三元流闭式叶轮组合电加工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代机械产品正朝着集成化、小型化、轻量化、高性能化的方向迅速发展,为达到产品减重、增效、节能、减排、延寿、且更加安全可靠之目的,采用整体构件设计已成为重要技术措施。其中,三元流叶轮、包括三元流闭式叶轮更具上述优点,已开始在航空航天发动机、以及舰艇、核能、采矿、石油化工等领域使用的先进透平机械中得到越来越多的应用。但是,三元流闭式叶轮结构非常复杂、加工可达性差,且有的材料还很难切削,对其整体制造(不是分体制造)又成为当今世界先进制造领域中正在力求解决、但还没有解决好的技术难题。本文针对三元流闭式叶轮上复杂弯扭型腔(叶间流道)的加工难点,提出并实施了组合电加工技术方案,并应用数字化技术,优质、高效、快速响应地解决了三元流闭式叶轮整体加工的工艺难题。
     首先,论文在已有的典型整体构件组合电加工技术的基础上,提出了适合于复杂三元流道的组合电加工工艺方案;建立了三元流闭式叶轮的数字化模型,分析其结构特点及加工难点,制定了分区域、多电极、多工序的组合电加工工艺路线。
     其次,论文重点研究了三元流道的数控电解预加工、及随后数控电火花精密加工的组合电加工工艺的若干关键技术,包括三元流道电加工成形规律,加工区域的划分,对应多个近成形工具阴极、电极的设计制造,电解、电火花加工专用工装夹具设计制造,加工工序安排及工序余量分布,工序间数控程序的协调,以及材料电加工特性等,都进行了系统研究并逐一解决。数字化技术是实施组合电加工工艺的技术主线,其核心为数字化建模与加工过程模拟仿真。本文在整个设计和工艺流程中充分利用数字化技术,采用统一的工艺基准和数据传递,在UG软件平台上通过二次开发,建立了统一的数字化仿真模型,实现工具阴极、电极及工装夹具的动态装配,并对电解加工及电火花加工过程进行仿真,从而实现工具阴极、电极以及加工数控轨迹的快速修正,大大提高了工艺设计效率,减少了试验工作量。
     最后,在以上理论及试验研究的基础上,受工厂委托,试制加工了修理某进口新型压缩机急需的三元流闭式叶轮;通过工艺试验和实际试制加工,对工艺参数选择、夹具安装定位、电极精确对刀、加工结果的数字化检测及数据处理等关键问题进行了分析研究,提出了解决方案;最终试制加工的三元流闭式叶轮经几何测量和工程性能检测,完全符合设计要求,已在工程现场装机使用,至今已正常运转半年多,未出现问题。
Modern mechanical products are developing rapidly along the direction of integration, miniaturization, light-weighting and high performance. One major trend is to use integrated component design which generally reduces the weight, emission and energy consumption of products, while increases their working efficiencies, working lifes, securities and reliabilities. With all the above mentioned advantages, 3D-Flow impellers, especially 3D-Flow closed impellers, are being used more frequently in the design of advanced turbomachines, which are widely used in engines of aircraft and rocket, ships, nuclear power industry, mining and petrochemical. However, due to the complexity, poor machining reachability, and the extensive use of hard-to-cut materials, integral production of 3D-Flow closed impellers has become a common technical problem in the design of advanced machines.
     Here, we developed a novel technique aiming to find a solution for the difficulty of machining complex curved cavities on difficult-to-cut material in the production of 3D-flow closed impellers. By combining electrical machining and digitized manufacturing technology, the technique that we developed has been proved to be a good solution with high quality, high efficiency and quick response for the technical obstacles in the machining of integral 3D-flow closed impellers. Based on existing typical combining electrical machining technology(CEMT) of integrated component, we first proposed a method for the CEMT of complex curved 3D-cavities and developed a digital model of 3D-flow closed impeller. After discussing its structural characteristics, we proposed a multi-part, multi-electrode, multi-step electrical machining technique.
     This study also focused on several key technologies for the precision work in numerically controlled electrochemical machining (NC-ECM) of the pre-processing and the following numerically controlled electron discharge machining (NC-EDM). The topics in this thesis include but not limited to: the shaping rule of electrical machining, division of the 3D-flow cavity, design and production of cathodes and electrodes for near-profiled tools, design and production of the special fixture for NC-ECM and NC-EDM, arrangement of processing procedures, machining allowance distribution among the processing procedures, NC programs coordination, and material characteristics in electrical machining.
