新型阴极结构铝电解槽试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,铝电解技术突飞猛进,铝电解槽容量从60年前的60kA发展到现在的500kA,电流效率达到95%,自动化水平和控制技术也得到提高。然而铝电解的电能消耗降低幅度不大,目前国内外电解槽直流电耗仍然徘徊在13000~13500kWh/T-Al,能量效率不足50%。因此降低铝电解的电能消耗成为国内外铝工业工作者关注的首要问题。大量研究表明通过改变电解槽结构实现大幅度降低铝电解电能消耗成为一种可能途径。
     论文对泄流式阴极电解槽进行两次半工业规模试验研究:1350A无烟煤基TiB2/C复合材料层泄流式阴极铝电解槽100 h电解试验和1850A石墨化基TiB2/G复合材料层泄流式阴极铝电解槽140 h电解试验。试验研究发现,泄流式试验电解槽从焙烧、启动到正常电解操作与传统电解槽无差别,泄流式电解槽槽电压和槽工作状态稳定,并获得较高的电流效率。泄流式阴极上制作的TiB2复合材料层腐蚀速度小,能有效地保护阴极基体,有利于延长电解槽寿命。利用铝参比电极由瞬时断电技术测得TiB2/G石墨化泄流式阴极电解槽的阳极过电压和阴极过电压分别与对应的电流密度遵循塔菲尔方程关系,其阳极过电压与传统工业电解槽相差无几,而其阴极过电压比工业电解槽高0.4 V左右,这是由于泄流式电解槽中不存在铝液波动,阴极表面附近的分子比比传统电解槽阴极表面电解质分子比高很多造成的。
     在重庆天泰铝业公司168kA系列上3台电解槽上进行工业试验,内容包括新型阴极结构电解槽的筑炉、焙烧、启动、正常电解生产过程。焙烧采用火焰一铝液二段焙烧新技术,其能耗仅为传统的铝液焙烧的1/4~1/3,焦粒焙烧的1/3,实现了节能的目的。到目前为止,3台新型阴极结构电解槽已稳定运行一年,一年的直流电耗平均为12100kWh/T-Al。最近半年3台新型阴极结构电解槽的槽电压平均为3.756V,阳极效应系数为0.063d-1,电流效率平均为93.3%,直流电耗平均约为12000kWh/T-Al,相比同系列127台传统电解槽阳极效应系数降低0.04d-1,电流效率提高1.9%,直流电耗降低约1370 kWh/T-Al,取得了大幅度降低铝电解电能消耗的效果。
     新型阴极结构实现高效节能的基本原理是:在新型阴极结构电解槽阴极表面有凸起,阴极铝液流速场被分割,铝液的流速大大降低,削弱了其对重力波的强化,使铝液的波动减少。同时这种凸起使阴极铝液内的电流分布更均匀,从而减少了诱发铝液流动的源泉。在凸起的表面所形成的较小水平电流围绕凸起形成铝液循环,可削减电解槽纵向方向波的功能。因此使得电解槽阴极铝液面的波峰高度大大降低,电解槽的有效极距加大,从而达到通过降低极距来降低槽电压的目的;新型槽的阴极表面具有凸起,电解时在凸起的表面形成适度的水平电流,并由此可围绕凸起形成铝液循环,这种循环铝液有利于氧化铝的溶解,可减少因为局部氧化铝浓度过低而发生阳极效应;新型阴极结构电解槽使铝液面波动减小,稳定性增强,并使阴极铝液面的有效面积减少,故减少了铝的二次溶解,提高了铝电解槽电流效率。
     通过对168kA新型阴极结构电解槽和传统电解槽的电热平衡研究表明:新型阴极结构电解槽的极距小,电解质电压降比传统电解槽的电解质电压降小;新型阴极结构电解槽可以在较低的槽电压,降低的能量输入下,通过侧部和底部加强保温,实现较低热损失,以达到电解槽的热平衡。试验表明,铝电解槽可以实现由散热型转变为保温型,从而提高能效。
     论文通过对168kA新型阴极结构电解槽阴极铝液面稳定性的测量与研究,发现:新型阴极高效节能铝电解槽,与对比同系列的传统电解槽一样,其阴极铝液面的波动具有相同的周期和频率,其周期在50s左右,其波动近似于正弦波;其不同点在于新型阴极高效节能铝电解槽,与对比的系列中的其它电解槽相比,具有较小的波幅,表明新型阴极高效节能铝电解槽的创新阴极结构设计,起到了减波(幅),稳定阴极铝液面的作用;当对比电解槽槽电压从4.10V降至3.95V时,阳极导杆内的等距离压降Ued的变化幅度由0.6 mV增大到1.1 mV,说明此时电解槽内铝液和电解质非常不稳定,波动增大,证明系列对比槽在3.95V的较低槽电压下不能正常工作;新型阴极结构电解槽在3.75V槽电压时24块阳极的电流分布标准偏差为0.589kA,比传统电解槽4.10V的24块阳极的电流分布标准偏差为0.829kA小,因此可以判定新型阴极结构铝电解试验槽3.75V电流分布比4.10V传统电解槽电流分布更均匀,槽内铝液更稳定。
     在实验室电解槽上对电解质和钠对阴极的腐蚀与渗透研究,结果表明:含TiB2/C阴极被电解质和钠渗透,电解质通过阴极孔隙渗透,金属钠既可通过孔隙渗透,也存在于通过碳晶格渗透,用EDS对电解2h后的TiB2/C阴极表面电解质的分析,可以观察到TiB2在电解质中有少量溶解;金属钠在TiB2/C阴极中的渗透符合菲克定律,其中含16%TiB2的阴极试样中钠渗透深度系数为1.42mm/min1、2。通过对TiB2/C复合材料阴极在铝电解过程中钠膨胀率的研究发现,TiB2/C阴极在铝电解过程中同样具有钠膨胀特性,但在相同实验条件下其膨胀率小于碳质阴极的钠膨胀率,且随着TiB2组份含量的增加,其膨胀率降低。通过无铝液存在条件下阴极受电解质腐蚀实验研究发现,电解后电解质熔体的渗透发生的钠的渗透之后,NaF渗透速度大于冰晶石熔体的渗透速度。在电解后电解质熔体导电性能发生改变,电解一段时间后,电解质熔体的电阻会比未电解前电解质熔体的电阻有很大的改变。
In recent years, aluminum reduction technology by Hall-Heroult has made a big progress with the capacity increased from 60kA 60 years ago to the current 500kA and the Current Efficiency (CE) to 95% by advanced computer control. However, this has not changed the fact that 13000-13500 kWh/T-Al of Energy Consumption (EC) is still required to produce aluminum from alumina with poor Energy Efficiency (EE) below 50%. So it has become the most important task for aluminum industry experts to reduce the EC. It's found that cell structural modification may be one way to realize this goal.
