiology, A: Chemistry, 2004, 164(1-3):179~182.
    [42] Ma T L, Fang X M, Akiyama M, et al. Properties of several types of novel counter electrodes for dye-sensitized solar cell. Journal of Electroanalytical Chemistry, 2004, 574(1):77~83.
    [43] Fang X M, Ma T L, Akiyama M, et al. Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cell. Thin Solid Films, 2005, 472(1-2):242~245.
    [44] Kay A, Gr?tzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 1996, 44(1): 99~117.
    [45] Murakami T N, Ito S, Wang Q, et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. Journal of The Electrochemical Society, 2006, 153(12):2255~2261.
    [46] Koo B K, Lee D Y, Kim H J , et al. Seasoning effect of dye-sensitized solar cells with different counter electrodes. Journal of Electroceramics,2006, 17(1):79~82.
    [47] Suzuki K, Yamamoto M, Kumagai M, et al. Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chemistry Letters, 2003, 32(1): 28~30.
    [48] Chen L L, Liu J, Zhang J B, et al. Low temperature fabrication of flexible carbon counter electrode on ITO-PEN for dye-sensitized solar cells. Chinese Chemical Letters, 2010, 21(9):1137~1140.
    [49] Saito Y, Kubo W, Kitamura T, et al. I-/I3- redox reaction behavior on poly (3,4-ethylenedioxy thiophene) counter electrode in dye-sensitized solar cells. Journal of Photochemistry and Photobiology, A: Chemistry, 2004, 164(1-3):153~157.
    [50] Wei T C, Wan C C, Wang Y Y. Poly(N-viny-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells. Applied Physics Letters, 2006, 88(10):103122-1~103122-3.
    [51] Saito Y, Kitamura T, Wada Y, et al. Application of poly(3,4-ethylenedionxythiophene) to counter electrode in dye-sensitized solar cells. Chemistry Letters, 2002, 31(10):1060~1061.
    [52] Olsen E, Hagen G, Lindquist S E. Dissolution of platinum in methoxy propionitrile containing LiI/I2. Solar Energy Materials and Solar Cells, 2000,63(3):267~273.
    [53] Chen J G, Wei H Y, Ho K C. Using modified poly(3,4-ethylene dioxythiophene):Poly(styrene sulfonate) film as a counter electrode in dye-sensitized solar cells. Solar Energy Materials and SolarCells, 2007, 91(15-16):1472~1477.
    [54] Wu J H, Li Q H, Fan L Q, et al. High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2008, 181(1):172~176.
    [55] Li Q H, Wu J H, Tang Q W, et al. Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochemistry Communications, 2008, 10(9):1299~1302.
    [56]许芳怡,胡志强,王仁博,等.柔性基底上PEDOT:PSS-C复合薄膜对电极的制备.功能材料, 2009, 40:727~731.
    [57] DeSureville R, Jozefowics M, Yu L T, et al. Elechemical chains using protolytic organic semiconductors. Electrochemica Acta, 1968, 13(6):1451~1458.
    [58] MacDiarmid A G, Chiang J C, Huang W S, et al. Protonic acid doping to the metallic regime. Molecular Crystals and Liquid Crystals, 1985, 125(6):301~318.
    [59]曾幸荣.新型导电聚合物-聚苯胺.化工进展, 1988, (1):42~46.
    [60] MacDiarmid A G, Chiang J C, Richter A F. Polyaniline: A new concept in conducting polymers. Synthetic Metals, 1987, 18(3):286~290.
    [61]马利,汤琪.导电高分子材料聚苯胺的研究进展.重庆大学学报(自然科学版), 2002, 25(2):124~127.
    [62] Armers S, Aldissi M. Potassium iodate oxidation route to polyaniline: an optimization study. Polymer, 1991, 32(11):2043~2048.
    [63] Cao Y, Andreatta A, Heeger A J, et al.Influence of chemical polymerization conditions on the properties of polyaniline. Polymer, 1989, 30(12):2305~2311.
    [64] MacDiarmid A G, Chiang J C, Halpern M, et al. Polyaniline:Interconversion of metallic and insulated forms. Molecular Crystals and Liquid Crystals, 1985, 121(1-4):173~180.