     Digital technology, focusing on digital modeling and simulation during the process of production, is the main component of CEMT. Digital technology was used throughout the whole design and machining process of this study. By redevelopment on UG software platform using uniform production standards and data transformation, we built up an uniform model for digital simulation, where we have achieved (1) dynamic assembly of cathodes and electrodes and the special fixture; (2) simulation for the process of ECM and EDM; (3) quick correction of cathodes and electrodes and their NC-tracks; (4) greatly improved the efficiency of product design; (5) reduced the amount of testing work.
     Based on the above theory and experiments, the novel method that we developed was tested on commission as requested by a factory in a task to manufacture the 3D-Flow closed impeller that is urgently needed for repairing an imported new compressor. By conducting preliminary experiments and testing productions, we thoroughly studied the problems related to several key steps during this process, such as parameter determination, fixtures installation and location, the tool-electrode setting accurately, digital tests on the products, and data analysis, and proposed solution for each problem. The testing results from geometric measurement and engineering testing showed that the final 3D-Flow closed impeller product produced in our test trial perfectly meets all the designed requirements. The above mentioned 3D-Flow closed impeller was loaded into a machine in the project site since then and has continuously worked for more than six months without any problem.
引文
[1]杨叔子,吴波.先进制造技术及其发展趋势.机械工程学报,2003,39(10): 73-78
    [2]宋健.制造业与现代化.机械工程学报,2002,38(12): 1-9
    [3]谷峰,李印结.国际先进制造技术的研究动态.制造技术与机床,2006,(5): 40-43
    [4]中国工程院“新世纪如何提高和发展我国制造业”课题组.新世纪中国的制造业(调查报告) .经济日报,2002-07-04,14-15
    [5]路甬祥.团结奋斗、开拓创新、建设制造强国.机械工程学报,2003,39(1): 2-9
    [6]刘晋春,赵家齐,赵万生主编.特种加工(第3版).北京:机械工业出版社,1999. 5
    [7]刘正埙.我国特种加工技术的回顾与展望.电加工,1999,(5): 6-11
    [8]姜绪峰,彭著良,费逸伟.航空发动机减重技术研究.航空维修与工程,2005,(1): 54-56
    [9]刘强,郇极.航空航天制造与现代数控技术及装备.机电新产品导报,2006,(10): 27-28
    [10]刘大响,陈光等编著.航空发动机:飞机的心脏.北京:航空工业出版社,2003
    [11]王增强.高性能航空发动机制造技术及其发展趋势.航空制造技术,2007,(1): 52-55
    [12]丁立铭. 21世纪航空制造技术将发生质的飞跃—谈高推重比发动机的关键制造技术(上).国际航空,2002,(1): 53-55
    [13]丁立铭. 21世纪航空制造技术将发生质的飞跃--谈高推重比发动机的关键制造技术(下).国际航空,2002,(2): 58-59
    [14]王亚军,吴希孟,刘湘.航空制造技术发展趋势.科技中国,2004,(8): 44-47
    [15]方昌德.航空发动机的发展前景.北京航空航天大学学报,2002,28(5): 490-496
    [16]方昌德.借鉴国外经验发展我国的航空发动机.国际航空. 2006,(4): 74-77
    [17]刘家富.整体叶盘结构及制造工艺.航空科学技术,1998,(6): 21-23
    [18]黄春峰.现代航空发动机整体叶盘及其制造技术.航空制造技术,2006,(4): 94-100
    [19]陈光.整体叶盘在国外航空发动机中的应用.航空发动机,1999,(1): 1-6,44
    [20]赵万生,詹涵菁,王刚.涡轮叶盘加工技术.航空精密制造技术,2000,36(5): 1-5
    [21]陈元先,赖斌.离心压气机叶轮三元流场计算.航空学报,1995,16(1): 42-45