     As a newly structured cell, drained cathode cell is well considered to represent the direction of aluminum development. Two different tests on drained cell were also done to study its potentiality. One is electrolysis test of 1350A for 100h on drained anthracite based cathode cell with TiB2/C coating, and the other is 1850A for 140h on drained graphitized cathode with TiB2/G coating. It's shown by the two tests that there are no big differences from traditional cells in preheating, start-up and operations. Drained cathode cell works stably and can get higher CE. The TiB2 coating can protect the cathode base because of its lower erosion rate. Moreover, the over-voltage at different current densities was measured with an aluminum reference electrode by interruption technique on the graphitized drained cathode cell. Both the anodic and cathodic over-voltages comply with the Tafel Equation. Furthermore, the anodic over-voltage.in the drained cell was close to that on industrial cells, while the cathodic over-voltage was much higher, reaching 0.5 V at around 1 A/cm2. This should be the reason that a stable molten Al layer and high molar ratio (CR) bath covering on the cathode.
     To overcome the very shortcoming of drained cathode cell, another newly structured cell is put forward in this thesis. The novel energy-saving technology is applied on three 168 kA cells in Chongqing Tiantai Aluminum Industry Co., Ltd. Gas-aluminum preheating method (GAP method), a special and effective preheating method for the three test cells, is also described here. After one year operation, an average EC of 12092 kWh/T-Al has been achieved on the three test cells. And in the last 6 months, the three test cells have been working steadily with cell voltage at 3.756 V, anode effects frequency (AEF) of 0.063, CE of 93.3% and EC of 12001 kWh/T-Al, compared with other 127 tradition cells in the line with cell voltage of 4.113V, AEF of 0.11, CE of 91.4% and EC of 13373 kWh/T-Al, respectively.
     It's verified that because of the newly structure cathode that the cell voltage and Anode-Cathode Distance (ACD) in the test cells are decreased, and the flow velocity of metal pad is reduced consequently. During electrolysis, AE caused by local lower alumina concentration is decreased by moderate horizontal current to improve alumina solution rate in test cells. Moreover, higher CE is obtained because the weaker wave and more stable pad result in lower loss of aluminum.
     Voltage drop of molten bath in the test cells is lower than in traditional cells due to lower ACD. Enhanced insulation around the cell can decrease energy loss and achieve good energy balance under lower cell voltage, so the EE is increased.