    [65]封伟,韦玮,吴洪才.可溶导电聚苯胺的合成及其性能研究.功能高分子学报, 1998, 11(2):237~240.
    [66]耿延候,景遐斌,王献红等.掺杂态聚苯胺的溶解性和可加工性.高分子通报, 1995, (2):86~91.
    [67]任斌,余成.导电聚苯胺的合成及其性能研究.光谱实验室, 2005, 22(l):148~151.
    [68] Stejskal J, Riede A, HlavatáD, et al. The effect of polymerizetion temperature on molecular weight, crystallinity and electrical conductivity of polyaniline. Synthetic Metals, 1998, 96(1):55~61.
    [69]杨兰生,许锦茂,单忠强,等.导电聚合物聚苯胺的化学合成.化学工业与工程, 1994, 11(2):7~12.
    [70] Wang B, Tang J, Wang F. Electrochemical polymerization of aniline. Synthetic Metals, 1987, 18(1-3):323~329.
    [71] Beck F. Electrodeposition of polymer coatings. Electrochimica Acta, 1988, 33(7):839~850.
    [72] Desilvestro J, Scheifele W. Morphology of electrochemically prepared polyaniline. Journal of Materials Chemistry, 1993, 3:263~272.
    [73] Naudin E, Gouerec P, Belanger D. Electrochemical preparation and characterization in non-aqueous electrolyte of polyaniline electrochemically prepared from an anilinium salt. Journal of Electroanalytical Chemistry, 1998, 459(1):1~7.
    [74] Li Y F. Electrochemical preparation of conducting polymers. Current Trends in Polymer Science, 2002, 7:101~111.
    [75]江明,府寿宽.高分子科学的近代论题.上海:复旦大学出版社, 1998, 212~230.
    [76] Wan M X. The influence of polymerization method and temperature on the absorption spectra and morphology of polyaniline. Synthetic Metals, 1989, 31(1):51~59.
    [77] Genies E M, Lapkowski M. Spectroeleectrochemical evidence for an intermediate in the electropolymerization of aniline. Journal of Electroanalytical Chemistry, 1987, 236(1-2):189~197.
    [78] Hand R L, Nelson R F. Anodic oxidation pathways of n-alkylanilines. Journal of the American Chemical Society, 1974, 96(3):850~860.
    [79] Duic L, Mandic Z, Kovac S. Polymer-dimer distribution in the electrochemical synthesis of polyaniline. Electrochimica Acta, 1995, 40(11):1681~1688.
    [80] Qiao Y, Li C M, Bao S J, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources, 2007, 170(1):79~84.
    [81]汪晓芹,廖晓兰,周安宁,等.聚苯胺及其复合材料研究现状.应用化工, 2002, 33(l):4~8.
    [82]刘丹丹,宁平,夏林.导电聚苯胺的研究进展及应用开发前景.合成材料与老化, 2002, 33(3):43~47.
    [83]王杨勇,强军锋,井新利.聚苯胺防腐涂料的研究进展.宇航材料工艺, 2002, 32(4):1~6.
    [84]王保成,许并社.导电聚苯胺现状评述.太原理工大学学报, 2002, 33(1):54~56.
    [85]杨兰生,许锦茂,单忠强,等.导电聚合物聚苯胺的化学合成.化学工业与工程, 1994, 11(2):7~12.
    [86]封伟,韦玮,郑建邦,等.聚苯胺的光学吸收及其染料增感作用研究.西安交通大学学报, 1999, 33(6):104~106.
    [87] Yoshizawa K. Magnetic Property of soluble Poly(m-aniline). Solid State Communications, 1993, 87(10):935~937.
    [88] Sadek A Z, Wlodarski W, Kalantar-Zadeh K, et al. Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors. Sensors and Actuators A, 2007, 139(1-2):53~57.
    [89] Janata J, Josowicz M. Conducting polymers in electronic chemical sensors. Nature Materials, 2003, 2(6):19~24.
    [90] Virji S, Huang J, Kaner R B, et al. Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Letters, 2004, 4(3):491~496.