    [22] T. Bouquet, S. Kouidri, F. Bakir, R. Rey. Study of the 3D flows in the forward-curved blades centrifugal fans. Progress in Computational Fluid Dynamics, 2003, 3(1): 13-21
    [23]沈承龙,陈康民,殷忠民.三元流理论在风机设计、改型中的应用研究.上海机械学院学报,1986,8(4): 55-60
    [24]屠仁涌.带长短叶片离心叶轮的三元流场.上海交通大学学报,1988,22(4): 105-109
    [25]屠仁涌,何路王,雁翎.离心式压气机叶轮的三元流场计算与实验研究.上海交通大学学报,1985,19(6): 70-76
    [26]马胜远,赵友生,刘玉良.离心叶轮内部三元流场计算在实际工程中的应用.热能动力工程,1995,10(5): 272-278
    [27] John S. Anagnostopoulos. A fast numerical method for flow analysis and blade design in centrifugal pump impellers. Computers & Fluids, 2009, (38): 284–289
    [28]忻孝康,朱士灿,蒋锦良.叶轮机械三元流动与准正交面法.复旦大学出版社,1988.6
    [29] Wu Chung Hua, A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-radial and mixed-flow types. NACA TN 2604, 1952
    [30]张惠民.叶轮机械中的三元流理论及其应用.国防工业出版社,1984.5
    [31]姬俊锋,周来水,安鲁陵.开式整体叶轮数控加工技术研究.中国制造业信息化,2009,38(7): 33
    [32]赖天琴.三元流叶轮的加工现状及前景.机电工程,1997(6): 18-19
    [33]李群,陈五一,单鹏,等.基于UG的复杂曲面叶轮三维造型及五轴数控加工研究.航天制造技术,2007,(4): 40-44
    [34]林胜.数控高速切削加工技术(上).航空制造工程,1997,(2): 16-17
    [35] Johanna Senatore,Frederic Monies,Jean-Max Redonnet,et al.Improved positioning for side milling of ruled surfaces: Analysis of the rotation axis’s influence on machining error.International Journal of Machine Tools & Manufacture, 2007, (47): 934-945
    [36] Tae-Soon Lim, Chea-Moon Lee, Seok-Won Kim, et al. Evaluation of cutter orientations in 5-axis high speed milling of turbine blade. Journal of Materials Processing Technology, 130-131 (2002): 401-406
    [37] Than Lin, Jae-Woo Lee, Erik L. J. Bohez. A new accurate curvature matching and optimal tool based five-axis machining algorithm. Journal of Mechanical Science and Technology, 2009, (23): 2624-2634
    [38] Chun-Fong You, Chih-Hsing Chu. Tool-Path verification in Five-Axis machining of sculptured surfaces. Advanced Manufacturing Technology, 1997, (13): 248-255
    [39] Chih-Ching Lo. Real-time generation and control of cutter path for 5-axis CNC machining. International Journal of Machine Tools & Manufacture, 1999 (39): 471-488
    [40] Bo Yang, Ming C. Leu, Ji Zhou. Error analysis for four-axis side milling of undevelopable ruled surface. Control Engineering Practice, 1998 , (6): 481-487
    [41] E. Budak. Improving Productivity and Part Quality in Milling of Titanium Based Impellers byChatter Suppression and Force Control. CIRP Annals - Manufacturing Technology, Volume 49, Issue 1, 2000: 31-36
    [42] Koichi Morishige, Yoshimi Takeuchi. 5-Axis control rough cutting of an impeller with efficiency and accuracy. Proceedings of the 1997 IEEE International conference on Robotics and Automation, Part2 (of 4)1997, 2: 20
    [43] F Monies, J-M Redonnet, W Rubio, et al. Improved positioning of a conical mill for machining ruled surface: application to turbine blades. Proc Instn Mech Engrs, Vol 214 Part B(2000): 625-634