     Measurement and study on the stability of metal pad in the 168kA test cells have shown that 50s of wave period is almost the same as that in traditional cells. However, the wave amplitude in the test cells is lower than that in traditional cells. When cell voltage of traditional cells decreases from 4.10V to 3.95V, variation amplitude of Voltage Drops(Equidistant (Ued)) measured in anode bars increases from 0.6 mV to 1.1 mV. This proves that the traditional cells cannot work normally below cell voltage of 3.95V. The anode current distribution in the test cell at 3.75V is more uniform than that in traditional cells at 4.10V because the former has lower anode current deviation (ADN).
     Upon study on cathode corrosion and penetration by molten bath and sodium in laboratory cell, it is found that bath penetrates predominantly into the pores of TiB2/C cathode, while sodium penetrates predominantly through the carbon lattice. Titanium in TiB2/C cathode can be dissolved into the bath. Sodium penetrates into the T16 cathode sample at 1.42mm/min1/2. Sodium expansion in TiB2/C composite cathode has the same characteristics as in those amorphous carbon cathodes during electrolysis, however, its expansion rate is smaller than in pure graphite cathode. And with the increasing of TiB2 content in TiB2/C composite cathode, the expansion rate decreases. Without aluminum, the cathode is penetrated by sodium first followed by bath, and the penetration of NaF is faster than bath.
引文
1. Grjotheim K, Krohn C, Malinovsky M, et al. Aluminium electrolysis-fundamentals of the Hall-Heroult Process [M], Dusseldorf: Aluminium-Verlag GmbH,1982.
    2.邱竹贤.预焙槽炼铝[M],第三版.北京:冶金工业出版社,2005.
    3.冯乃祥.铝电解[M],北京:化学工业出版社,2006.
    4.田应甫.大型预焙铝电解槽生产实践[M],长沙:中南工业大学出版社,2005.
    5. Dewing E W, van der Kouwe E T. Activities in the liquid system NaF-MgF2-AlF3[C], Light Metals,1989:297-302.
    6. Thonstad J. The solubility of aluminium in NaF-AlF3-Al2O3 melts [J], Canadian Journal of Chemistry,1965,43:3429-3433.
    7. Utigard T A. Why best pots operate between 955 and 970℃[C], Light Metals,1999: 319-326.
    8. Grjotheim K, Kvande H, Matiasovsky K. Addition of LiF and MgF2 to the bath of the Hall-Heroult process[C], Light Metals,1983:397-411.
    9.赵长生,张明杰,何杰.添加剂MgF2、CaF2和LiF对铝电解质物理性质及微观结构的影响[J],轻金属,1997,(10):34-38.
    10. Dewing E W, Desclaux P. Interfacial tension of aluminum in cryolite melts saturated with alumina[J], Metallurgical and Materials Transactions B,1977,8:555-561.
    11. Utigard T, Toguri J M. Interfacial tension of aluminum in cryolite melts [J], Metallurgical and Materials Transactions B,1985,16 (3):333-338.
    12. Korenko M, Ondercin M. Interfacial tension of aluminum and cryolite melts during electrolysis of the systems Na3AlF6-AlF3(NaF)-Al2O3[J], Journal of Applied Electrochemistry,2006,36:1347-1352.
    13. Korenko M. Interfacial tension between aluminum and cryolite alumina melts [J], Journal of Chemical and Engineering Data,2008,53:794-797.
    14. Peterson R D, Tabereaux A T. Effect of bath additives on aluminum metal purity[C], Light Metals,1986:491-499.
    15. Tabereaux A T. Phase and chemical relationships of electrolytes for aluminum reduction cells[C], Light Metals,1985:751-761.
    16. Kostyukov A A, Anufrieva N I, Balashova Z I, et al. Physico-chemical study of the system NaF-AlF3-CaF2 (MgF2) [C], Light Metals,1983:389-395.
    17.王平甫,宫振,贾鲁宁.铝电解炭阳极生产与应用[M],北京:冶金工业出版社,2005.
    18. Muftuoglu T, Thonstad J,(?)ye H A. Laboratory study of the anode carbon consumption during aluminium electrolysis[C], Light Metals,1986:557-562.
    19. Grjotheim K, Haugsdal B, Kvande H, et al. Current efficiency measurements in laboratory aluminium cells-Ⅸ: Anode gas composition and anode consumption [J], Canadian Metallurgical Quarterly,1986,25(4):181-184.
    20. Russell P P, Weisbrod K R, Jones S S. Anode consumption test cell[C], Light Metals, 1984:933-942.
    21.曾水平.铝电解阳极研究述评[J],轻金属,1992,(7):33-37.
    22. Wilkening S. Reflections on the carbon consumption of prebaked anodes[C], Light Metals,1995:715-724.
    23. Weng T L, Hsu M B. Temperature and stresses in carbon anodes in an aluminum reduction cell[C], Light Metals,1984:977-988.