    [91] Jin Z, Su Y, Duan Y. An improved optical pH sensor based on polyaniline. Sensors and Actuators, B: Chemical, 2000, 71(1):118~122.
    [92] Sukeerthi S, Contractor A Q. Molecular sensors and sensor arrays based on polyaniline microtubules. Analytical Chemistry, 1999, 71(11):2231~2236.
    [93] Senadeera G K R, Kitamura T, Wada Y, et al. Deposition of polyaniline via molecular self-assembly on TiO_2 and its uses as a sensitiser in solid-state solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164(1-3):61~66.
    [94] Tan S X, Zhai J, Xue B F, et al. Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells. Langmuir, 2004, 20(7):2934~2937.
    [95] Yao B, Wang G C, Ye J K, et al. Corrosion inhibition of carbon steel by polyaniline nanofibers. Materials Letter, 2007, 62(12-13):1775~1778.
    [96]潘玮,黄素萍.聚苯胺/涤纶导电纤维的制备及其织物抗静电性能研究.合成纤维, 2002, 31(l):30~32.
    [97] Liu H, Kameoka J, Czaplewski D A, et al. Polymeric nanowire chemical sensor. Nano Letters, 2004, 4(4):671~675.
    [98] Malinauskas A. Electrocatalysis at conducting polymers. Synthetic Metals, 1999, 107(2):75~83.
    [99]刘小东.染料敏化太阳能电池的对电极研究, [博士学位论文].天津:天津大学, 2007.
    [100]白春钰.不锈钢表面导电聚苯胺膜的制备与性能研究, [硕士学位论文].西安:西安电子科技大学, 2008.
    [101]陈存礼.测量半导体材料电阻率的四探针公式的普遍形式.物理学报, 1985, 34(11):1509~1511.
    [102]张清华,王献红,景遐斌.聚苯胺的合成及其光谱特性.化学世界, 2001 , 42(5) :242~244.
    [103]魏琦,吴起,李颖,等.基体表面性质对原位聚合沉积导电聚苯胺薄膜性能的影响.功能高分子学报, 2007, 19(3):244~249.
    [104] Ashery A, Farag A A M, Salem M A. Fabrication and characterization of in situ polymerized n-polyaniline films grown on p-Si heterojunctions. Microelectronic Engineering, 2008, 11(85): 2309~2315.
    [105]於黄中,刘少琼,黄河等.樟脑磺酸原位聚合聚苯胺的性能研究.功能材料, 2002, 33(6):626~630.
    [106]於黄中,陈明光,黄河.不同类型的酸掺杂对聚苯胺结构和电导率的影响.华南理工大学学报(自然科学版), 2003, 31(5):21~24.
    [107]刘少琼,黄河,熊予莹,等.樟脑磺酸掺杂聚苯胺的性能研究.功能材料, 2001, 32(5):512~513.
    [108] Prahakaran T, Hemalatha J. Synthesisand Characterization of Magnetoelectric Polymer Nano -composites. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46(22):2418~2422.
    [109] Zhou C Q, Han J, Song G P, et al. Fabrication of poly(aniline-co-pyrrole) hollow nanospheres with Triton X-100 micelles as templates. Journal of Polymer Science, Part A: Polym Chemistry, 2008, 46(11):3563~3572.
    [110] Yan L F, Tao W. Synthesis of achiral PEG-PANI rod-coil block copolymers and their helical superstructures. Journal of Polymer Science, Part A: Polym Chemistry, 2008, 46(1):12~20.
    [111] Lei X P, Su Z X. Conducting polyaniline-coated nano silica by in situchemical oxidative grafting polymerization. Polymers for Advanced Technologies, 2007, 18(6):472~476.
    [112] Khalid M, Mohammad F. Preparation, FTIR spectroscopic characterization and isothermal stability ofdifferently doped fibrous conducting polymers based on polyanilineand nylon-6,6. Synthetic Metals, 2009, 159 (1-2):119~122.
    [113]金绪刚,黄承亚,龚克成.聚苯胺光学吸收及应用.半导体光电, 1997, 18(3):203~207.
    [114] Xu Y, Martin A, Schoonen A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 2000, 85(3-4):543~556.
