微细电解线切割加工技术的试验研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微细电解线切割加工技术是以微米尺度线电极作为工具阴极,利用金属在电解液中发生电化学溶解的原理,结合多轴数控运动,对金属材料进行加工成形的一种电解加工新方法。基于原理上的优势,线电极加工过程中不发生损耗,可采用数微米直径金属丝作电极,加工出小至数微米尺度的复杂微结构件。该技术在航空航天、精密仪器、生物医疗等微细制造领域具有广阔的应用前景。本文的主要研究工作内容如下:
     1.提出了三种强化传质的方案。讨论了微细电解线切割加工的原理和特点,分析了脉冲电流微细电解线切割加工的定域蚀除特性。基于微细电解线切割加工自身的特点,提出了三种强化传质方案:线电极轴向微幅振动方案、线电极轴向冲液方案和环形线电极单向走丝方案。
     2.完善了微细电解线切割加工的试验系统。改进了运动系统、超短脉宽电源、加工检测系统、加工控制系统,建立了电解液循环系统。根据不同的强化传质方案,分别设计了轴向微振动线电极系统、轴向冲液线电极系统和单向走丝线电极系统。
     3.进行了轴向微幅振动微细电解线切割工艺试验研究。实现了直径2μm线电极的在线制作。分析了线电极轴向微幅振动加工间隙流场特性,建立了线电极轴向微幅振动加工间隙理论模型。通过大量的对比试验,研究了线电极轴向微幅振动对加工稳定性、加工效率、加工精度以及电参数工艺规律的影响。比较了不同工件材料、不同线电极直径对加工工艺的影响。在镍、高温合金和不锈钢材料上加工出多个复杂微结构,其中微螺旋结构切缝宽度为8μm。
     4.进行了轴向冲液微细电解线切割工艺试验研究。对引流道流场进行了仿真和优化,采用增加牺牲阳极的方法改善了出液面切缝边缘圆角现象。根据所建立的理论模型,研究了不同工艺参数对加工效果的影响。选择合适的工艺参数,采用直流电源在5mm厚的不锈钢板上加工出了深宽比高达30的微缝等结构;采用脉冲电源在厚100μm不锈钢板上加工出了微缝、微探针和直角等典型微结构。
     5.提出了环形线电极单向走丝电解线切割加工新方法。建立了单向走丝电解线切割加工间隙流场的数学模型,从理论上分析了走丝机构上的导轮回转精度对电极丝振动的影响,通过增加辅助阳极消除了切缝周围非加工区的点蚀现象,探讨了加工中断丝的原因并提出了有效的解决措施。设计了单向走丝机构,实现了环形线电极的无缝对接。通过大量的对比试验,分析了走丝速度、进给速度、电解液浓度、工件厚度和辅助阳极等因素对加工的影响。进行了单向走丝电解线切割典型结构加工试验,实现厚度为20mm的不锈钢板的切割,加工出的切缝结构深宽比达66.7。
     6.将微细电解线切割技术应用于某新型传感器关键弹性敏感元件的研制。针对该弹性敏感元件加工精度要求高且凹槽壁厚只有0.01mm,试验中采用了超声振动消除工件材料内的残余应力,线电极对刀法确定工件平行度和找正凹槽位置以及通过设定线电极轨迹重复两次切割凹槽成形等有效工艺方法。在分析了钴基弹性合金材料的电化学特性的基础上,进行工艺参数优化,最终成功加工出满足要求的完整弹性敏感元件。
Wire electrochemical machining (WECM) is a new method of electrochemical machining (ECM) process. WECM uses a thin metal wire as the tool, combining multi-axis numerical control to cut the work-piece. The micrometer scale metal wire can be used as the tool by WECM for no electrode wear in the processing. The micrometer structures with complex shape can be fabricated by WECM. The technology has broad application prospects in the field of aerospace industry, precision instruments, biomedical, and so on. The main research work as follows:
     1. Three schemes of mass-transfer enhancement were investigated. Firstly, principle and characteristics of micro-WECM were summarized. Secondly, the influence of nanosecond pulse electricity on electrochemical reaction region was investigated. At last, for enhancing mass-transfer in machining gap, schemes of axial tool micro-vibration, axial electrolyte flow and unidirectional wire drive were adopted in this paper.
     2. The micro-WECM machining system was improved. The motion system, high-frequency short-pulse power supply, control and measuring system were improved. Wire electrode system and electrolyte circulation system were designed. According to different methods of enhancing mass-transfer in the machining gap, wire electrode system was divided into axial tool micro-vibration system, axial electrolyte flow system and unidirectional wire drive system.