    24.冯刚.预焙阳极微量元素来源分析和控制[C],2007中国国际铝冶金技术论坛论文集,2007:239-242.
    25.董剑熊,刘志惠,魏秀明,等.预焙阳极炭块生产过程中微量元素变化情况的研究[C],2007中国国际铝冶金技术论坛论文集,2007:233-238.
    26. Sorlie M, (?)ye H A. Cathodes in aluminium electrolysis[M], Dusseldorf: Aluminium-Verlag GmbH,1994.
    27. Dewing E W. The reaction of sodium with nongraphic carbon:reactions occurring in the linings of aluminum reduction cells [J], Transactions of the Metallurgical Society of AIME,1963,227:1328-1333.
    28. Brisson P Y, Soucy G, Fafard M, et al. Revisiting sodium and bath penetration in the carbon lining of aluminum electrolysis cell [C], Light Metals,2005:727-732.
    29. Brilloit P, Lossius L P,(?)ye H A. Penetration and chemical reactions in carbon cathodes during aluminum electrolysis:Part Ⅰ. Laboratory Experiments [J], Metallurgical and Materials Transactions B,1993,24B (6):75-89.
    30. Sorlie M,(?)ye H A. Chemical resistance of cathode carbon [C], Light Metals,1984: 1059-1070.
    31.冯乃祥.冰晶石熔体和金属Na在铝电解阴极碳块中的共同渗透[J],金属学报,1999,35(6):611-617.
    32. Imris M, Soucy G, Fafard M. Carbon cathode resistance against sodium penetration during aluminum electrolysis an overview [J], Acta Metallurgica Slovaca,11,2005,2: 231-243.
    33.刘世英,李文珍,王兆文.Na和电解质对阴极炭块的渗透[J],炭素,2008,(4):3-7.
    34. Brandtzaeg S R, Linga H,(?)ye H A. Structural changes in carbon by heat treatment [C], Light Metals,2005:751-756.
    35. Hiltmann, F, Patel P, Hyland M. Influence of internal cathode structure on behavior during electrolysis part Ⅰ:properties of graphitic and graphitized material [C], Light Metals,2005:751-756.
    36. Patel P, Hyland M, Hiltmann F. Influence of internal cathode structure on behavior during electrolysis part Ⅱ:porosity and wear mechanisms in graphitized cathode material [C], Light Metals,2005:757-762.
    37. Patel P, Hyland M, Hiltmann F. Influence of internal cathode structure on behavior during electrolysis part Ⅲ:Wear behavior in graphitic materials [C], Light Metals,2006: 633-638.
    38. Hiltmann F, Maciej B, Boguslawa J, et al. Anthracite evaluation for amorphous cathodes [C], Light Metals,2002:399-403.
    39. Mittag J, Bernhauser, Frideli H. Properties of cathode carbon blocks [C], Light Metals, 1990:533-537.
    40.廖贤安,包崇爱,赵无畏,姚世焕.我国优质阴极炭素材料急需开发[J],轻金属,2003,(4):49-51.
    41.廖贤安,姚世焕,韦涵光.采用优质阴极碳块开发大型高效节能长寿铝电解槽[J],轻金属,2006,(1):34-36.
    42. Wilkening S, Reny P. Erosion rate testing of graphite cathode materials[C], Light Metals, 2004:597-602.
    43. Brisson P, Soucy G, Fafard M. Revisiting sodium and bath penetration in the carbon lining of aluminum electrolysis cell [C], Light Metals,2005:727-732.
    44. Khramenko S A., Polyakov P V, Rozin A V, et al. Effect of porosity structure on penetration and performance of lining materials[C], Light Metals,2005:795-799.
    45. Frolov A V, Gusev A O, Shurov N I, et al. Wetting and cryolite bath penetration in graphitized cathode materials [C], Light Metals,2006:645-649.
    46. Hop J G, St(?)re A, Foonas T, et al. Chemical and physical changes of cathode carbon by aluminium electrolysis [C], VII International Conference on Molten Slag Fluxes and Salts, The South African Institute of Mining and Metallurgy,2004:775-781.
    47. Ratvik A P, St(?)re A, Solheim A, et al. The effect of current density on cathode expansion during start-up [C], Light Metals,2008:973-978.
    48. Zolochevsky A, Hop J G, Foonas T, et al. Surface exchange of sodium, anisotropy of diffusion and diffusional creep in carbon cathode materials [C], Light Metals,2005: 745-750.
    49. Zolochevsky A, Hop J G, Foonas T, et al. Rapoport-Samoilenko test for cathode carbon materials—Ⅱ. Swelling with external pressure and effect of creep [J], Carbon 2005,43: 1222-1230.