    [115] Bian C Q, Xue G. Nanocomposites based on rutile-TiO_2 and polyaniline. Materials Letters, 2007, 61(6):1299~1302.
    [116] Mondal S K, Munichandraiah N. The effect of low temperature treatment on electrochemical activity of polyaniline. Journal of Electroanalytical Chemistry, 2006, 595(1):78~86.
    [117] TrchováM, ?eděnkováI, TobolkováE, et al. FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. Polymer Degradation and Stability, 2004, 86(1):179~185.
    [118]封伟,韦玮,吴洪才.有机磺酸掺杂聚苯胺的光电性能.半导体光电, 1999, 20(4):265~268.
    [119] Ping Z. In situ FTIR-attenuated total reflection spectroscopic investigations on the base-acid transitions of polyaniline. Base-acid transition in the emeraldine form of polyaniline. Journal of the Chemical Society, 1996, 92(17):3063~3067.
    [120] Quillard S, Louarn G, Buisson J P. Vibrational spectroscopic studies of the isotope effects in polyaniline. Synthetic Metals, 1997, 84(1-3):805~806.
    [121] Ghenaatian H R, Mousavi M F, Kazemi S H, et al. Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor. Synthetic Metals, 2009, 159(17-18):1717~1722.
    [122] Chen J K, Li K X, Luo Y H, et al. A flexible carbon counter electrode for dye-sensitized solar cells. Carbon, 2009, 47(11):2704~2708.
    [123] Okamoto H, Ando Y, Kotaka T. Impedance analysis of polyaniline prepared on interdigitated array electrode under direct current polarization potential. Synthetic Metals, 1998, 96(1):7~17.
    [124] Zhang J, Kong L B, Wang B, et al. In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synthetic Metals, 2009, 159(3-4):260~266.
    [125] Gamby J, Taberna P L, Simon P, et al. Characterization and use of activated carbon. Journal of Power Sources, 2001, 101(1):109~116.
    [126] Gupta V, Miura N. Large-area network of polyaniline nanowires prepared by potentiostatic deposition process. Electrochemistry Communications, 2005, 7(10):995~999.
    [127] Iseki S, Ohashi K, Nagaura S. Impedance of the oxygen-evolution reaction on noble metal electrodes. Electrochimica Acta, 1972, 17(12):2249~2265.
    [128] Zine N, Bausells J, Ivorra A, et al. Hydrogen-selective microelectrodes based on silicon needles. Sensors and Actuators B, 2003, 91(1-3):76~82.
    [129] Lindfors T, Ivaska A. All-solid-state calcium-selective electrode prepared of soluble electrically conducting polyaniline and di(2-ethylhexyl) phosphate with tetraoctylammonium chloride as cationic additive. Analytica Chimica Acta, 2000, 404(1):111~119.
    [130] Wang F, Lai Y H, Han M Y. Stimuli-responsive conjugated copolymers having electro-active azulene and bithiophene units in the polymer skeleton: effect of protonation and p-doping on conducting properties. Macromolecules, 2004, 37(9):3222~3230.
    [131] Yu B, Zhou F, Wang C W, Liu W M. A novel gel polymer electrolyte based on poly ionic liquid 1-ethyl3-(2-methacryloyloxy ethyl) imidazolium iodide. European Polymer Journal, 2007, 43(6):2699~2707.
    [132] Wu C S, Huang Y J, Hsieh T H, et al. Studies on the conducting nanocomposite prepared by in situ polymerization of aniline monomers in a neat (aqueous) synthetic mica clay. Journal of Polymer Science, Part A: Polym Chemistry, 2008, 46(5):1800~1809.
    [133] John A, Palaniappan S, Djurado D, et al. One-step preparation of solution processable conducting polyaniline by inverted emulsion polymerization using didecyl ester of 4-sulfophthalic acid as multifunctional dopant. Journal of Polymer Science, Part A: Polym Chemistry, 2008, 46(3):1051~1057.
    [134] Rodríguez F, Castillo-Ortega M M, Encinas J C, et al. Preparation, characterization, and adsorptionproperties of cellulose acetate-polyaniline membranes. Journal of Applied Polymer Science, 2009, 111(3):1216~1224.