    [44] Lo C C. Efficient cutter path planning for five axis surface machining with half flat-end cutter. Computer-Aided Design, 1999, 31(9): 557-566
    [45] Liu X W. 5-axis NC cylindrical milling of sculptured surfaces. Computer-Aided Design, 1995, 27(12): 887-894
    [46]孙全平,廖文和.叶轮曲面5轴高速铣加工刀轨生成算法.东南大学学报(自然科学版),2005,35(3): 386-390
    [47]焦建彬,于华.直纹面四坐标侧铣数控加工中的误差分析.机械工程学报,2005,41(11):44-47
    [48]任军学,张定华,史耀耀,田荣鑫.离心叶轮的小摆角五坐标数控加工方法研究.机械科学与技术,2004,23(3):332-334
    [49]蔡永林,席光,查建中.任意扭曲直纹面叶轮数控侧铣刀位计算与误差分析.西安交通大学学报,2004,38(5): 517-520
    [50]于源,赖天琴,员敏,等.基于特征的直纹面5轴侧铣精加工刀位计算方法.机械工程学报,2002,38(6): 130-133
    [51]宫虎,曹利新,刘健.数控侧铣加工非可展直纹面的刀位整体优化原理与方法.机械工程学报,2005,41(11): 134-139
    [52]任军学,张定华,王增强等.整体叶盘数控加工技术研究.航空学报,2004,25(2): 205-208
    [53]刘维伟,张定华,史耀耀等.航空发动机薄壁叶片精密数控加工技术研究.机械科学与技术,2004,23(3): 329-331
    [54]吴伟. DMU-100T五轴联动加工中心加工闭式叶轮.现代制造工程,2006,(9): 140-142
    [55]王亚军.电子束加工技术的现状与发展.航空制造技术,1995,(1):28-31
    [56]张利军,黄亚荣. TC4钛合金真空电子束焊接工艺研究.现代焊接,2009,(9):1-3
    [57]陈光. EJ200发动机高压压气机结构设计改进.航空发动机,2004,30(2): 1-41
    [58]任福斌.大型鼓风机叶轮防变形焊接.焊接,1988,(6):26-28
    [59]姜晓东,蒋浙梁,朱春燕.鼓风机大修中几个问题的处理.一重技术,2001,(4): 84-86
    [60]袁秋梅,刘新杰.煤气鼓风机常见故障分析.冶金丛刊,2007,(1): 45-47
    [61]张峥,苏梅,钟群鹏.鼓风机转子叶轮失效分析.材料工程,2001,(5): 41-43
    [62]徐学东,张亦良.鼓风机叶轮断裂分析.理化检验-物理分册,2000,36(9): 412-414
    [63]陈绪鹏,刘艳.离心式鼓风机常见故障及排除措施.机械设计与制造,2005,(7): 116-117
    [64]张亦良,朱蕴卿,张振海.鼓风机叶轮快速断裂的检测及失效分析.安全与环境学报,2007,7(1): 132
    [65] H. Li, Y. Zhang, P.J. McGlinn, S. Moricca, B.D. Begg, E.R. Vance. Characterisation of stainless steel– synroc interactions under hot isostatic pressing (HIPing) conditions. Journal of Nuclear Materials 2006, 355: 136-141
    [66] W.X. Yuan, J. Meia, V. Samarov, D. Seliverstov, X. Wu. Computer modeling and tooling design for near net shaped components using hot isostatic pressing. Journal of Materials Processing Technology, 2006
    [67] M.T. Kim, S.Y. Chang, J.B. Won, H.W. Park. Effect of hot isostatic pressing on the micro-structure and mechanical properties of vitreous enamel coatings on low carbon steel. Surface & Coatings Technology, 2006
    [68] Abdou Abdel-Samad, E. Lugscheider, K. Bobzin, M. Maes. The influence of hot isostatic pressing on plasma sprayed coatings properties. Surface & Coatings Technology, 2006, (201): 124-1227
    [69] Victor Samarov, Vassily Goloveshkinl, Charles Barre. HIP Modeling Methodology Based on the Inherent Process Anisotrotropy. AD, 2005
    [70]呼和.镍基铸造高温合金的热等静压处理.金属学报,2002,38(11): 1199-1202
    [71]张满,南海,黄东等.钛合金铸件的热等静压和氢处理工艺研究.中国铸造装备与技术,2002,(5): 1-3
    [72]汤鑫,曹腊梅,盖其东,等.高温合金双性能整体叶盘铸造技术.航空材料学报,2006,26(3): 93-98
    [73]汤鑫,曹腊梅,李爱兰,等.高温合金整体叶轮铸造技术的研究进展.航空材料学报,2005,25(6): 57-62
    [74]汤鑫,于保正,刘发信,等.高温合金整体叶轮控晶铸造工艺研究.机械工程材料,2004,28(1): 17-19