     3. The technology of micro-WECM with low frequency and small amplitude tool vibration was experimentally investigated. Firstly, a wire electrode with the diameter of 2μm was machined. Secondly, the theoretical model of micro-WECM’s machining gap was founded based on flow field characteristics of axial tool micro-vibration. The influence of the tool micro-vibration on processing stability, feed speed, machining accuracy and technology law of electrical parameters were experimentally investigated. The impacts of work-piece material and the diameter of wire electrode on the machining process were experimentally compared. At last, the various micro-structures in thin nickel, stainless-steel and superalloy were obtained. And a micro helix with the slit width of 8μm was fabricated.
     4. The technology of micro-WECM with axial electrolyte flow was experimentally investigated. Flow field of auxiliary channel was simulated and analyzed. The method of sacrificial anode was used to improve the rounded edge on outflow surface. Effects of process parameters on the machining process were investigated.Finally, by using DC, micro grooves with the aspect ratio of 30 were obtained in 5mm-thick stainless steel. And by using pulse power, structures of micro-slit, micro-probe and rectangular structure were fabricated in 100μm-thick stainless steel.
     5. In order to machine high-aspect-ratio structures in 20mm-thick stainless steel, WECM with unidirectional wire drive was adopted. The theoretical model of machining gap flow field was founded. The influence of idler pulley precision of the unidirectional wire drive device on wire electrode vibration was investigated. The additional anode was used to improve the processing quality of non-processing zone. The reasons of broken wire were discussed and the effective solution measures were proposed. The unidirectional wire drive device was designed, and the seamless ring wire electrode was achieved. The influence of several process factors, such as wire drive speed, feed speed, concentration of electrolyte, work-piece thickness and additional anode, on the machining process was investigated. Structures with high-aspect-ratio were fabricated, and the aspect ratio of the slits in the 20mm-thick stainless steel was nearly 66.7.
     6. Micro-WECM was applied to fabricate a key elastic sensitive element of acceleration sensor. Because of the high requirement of machining accuracy and the special thin thickness of groove wall, the ultrasound was adopted to eliminate the residual stress in the work-piece material, and the tool positioning was proposed to exactly measure the parallelism and the groove position of work-piece. Moreover, the machining precision of groove was improved by repeating process twice through setting tool track. Based on the electrochemical property of co-based elastic alloy analysis, the process parameters were optimized. Finally, the full elastic sensitive element which meets the processing requirements was successfully manufactured.
引文
[1]王军.微细加工技术在国内外发展趋势的研究.制造技术与机床, 2009(7): 33-36.
    [2] Watanabe Y, Edo M, Nakazawa H, et al. A new fabrication process of a planar coil using photosensitive polyimide and electroplating. Sensors and Actuators A, 1996(54): 733-738.
    [3] Thies A, Piotter V, Hausselt J H, et al. A new method for mass fabrication of metallic microstructures. Microsystem Technologies, 1998(4): 110-112.
    [4]姚劲松,王志勤,王飞,等.准LIGA工艺技术在加工微金属齿轮中的应用.光学精密工程, 1995, 3(2): 64-66.
    [5] Chung S W, Shin J W, Kim Y K, et al. Design and fabrication of micromirror supported by electroplated nickel posts. Sensors and Actuators A, 1996, (54): 464-467.
    [6] Cho H S, Hemker K J, Lian K, et al. Measured mechanical properties of LIGA Ni structures. Sensors and Actuators A, 2003, (103): 59-63.
    [7] Hirata T, Guenat O T, Akashi T, et al. A numerical simulation on a pneumatic air table realize by Micro-EDM. Journal of Microelectromechanical systems, 1999, 8(4): 523-528.
    [8] Chung C K, Lin C J, Chen C C, et al. Combination of thick resist and electroforming technologies for monolithic inkjet application. Microsystem Technologies, 2004, (10): 462-466.
    [9] Kuo C L, Huang J D, Liang H Y. Fabrication of 3D Metal Microstructures Using a Hybrid Process of Micro-EDM and Laser Assembly. Int J Adv Manuf Technol, 2003, (21): 796-800.
    [10] Chung S J, Hein H, Hirata T, et al. A micro cycloid-gear system fabricated by multi-exposure LIGA technique. Microsystem Technologies, 2000, (6):149-153.
    [11] Garino T, Morales A, Buchheit T, et al. The Fabrication of Stainless Steel Parts for MEMS. SAND REPORT, 2002: 1-20.