    [135] Han J, Liu Y, Guo R. A novel templateless method to nanofibers of polyaniline derivatives with size control. Journal of Polymer Science, Part A: Polym Chemistry, 2008, 46(2):740~746.
    [136] Papageorgiou N, Maier W F, Gr?tzel M. An iodine/triiodide reduction electrocatalyst for aqueous and organic media. Journal of the Electrochemical Society, 1997, 144(3):876~884.
    [137] Saito Y, Kubo W, Kitamura T, et al. I?/I3? redox reaction behavior on poly(3,4-ethylene dioxythiophene) counter electrode in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164(1-3):153~157.
    [138] Tang H, Kitani A, Shiotani M. Cyclic voltammetry of KI at polyaniline-filmed Pt electrodes Part I: Formation of polyaniline-iodine charge transfer complexes. Journal of Applied Electrochemistry. 1996, 26(1):36~44.
    [139] Hauch A, Georg A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta, 2001, 46(22):3457~3466.
    [140] Biallozor S, Kupniewska A. Study on poly(3,4-ethylenedioxythiophene) behaviour in I-/I2 solution. Electrochemistry Communications, 2000, 2(7):480~486.
    [141] Lasse B, Keld W, Bjorn W J, et al. Electrochemical reaction rates in a dye-sensitised solar cell-the iodide/tri-iodide redox system. Solar Energy Materials and Solar Cells, 2006, 90(3):341~351.
    [142] Thomas A B, Brodd R J. Faradaic impedence at platinum microelectrodes. Behavior of the iodide-iodine oxidation-reduction couple. Journal of Physical Chemistry, 1964, 68(11):3363~3367.
    [143] Mondal S K, Munichandraiah N. Surface modification of a reactive metal or alloy by polyaniline for electrooxidation of iodide. Journal of solid state electrochemistry, 2006, 10(2):78~82.
    [144] Frank L. Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO_2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: Indication for electron injection from higher excited dye states. Journal of Physical Chemistry B, 2001, 105(27):6347~6352.
    [145] Lee K M, Hsu C Y, Chen P Y, et al. Highly porous PProDOT-Et2 film as counter electrode for plastic dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2009, 11(18):3375~3379.
    [146]颜流水,魏洽,王承宜,等.聚苯胺膜的电化学合成机理及掺杂行为.功能材料, 2000, 31(5):548~550.
    [147]侯丽波,贾梦秋,胡刚.聚苯胺薄膜的制备及性能研究.北京化工大学学报, 2004, 31(4):65~69
    [148]郝国栋,曹延华.聚苯胺电极的制备及其电化学聚合的影响因素.牡丹江师范学院学报, 2006, 53(1):24~26.
    [149]陈卫祥,杨兰生,刘亚东,等.聚苯胺的化学和电化学合成.电池, 1995, 25(4):159~163.
    [150]温靖邦,周海晖,李松林,等.纳米纤维聚苯胺膜在不锈钢电极表面的生长过程.物理化学学报, 2006, 22(1):106~109.
    [151] Ozyilmaz A T, Erbil M, Yazici B. The electrochemical synthesis of polyaniline on stainless steel and its corrosion performance. Current Applied Physics, 2006, 6(1):1~9.
    [152] Ozyilmaz A T, Erbil M, Yazici B. Investigation of corrosion behaviour of stainless steel coated with polyaniline via electrochemical impedance spectroscopy. Progress in Organic Coatings. 2004, 51(1):47~54.
    [153]龙晋明,王少龙,王静.不锈钢表面电化学合成导电聚苯胺膜的研究.材料保护, 2003, 36(12):23~26.
    [154]黄乃宝,衣室廉,李云峰,等.硫酸溶液中非铂金属上苯胺的电聚合行为.电源技术, 2004, 28(12):759~763.
    [155]傅谊,马建标,何炳林.恒电位条件下制备聚苯胺Pan及其电化学行为.化学研究与应用, 1998, 10(2):133~137.
    [156] Kemp N T, Cochrane J W, Newbury R. Characteristics of the nucleation and growth of template-free polyaniline nanowires and fibrils. Synthetic Metals, 2009,159(5-6):435~444.