    [75] J.H. Lee,S.H. Kang,D.Y. Yang.Novel forging technology of a magnesium alloy impeller with twisted blades of micro-thickness. CIRP Annals - Manufacturing Technology,57 (2008):261-264
    [76]曹祖时.现代电火花技术在航空工业中的应用.航空制造技术,1998(6): 41-43
    [77] Wilby P G. Shockwaves in the Rotor world-a Personal Perspective of 30 Years of Rotor Aerodynamic Developments in the UK. The Aeronautical Journal, 1998, (3): 113-128
    [78]张勤河,张建华,杜如虚,艾兴.电火花成形加工技术的研究现状和发展趋势.中国机械工程,2005,16(17): 1589-1590
    [79]马继川.航空航天发动机整体叶轮柔性制造(FMS)方案.天津:民用飞机制造技术及装备高层论坛,2009
    [80]郭紫贵,云乃彰,张磊.带冠整体叶轮组合电加工关键工艺研究.机械科学与技术,2003,22(增刊): 162-164
    [81]赵建社,徐家文,云乃彰,房景仕.异形型腔组合电加工数字化制造技术研究.航空学报,2006,27(1): 157-160
    [82] Xu J W, Zhu Y W, Hu P W, et al. The modeling of NC-electrochemical contour evolution machining using a rotary tool-cathode. Journal of Materials Processing Technology, 2005, 159: 272-277
    [83]朱永伟,徐家文,胡平旺.整体叶轮数控展成电解加工的数据处理及编程.中国机械工程,2002,13(16): 1385-1388
    [84]朱永伟,徐家文,胡平旺.数控展成电解加工整体叶轮的研究与应用.航空学报,2001,22(4): 376-378
    [85]吴建民,徐家文.整体叶轮数控展成电解加工运动轨迹及速度研究.机械科学与技术,2008,27(8): 1089-1091
    [86]胡平旺,徐家文,朱永伟.整体叶轮展成电解加工多轴联动分析计算.电加工与模具,2001,(5): 25-27
    [87]康敏,徐家文.精密展成电解加工整体叶轮的数控编程.机械科学与技术,2002,21(5): 94-97
    [88]张伯鹏.数字化制造是先进制造技术的核心技术.制造业自动化,2000,22(2): 1-5
    [89]阮雪榆,李从心,赵震.数字化制造技术的途径.上海造船,2003,(1): 18-20
    [90]罗垂敏.数字化制造技术.电子工业技术,2007,28(1): 52-54
    [91]张光星.航空发动机数字化制造技术的应用现状与发展趋势.航空制造技术,2009,(7): 66-69
    [92]吕琳.数字化制造技术国内外发展现状.现代零部件,2009,(3): 76-79
    [93]喻丕珠. UG在数字化制造集成中的应用.机械制造与研究,2009,38(5): 29-30
    [94]宋玉银,褚秀萍,蔡复之.基于特征的零件可制造性评价方法.河北理工学院学报,1999,21(2): 27-32
    [95]胡庆夕.面向制造的设计系统中的可制造性评价方法与应用.高技术通讯,1998,(9): 30-35
    [96]黄荣瑛,王治森,褚学宁,杜晓荣.多属性产品可制造性的综合评价.合肥工业大学学报,1996,19(增刊): 10-16
    [97]宋玉银,肖亦晖,成晔,蔡复之.产品可制造性及评价方法的研究.清华大学学报,1998,38(7): 111-114
    [98]孙朝阳,王刚,吕民,高国安.面向工程途径的产品可制造性评价概念体系.哈尔滨工业大学学报,2005,37(11): 1476-1478
    [99]《电解加工》编写组.电解加工(典型零件电解加工工艺).北京:国防工业出版社,1978
    [100]徐家文,云乃彰,王建业等.电化学加工技术—原理、工艺及应用.北京:国防工业出版社,2001
    [101]范植坚,王天诚.电解加工技术及其研究方法.北京:国防工业出版社,2004
    [102]余承业等编著.特种加工新技术.北京:国防工业出版社,1995
    [103]陈远龙,任中根,徐家文等.电解加工技术的现状与展望.第十一届全国特种加工年会论文集,2005,34-39
    [104] D. Clifton, A.R. Mount, G.M. Alder, D. Jardine. Ultrasonnic measurement of the interelectrode gap in electrochemical machining. International Journal of Machine Tools & Manufacture, 2002, 42: 1259-1267
    [105] C. Ing, E.S. Bignon, C. Bedrin. Application of eddy currents to in-process measurement of the gap in ECM. Ann. CIPP, 1982,31(1):115-119
    [106]陆永华,赵东标,云乃彰等.基于六维力电解加工间隙在线检测试验研究.中国机械工程学报,2006,42(7): 126-131
    [107]王希,赵东标,云乃彰.基于信息融合的电解加工间隙检测.机械科学与技术,2006,25(5): 594-597
    [108]范植坚,王岗罡,贾建利.电解加工测试方法的研究进展.电加工与模具,2005,(5): 1-5
    [109]王至尧主编.材料特种加工成形工程(上).中国材料工程大典第24卷.北京:化学工业出版社,2006
    [110] Chunhua Sun,Di Zhu,Zhiyong Li,et al.Application of FEM to tool design for electrochemical machining freeform surface. Finite Elements in Analysis and Design,2006,43:168-172