    50. Brisson P Y, Darmstadt H, Fafard M, et al. X-ray photoelectron spectroscopy study of sodium reactions in carbon cathode blocks of aluminium oxide reduction cells [J], Carbon 2006,44:1438-1447.
    51. Hafeez A. Electrochemically induced crystallographic changes in graphites in molten salts[C], Light Metals,1984:1071-1081.
    52. Jilai Xue,(?)ye H A. Sodium and bath penetration into TiB2-Carbon cathodes during laboratory aluminium electrolysis [C], Light Metals,1992:773-778.
    53. Dionne M, Esperance G L, Mirchi A. Microscopic characterization of a TiB2-carbon material composite:raw materials and composite characterization [J], Metallurgical and materials transactions A,2001,32A(10):2649-2656.
    54. Ibrahiem M O, Foosnaes T,(?)ye H A. Stability of TiB2-C composite coatings [C], Light Metals,2006.691-696.
    55. Pawlek R P. Aluminium wettable cathodes: an update [C], Light Metals, 2000.449-454.
    56. Li Jie, LU Xiao-jun, Li Qing-yu, et al. Electrical resistivity of TiB2/C composite cathode coating for aluminum electrolysis[J], Journal of central south university of technology, 2006,13(3):209-213.
    57. Li Qing-yu, Lai Yan-qing, Li Jie, et al. The effect of sodium-containing additives on the sodium-penetration resistance of TiB2/C composite cathode in aluminum electrolysis[C], Light Metals,2005.789-791.
    58. Lai Yan-qing, Li Qing-yu, Yang Jian-hong, et al. Ambient temperature cured TiB2 cathode coating for aluminum electrolysis [J], Transaction of Nonferrous metals society of china,2003,13(3):704-707.
    59. Qingyu Li, Yanqing Lai, Jie Li, et al. The effect of sodium-containing additives on the sodium-penetration resistance of TiB2/C composite cathode in aluminum electrolysis[C], Light Metals,2005:789-791.
    60.班允刚,阚洪敏,任必军,等.Na和铝电解质对振动成型TiB2惰性阴极的渗透[J],过程工程学报,2007,7(3):615-619.
    61. Huimin Lu, Lanlan Yu, Chao Wang, et al. Colloidal alumina-bonded TiB2 coating on cathode carbon blocks in aluminum cells [J], Rare metals,2001,20(2):101-106.
    62.王兆文,孙淑萍,李冰,等.MoSi2对二硼化钛惰性阴极材料性能的影响[J],东北大学学报(自然科学版),1999,(6):619-621.
    63.戴兴福,谭亚菊,冯乃祥.在石墨化炉上附产TiB2的试验与研究[J],轻金属,1997,(12):41-44
    64.刘希诚,孙阳,冯乃祥.电弧炉碳热还原制取二硼化钛[J],广东有色金属学报,1999,(1):30-34
    65.王兆文,邱竹贤.TiB2制取的热力学计算[J],矿冶工程,1998,18(4):54-57.
    66.王兆文,邱竹贤,李涯.二硼化钛粉末的研制[J],轻金属,1997(8):28-32.
    67.陈立栋,薛济来,朱骏,等.自蔓延高温合成硼化钛微粉的动力学分析[C],2007
    68.张廷安,豆志河.自蔓延冶金法制备TiB2微粉的生长机理研究[J],无机材料学报,2006,21(3):583-590.
    69.王化章,汤啸,杨建红,等.氯化物熔体中电化学合成硼化钛[J],中国有色金属学报,1997,(2):
    70.石忠宁,徐君莉,邱竹贤.熔盐电镀制取铝电解用TiB2惰性阴极[J],东北大学学报(自然科学版),2004,25(12):
    71.李冰,李军,徐金富,等.在石墨基体上脉冲电镀TiB2镀层[J],稀有金属,2004,28(6):1001-1005.
    72. Ban Yungang, Wang Zhaowen, Shi Zhongning, et al. Preparation of TiB2 inert cathode on graphite by electro deposition process for aluminum electrolysis[C], Light Metals, 2007:1055-1059.
    73.徐君莉,石忠宁,邱竹贤.熔盐电镀制取铝电解用TiB2惰性阴极[J],东北大学学报(自然科学版),2004,25(9):873-875.
    74.班允刚,杨少华,阚洪敏,等.TiB2镀层制备及其耐腐蚀性能研究[J],东北大学学报(自然科学版),2007,28(12):1729-1732.
    75. Townsend D W, Boxall L G. TiB2 coatings prepared by plasma spraying and electroplating [C], Light Metals,1984:555-571.
    76. McClung M, Browning J, Carte S, et al. Plant experience with an experimental titanium diboride cell [C], Light Metals,2004.399-404.