    [157] Bade K, Tsakova V, Schultze J W. Nucleation, growth and branching of polyaniline from microelectrode experiments Electrochimica Acta, 1992, 37(12):2255~2261.
    [158] Kraljic M, Mandic Z, Duic L. Inhibition of steel corrosion by polyaniline coatings. Corrosion Science, 2003, 45 (1):181~198.
    [159] Brabec C J, Padinger F, Hummelen J C, et al. Realization of large area flexible fullerene- conjugated polymer photocells: A route to plastic solar cells. Synthetic Metals, 1999, 102(1-3):861~864.
    [160] Zhang D Z, Yoshida T, Minoura H. Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface. Advanced Materials, 2003, 15(10):814~817.
    [161]赵晓冲,杨盼,林红.柔性染料敏化太阳能电池材料制备工艺参数的优化.硅酸盐学报, 2010, 38(1):25~28.
    [162] Li X, Lin H, Li J B, et al. A numerical simulation and impedance study of the electron transport and recombination in binder-free TiO_2 film for flexible dye-sensitized solar cells. Journal Physical Chemistry C, 2008, 112(35):13744~13753.
    [163] Zhang D S, Yoshida T, Oekermann T, et al. Room-temperature synthesis of porous nanoparticulate TiO_2 films for flexible dyesensitized solar cells. Advanced Functional Materials, 2006,16(19):1228~1234.
    [164] Kijitori Y, Ikegami M, Miyasaka T. Highly efficient plastic dye-sensitized photoelectrodes prepared by low-temperature binderfree coating of mesoscopic titania pastes. Chemistry Letters, 2007, 36(1):190~191.
    [165]于夫.超薄柔性太阳能电池.技术与市场, 2009, 16(4):92.
    [166] Bessière A, Duhamel C, Badot J.-C, et al. Study and optimization of a flexible electrochromic device based on polyaniline. Electrochimica Acta, 2004, 49(12):2051~2055.
    [167] Pinho M S, Gorelova M M, Dezzoti M, et al. Conductive polyaniline–polychloroprene blends. Journal of Applied Polymer Science, 1998, 70(8):1543~1549.
    [168] Zhang J, Kong L B, Wang B, et al. In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synthetic Metals, 2009, 159(3-4):260~266.
    [169] Molina J, del Río A I, Bonastre J,et al. Electrochemical polymerisation of aniline on conducting textiles of polyester covered with polypyrrole/AQSA. European Polymer Journal, 2009, 45(4):1302~1315.
    [170] Qaiser A A, Hyland M M. X-Ray Photoelectron Spectroscopy Characterization of Polyaniline- Cellulose Ester Composite Membranes. Materials Science Forum, 2010, 657:35~45.
    [171] Golczak S, Kanciurzewska A, Fahlman M, et al. Comparative XPS surface study of polyaniline thin films. Solid State Ionics, 2008, 179(39):2234~2239.
    [172] Tsakova V, Milchev A. Electrochemical formation and stability of polyaniline films. Electrochimica Acta, 1991, 36(10):1579~1583.
    [173] Zotti G, Cattarin S, Comisso N. Cyclic potential electropolymerization of aniline. Journal of Electroanalytical Chemistry, 1988, 239(1-2):387~396.
    [174] Rajendra P K, Munichandraiah N. Potentiodynamic deposition of polyaniline on non-platinum metals and characterization.Synthetic Metals, 2001, 123(3):459~468.
    [175] Cordova R, del Valle M A, Arratia A, et al. Effect of anions on the nucleation and growth mechanism of polyaniline. Journal of Electroanalytical Chemistry, 1994, 377(1-2):75~83.
    [176] Mandic Z, Duic L, Kovacicek F. The influence of counter-ions on nucleation and growth of electrochemically synthesized polyaniline film. Electrochimica Acta, 1997, 42(9):1389~1402.
    [177]董平,周剑章,席燕燕,等.聚苯胺纳米管在阳极氧化铝模板中电聚合的生长机理.物理化学学报, 2004, 20(5):454~458.
    [178]孙东豪,穆绍林.苯胺的电聚合研究.苏州丝绸工学院学报, 1999, 19(3):21~25.