    [111] Marius Purcar,Andrei Dorochenko,Leslie Bortels,et al.Advanced CAD integrated approachfor 3D electrochemical machining simulations. Journal of Materials Technology,2008,203:58-71
    [112] Yuming Zhou, Jeffrey J.Derby. The cathode design problem in electrochemical machining. Chemical Engineering Science,1995,50(17): 2679-2689
    [113] H.Hardisty , A.R.Mileham , H.Shirvarni , et al . A Finite element simulation of the electrochemical machining processs.CIRP Annals-Manufacturing Technology,1993,42(1): 201-204
    [114] J Kozak,K P Rajurkar,R F Ross.Computer simulation of Pulse Electrochemical machining(PECM).Journal of Materials Processing Technology,1991,28(1-2): 149-157
    [115] J.Kozak,L.Dabrowski,H.Osman,et al.Computer modelling of electrochemical machining with rotating electrode.Journal of Materials Processing Technology,1991,28(1-2): 159-167
    [116] V.K.Jain , K.P.Rajurkar . An integrated approach for tool design in ECM . Precision Engineering,1991,13(2): 111-124
    [117] K.P.Rajurkar , C.L.Schnacker , R.P.Lindsay . some Aspects of ECM Performance and Contro.CIRP Annals-Manufacturing Technology,1988,37(1): 183-186
    [118] O.H.Narayanan , S.Hinduja , C.F. Noble . The Prediction of workpiece shape during electrochemical machining by the boundary element method. International Journal of Machine Tool Design and Research.1986,26(3): 323-338
    [119] Li Zhiyong,Niu Zongwei.Convergence Analysis of the Numerical Solution for Cathode Design of Aero-engine Blades in Electrochemical Machining. Chinese Journal of Aeronautics,2007, 20: 570-576
    [120] C.S. CHANG,L.W. HOURNG.Two-dimensional two-phase numerical model for tool design in electrochemical machining. Journal of Applied Electrochemistry, 2001, 31: 145-154
    [121] L.M.Kotlyar,N.M.Minazetdinov.Anode-shape Determination with Allowance for Electrolyte Properties in Problems of Dimensional Electrochemical Machining of Metals.Journal of Applied Mechanics and Technical Physics, 2003, 44(3): 450-454
    [122] S.Bhattacharyya, A.Ghosh, A.K.Mallik. Cathode shape prediction in electrochemical machining using simulated cut-and-try procedure. Journal of Materials Processing Technology, 1997, 66: 146-152
    [123] Domanowski P, Kozak J. Inverse problem of shaping by electrochemical generating machining. Journal of Materials Processing Technology, 2001, 109: 347-353
    [124] Kozak J. Computer simulation system for electro-chemical shaping. Journal of MaterialsProcessing Technology, 2001, 109: 354-359
    [125] Zawistowski F. New system of electrochemical form machine using universal rotating tools. International Journal of Machine Tools & Manufacture, 1990, 30(3): 475-483
    [126]赵建社,徐家文,王福元,葛媛媛.异形型腔数控电解加工阴极及运动轨迹设计.中国机械工程,2006,17(1): 18-19
    [127]何江华.计算机仿真导论.北京:科学出版社,2001: 1-10,285-292.