    77. Alcom T R, Stewart D V, Tabereaux A T, et al. Pilot reduction cell operation using TiB2-G cathodes[C], Light Metals,1990:413-418.
    78. Boxall L G, Cooke A V. Use of cathode material application and benefits in conventional VSS cells[C], Light Metals,1984:573-588.
    79.刘建辉.TiB2—阴极涂层在铝电解槽上的应用[J],南方冶金学院学报,1994,15(2):123-125.
    80.任必军,石忠宁,班允刚,等.300kA大型电解槽阴极新材料的应用[J],材料与冶金学报,2006,5(4):263-267.
    81. Ren Bijun, Xu Junli, Shi Zhongning, et al. Application of TiB2 coating cathode blocks made by vibration molding for 300 ka aluminum reduction cells[C], Light Metals,2007: 1047-1050.
    82. Pawlek R P.75 years development of aluminium electrolysis cells[J], Aluminium,1999, 75(9):734-743.
    83. Reducion of power consumption in 1940/1950 designed pots[C], Light Metals,1984: 461-474.
    84. Cus Z, Sibila A.20 Years of continues improvements in TALUM Smelter[C], Light Metals,2008:467-471.
    85. Benkahla B, Caratini Y, Mezin H, et al. Last development in AP50 cell[C], Light Metals, 2008:451-455.
    86. Benkahla B, Martin O, Tomasino T. AP50 performances and new development [C], Light Metals,2009:365-370.
    87. Ming Z, Xiaodong Y, Yafeng L, et al. The advancement of new generation SY350 pot [C], Light Metals,2009:377-379.
    88.杨瑞祥.大容量预焙槽开发与技术水平[J],轻金属,2006,(2):25-30.
    89.姚世焕.中国铝电解技术的两次“飞跃”[C],2004中国国际铝业论坛,2004:49-64.
    90.姜玉敬.近30年世界铝电解工业的发展与启示[J],世界有色金属,2007,(11):15-18.
    91.霍庆发.推广280kA大型预焙槽技术带动铝电解工业发展的探讨[J],轻金属,1997,(3):25-30.
    92. Langon, Peyneau J. Current efficiency in modern point feeding industrial potlines[C], Light Metals,1990:267-274.
    93. Sterten A. Redox reactions and current loss in aluminium reduction cells [C], Light Metals,1991:445-451.
    94. Lillebuen B, Bugge Marvin, Hoie H. Alumina dissolution and current efficiency in Hall-Heroult cells[C], Light Metals,2009:389-394.
    95. Qiu Z X, Feng N X, Grjotheim K. On the electrochemical dissolution of aluminium in cryolite-alumina melts[C], Light Metals,1983:357-377.
    96.邱竹贤,冯乃祥,范立满.铝的电化学溶解及其抑制[J],有色金属,1984,36(2):47-53.
    97. Grjotheim K, Feng N X, Haugsdal B, et al. Current efficiency measurements in laboratory aluminum cells-XII:low-melting bath[J], Canadian Metallurgical Quarterly, 1987,26(3):185-188.
    98. Feng N X, Qiu Z X, Grjotheim K, et al. Current efficiency of a bipolar laboratory aluminium electrolysis cell [C], Light Metals,1990:379-384.
    99. Wang XW, Peterson R D, Richards N E. Dissolved metals in cryolitic melts [C], Light Metals,1993:323-330.
    100. Peterson R D, Wang XW. The influence of dissolved metals in cryolitic melts [C], Light Metals,1993:331-337.
    101. Sterten A. Current efficiency in aluminium reduction cells[J], Journal of Applied Electrochemistry,1988,18:473-483.
    102. Feng N X, Grjotheim K, Kvande H. Current efficiency measurements in laboratory aluminium cells-Ⅷ:Current, Temperature and Cathode Alloy Composition (Al-Cu), Al-Diffusivity [J], Canadian Metallurgical Quarterly,1986,25(4):287-291.
    103. Grjotheim K, Feng N X, Kvande H. Current efficiency measurements in laboratory aluminium cells-Ⅸ:Cathodic overvoltage on aluminium-copper alloys [J], Canadian Metallurgical Quarterly,1986,25(4):293-296.
    104. Grjotheim K, Haugsdal B, Kvande H, et al. Current efficiency measurements in laboratory aluminium cells-Ⅸ: Anode gas composition and anode consumption [J], Canadian Metallurgical Quarterly,1986,25(4):181-184.
    105. Rolseth S, Muftuoglu T, Solheim A. Current efficiency at short anode-cathode distance in aluminium electrolysis [C], Light Metals,1986:517-523.
    106.邱竹贤,冯乃祥,陈炳章,等.工业铝电解槽电流效率的数学模型[J],轻金属,1981,(9):23-30.