    [128] Lu Yi, Tatu Leinonen. A computer simulation approach to machining complicated shapes, on an orthogonal 6-rod machine tool. International Journal of Machine Tools & Manufacture, 2002, (42): 441-447
    [129] Yi Lu. Computer simulation applied to an orthogonal three-rod machinetool for machining a complicated three-dimensional surface. International Journal of Machine Tools & Manufacture, 2002 , (42): 1277-1284
    [130] J. Kozak. Mathematical models for computer simulation of electrochemical machining processes. Journal of Materials Processing Technology, 1998 (76): 170-175
    [131] Anna Puig, Llu?s Perez-Vidal, Dani Tost. 3D simulation of tool machining. Computers & Graphics, 2003 (27): 99-106
    [132]熊光楞,王昕.仿真技术在制造业中的应用与发展.系统仿真学报,1999,11(3): 145-151
    [133] T.S. Mujber, T. Szecsi, M.S.J. Hashmi. Virtual reality applications in manufacturing process simulation. Journal of Materials Processing Technology, 2004, 155-156: 1834-1838.
    [134]郑运荣,张德堂.高温合金与钢的彩色金相研究.北京:国防工业出版社,1999
    [135]王旭东,李荣仁. GH4169合金在某发动机上的选用分析.燃气涡轮试验与研究,1997,(1): 56-59
    [136]《中国航空材料手册》编辑委员会.中国航空材料手册第二卷(变形高温合金、铸造高温合金).北京:中国标准出版社,2002: 323-359
    [137]傅恒志.未来航空发动机材料面临的挑战与发展趋向.航空材料学报,1998,18(4): 52-56
    [138]蔡昆山,付大华.高温合金的加工方法.光电对抗与无源干扰,2003,69(1): 54-56
    [139]方亮,石金东.高温合金GH4169切削工艺.航天工艺,2000,(6): 43-45
    [140] I.A. Choudhury, M.A. El-Baradie. Machinability assessment of inconel 718 by factorial design of experiment coupled with response surface methodology. Journal of Materials Processing Technology, 1999, (95): 30-39
    [141] Adrian Sharman, Richard C. Dewes, David K. Aspinwall. Tool life when high speed ball nose end milling Inconel 718TM. Journal of Materials Processing Technology, 2001, (118): 29-35
    [142] Y.C. Chen, Y.S. Liao. Study on wear mechanisms in drilling of Inconel 718 superalloy. Journal of Materials Processing Technology, 2003, (140): 269-273
    [143]钱子亮,贾艳丽.高温合金材料冷加工技术.航空制造技术,2004,(3): 92-93
    [144]赵建社.整体构件异形型腔组合电加工关键技术研究[博士学位论文].南京:南京航空航天大学,2007
    [145]朱元保,沈子琛等.电化学数据手册.湖南:科学技术出版社,1985
    [146]李刚,王振龙,赵万生,等.带冠整体涡轮盘电火花加工CAD/CAM技术.南京航空航天大学学报,2007,39(2):253-257
    [147]王刚,赵万生,于达仁,等.整体涡轮盘通道电火花加工方法的研究.计算机辅助设计与制造,2001,(7):35-38
    [148]赵万生,詹涵菁,王刚,等.带冠涡轮叶盘弯扭通道中复杂电极的进给轨迹.国防科技大学学报,2000,22(5):78-82
    [149]廖平强.带冠整体涡轮电火花加工技术研究. [硕士学位论文],西安:西北工业大学,2007
    [150]王红敏,孙殿柱,张志诚.基于CMM的曲面检测技术与测头半径补偿.工具技术,2006,40(10): 77-80
    [151] Y.H. Chen, Y.Z. Wang, Z.Y. Yang. Towards a haptic virtual coordinate measuring machine. International Journal of Machine Tools & Manufacture. 2004, 44: 1009-1017
    [152] Y.Y. Hsu, S.S. Wang. A new compensation method for geometry errors of five-axis machine tools. International Journal of Machine Tools & Manufacture. 2007, 47: 352-360
    [153] W.T. Lei, Y.Y. Hsu. Accuracy enhancement of five-axis CNC machines through real-time error compensations. International Journal of Machine Tools & Manufacture. 2003, 43: 871-877