    107.冯乃祥.铝电解槽的电流效率[D],博士论文,沈阳:东北工学院,1988.
    108.曾水平,张秋萍.预焙铝电解槽电流效率与阳极电流分布的数学模型[J],中国有色金属学报,2004,14(4):681-685.
    109. Paulsen K A, Thonstad J, Rolseth S, et al. Current efficiency as a function of the contents of alumina and CaF2 in industrial aluminium electrolysis cells [C], Light Metals,1993:233-238.
    110. Kvande H. Energy consumption in alumina reduction cells [C], Light Metals,1991: 421-426.
    111.刘业翔.低极距下铝电解的电流效率—实验室研究[J],有色金属,1983,35(2):68-73.
    112.田庆红.合理利用铝电解槽工作电压[J],轻金属,2008,(5):34-36.
    113. Thonstad J, Kleinschrodt H D, Vogt H. Improved design equation for the interelectrode voltage drop in industrial aluminium cells[C], Light Metals,2004:427-432.
    114.郭焕雄,霍庆发,刘润田,等.铝工业说生产节能途径[J],冶金能源,1985,4(1):28-32.
    115. Kvande H, Haupin W. Cell voltage in aluminum electrolysis:a practical approach[J], JOM,2000, (2):31-37.
    116. The aluminum Association, Inc. Aluminum industry technology roadmap[W], wwwl.eere.energy.gov/industry/aluminum/partnerships.html
    117. Altdorfer J. DOE Follows roadmap to al technologies of the future [J], JOM,2000, (11): 19-25.
    118.李相鹏,李劫,赖延清,等.预焙铝电解槽阳极底部开排气沟对电解质流场的影响[J],中国有色金属学报,2006,16(6):1088-1093。
    119.任必军,王兆文,石忠宁,等.大型铝电解槽阳极开槽试验的研究[J],矿冶工程,2007,27(3):61-63.
    120.王平艳,刘谋盛,戴永年.真空碳热还原氯化法从铝土矿炼铝的实验[J],有色金属,2007,59(4):99-101.
    121.李德祥.惰性阳极铝电解的理论能耗和理论能耗电压[J],材料与冶金学报,2006,5(2):31-32.
    122. Kvande H, Haupin W. Inert anodes for Al smelters:energy balances and environmental impact[J], JOM,2001, (3):29-33.
    123. Keniry J. The economics of inert anodes and wettable cathodes for aluminum reduction cells[J], JOM,2001, (5):43-47.
    124.于先进,邱竹贤,金松哲.铝电解用惰性阳极材料研究的发展概况[J],淄博学院学报(自然科学与工程版),1999,1(1):55-60.
    125.刘业翔.铝电解惰性阳极与可湿润性阴极的研究与开发进展[J],轻金属,2001,(5):26-29.
    126.周涛,李宇春,李志友,等.铝电解惰性阳极近十年的发展状况[J],粉末冶金材料科学与工程,2004,9(1):46-53.
    127.薛济来,邱竹贤.铝电解用Sn02基惰性阳极的制备及其性能[J],东北工学院学报,1984,(2):107-117.
    128.薛济来,邱竹贤.铝电解用Sn02基惰性阳极导电性的研究[J],东北工学院学报, 1990,11(4):362-366.
    129.曾涛,薛济来,王曾杰.铝电解用陶瓷类惰性阳极的腐蚀行为[C],2007中国国际铝冶金技术论坛论文集,2007:497-502.
    130. Mihaiu S, Scarlat O, Aldica G, et al. SnO2 electro ceramics with various additives[J], Journal of the European Ceramic Society,2001,21:1801-1804.
    131.张磊,焦万丽,姚广春,等NiFe2O4惰性阳极的制备及其电解腐蚀机理[J],硅酸盐学报,2005,33(12):1431-1436.
    132.张雷,李志友,周科朝,等.大尺寸NiFe2O4-10NiO/17Ni型金属陶瓷惰性阳极的制备[J],中国有色金属学报,2008,18(2):294-300.
    133. Xi J H, Xie Y J, Yao G C, et al. Effect of additive and grain composition on properties of inert anode[C], Light Metals,2007:921-926.
    134.于先进,戴厚晨,邱竹贤NiFe2O4基铝用惰性阳极的试制[J],黄金学报,1996,15(2):120-124.
    135.田忠良,赖延清,李劼,等NiFe2O4基金属陶瓷的电导率[J],粉末冶金材料科学与工程,2005,10(2):110-115.
    136. Pawlek R P. Inert anodes:An update[C], Light Metals,2002:449-456.
    137. Pawlek R P. Inert anodes:An update[C], Light Metals,2008:1039-1046.
    138.罗涛,王兆文,于旭光,等.铝电解陶瓷类惰性阳极材料的发展[J],有色矿冶,2004,20(3):46-49.
    139. Shi Zhong-ning, Xu Jun-li, Qiu Zhu-xian. An iron-nickel metal anode for aluminum electrolysis[C], Light Metals,2004:333-337.
    140. Simakov D A, Antipov E V, Borzenko M I, et al., Nickel and nickel alloys electrochemistry in cryolite-alumina melts[C], Light Metals,2007:489-493
    141.石忠宁,徐君莉,邱竹贤,等Ni-Fe-Cu惰性金属阳极的抗氧化和耐蚀性能[J],中国有色金属学报,2004,14(4):591-594.
    142.刘卫,徐利华,吴贤熙.大型铝电解金属陶瓷惰性阳极材料的机加工性能研究[J],中国稀土学报,2008,26(专集):890-894.
    143. Thonstad J, Kisza A, Hives J. Anode overvoltage on metallic inert anodes in low-melting bath[C], Light Metals,2006:373-377.
    144. Billehaug K, (?)ye H A. Inert cathodes for aluminium electrolysis in Hall-Heroult cells(I)[J], Aluminium 1980,56(10):642-648.
    145. Billehaug K, (?)ye H A. Inert cathodes for aluminium electrolysis in Hall-Heroult cells(II)[J], Aluminium 1980,56(11):713-718.
    146. Boxall L G, Cooke A V. Use of cathode material application and benefits in conventional VSS cells[C], Light Metals,1984:573-588.
    147. Martin D, Jules B, Amir M A. Stabilizers for titanium diboride-containing cathode structures[P], US7462271,1988.
    148. Louis A J, Kenneth W T, Scott D W. Controlled atmosphere processing of TIB2/carbon composites[P], US4377463,1983.
    149. Louis A J, Kenneth W T, Scott D W. Titanium diboride-graphite composites[P], US: 4439382,1984.
    150. H. Kvande. The 6th Australasian aluminum smelting technology conference and workshop [J], Light Metal Age,1999, (2):69-72.
    151. V de Nora. Aluminium electrowinning cells having a V-Shaped cathode bottom and method of producing aluminium[P], US6682643,1983.
    152. B Georges, V de Nora. Aluminium production cell and cathode[P]:WO9853120,1998.
    153. V de Nora, J A Sekhar. Method for production of aluminum utilizing protected carbon-containing components[P], US5651874,1994.
    154. V de Nora, J J Duruz. A drained cathode cell for the production of aluminium[P], WO9902764,1999.
    155. V de Nora, J J Duruz. Drained cathode aluminium electrowinning cell with alumina distribution[P], US6436273,2000.
    156. Li X P, Li J, Lai Y Q, et al. Freeze profile and heat balance calculation of the 160kA drained cell[J], ACTA Metallurgica Sinica,2004,17(2):215-220.
    157. Li Xiang-peng, Li Jie, Lai Yan-qing, et al. Mathematical simulation of gas induced bath flow in drained aluminum reduction cell[J], Transaction of Nonferrous Metals Society of China,2004,14(6):1222-1226.
    158. Zhou Ping, Wang Zhi-qi, Zhou Nai-jun. Numerical simulation of temperature field during gas preheating and start-up of drained aluminum reduction cell[J], Transaction of Nonferrous Metals Society of China,2006,16(4):960-964.
    159. Liu Ye-xiang, Li Xiang-peng, Lai Yan-qing, et al. Heat balance simulation of drained aluminum reduction cell[J], Transaction of Nonferrous Metals Society of China,2003, 13(5):1199-1202.
    160.狄向华,聂祚仁,左铁镛.中国火力发电燃料消耗的生命周期排放清单[J],中国环境科学,2005,25(5):632-635.
    161.梅炽,王临江,周孑民,徐惠华,等.有色冶金炉设计手册[M],北京:冶金工业出版社,2000.
    162.李贺松.大型铝电解槽非稳态非均—模型及关键极节能技术研究[D],长沙:中南大学,2006.
    163. Feng Nai-xiang, Kvande H,(?)ye H A. Penetration of sodium and molten bath into high pressure baked cathode block[J], Aluminium,1997,73(4):265-270.
    164. Xue Jilai, Liu Qingsheng, Zhu Jun, et al. Investigation on sodium penetration-expansion of TiB2/C composite cathode materials for aluminum electrolysis[C],2007中国国际铝冶金技术论坛论文集,2007:20-25.
    165. Lossius L P,(?)ye H A. Melt penetration and chemical reactions in 16 industrial aluminum carbon cathodes[J], Metallurgical and Materials Transactions B,2000,31 (6):1213-1224.
    166.冯乃祥.一种异形阴极碳块结构铝电解槽[P],ZL200710010523.4.