    [12] Peirs J, Reynaerts D, Verplaetsen F, et al. A Microturbine Made by Micro-Electro-Discharge Machining. In: The 16th European Conference on Solid-State Transducers, 2002: 790-793.
    [13] Kataoka K, Kawamura S, Itoh T. Electroplating Ni micro-cantilevers for low contact-force IC probing. Sensors and Actuators A, 2003, (103): 116-121.
    [14] Gillot F, Mognol P, Furet B. Dimensional accuracy studies of copper shells used for electro-discharge machining electrodes made with rapid prototyping and the electroforming process. Journal of Materials Processing Technology, 2005, (159): 33-39.
    [15] Bohm J, Schubert A, Otto T, et al. Micro-metalforming with silicon silicon dies. Microsystem Technologies, 2001, (7): 191-196.
    [16]孔祥东,张玉林,宋会英,等.微机电系统的微细加工技术.微纳电子技术, 2004(11): 32-38.
    [17]傅建中,胡旭晓.微系统原理与技术.北京:机械工业出版社, 2005.
    [18]周焱.微细加工技术研究进展.机械工程师, 2006(11): 29-31.
    [19]喻永康.微细加工技术研究现状.无锡商业职业技术学院学报, 2007, 7(6):4-6.
    [20]巴瑞璋,张晓兵.激光加工密集群孔技术.航空制造技术, 2003, 7: 68-71.
    [21]潘开林,陈子辰,傅键中.激光微细加工技术及其在MEMS微制造中的应用.制造技术与机床, 2002, 3: 15-19.
    [22] Gower M. Excimer laser microfabrication and micromachining. Precision Engineering, 1999, (23): 229-235.
    [23]顾兴中,倪中华.微孔结构血管支架的激光切割工艺.华中科技大学学报, 2007, 35(3): 143-146.
    [24] Cheng Y, Shew B Y, Chyu M K, et al. Ultra-deep LIGA process and its application. Nuclearinstruments and methods in physics research A, 2001, (464-468): 1192-1197.
    [25]梁静秋,姚劲松. LIGA技术基础研究.光学精密工程, 2000, 8(1): 38-41.
    [26] Chung S J, Hein H, Mohr J, et al. LIGA Technology Today and Its industrial Application. Microrobotics and Microassembly II, Bradley J. Nelson, Proceedings of SPIE. 2000, (4194): 44-54.
    [27] Turner R, Desta Y, Kelly K, et al. Tapered LIGA HARMS. Journal of Micromechanics and Microengineering. 2003, (13): 367-372.
    [28] Cheng C M, Chen R H. Key issues in fabricating microstructures with high aspect ratios by using deep X-ray lithography. Microelectronic Engineering, 2004, (71): 335-342.
    [29] Ehrfeld W, Hessel V, Lowe H, et al. Materials of LIGA technology. Microsystem Technologies, 1999, (5): 105-112.
    [30] Hormes J, otter J G, Lian K, et al. Materials for LiGA and LiGA-based Microsystems. Nuclear Instruments and Methods in Physics Research B, 2003, (199): 332-341.
    [31] Mekaru H, Kusumi S, Sato N, et al. Development of a 3-dimensional LIGA process and application to fabricate a spiral microcoil. Electrical Engineering in Japan, 2009, 166(1): 43-51.
    [32] Lian K, Jiang J C, Ling Z G. Processing-microstructure-resulting materials properties of LIGA Ni. Microsystem Technologies, 2007, 13(3-4): 259-64.
    [33] Kupk R K, Bouamrane F, Cremers C, et al. Microfabrication: LIGA-X and applications. Applied Surface Science, 2000, (164): 97-110.
    [34] Kong X D, Zhang Y L, Song H Y. Development and application of LIGA technology. Micronanoelectronic Technology, 2004, 41(5): 13-18.
    [35]吴晓,周星元.基于MEMS牺牲层技术的发展现状.现代制造工程, 2007, (09): 86-88.
    [36] Reh W H, Liang C T, Graham M, et al. Cross-linked PMMA as a low-dimensional dielectric sacrificial layer. Journal of Microelectromechnical System. 2003, 12(5): 641-648.
    [37]张永华,丁桂甫,李永海,等. MEMS中的牺牲层技术.微纳电子技术, 2005, (2): 73-77.
    [38] Wang C, Jia G, Taherabadi L H, et al. A Novel Method for the Fabrication of High-Aspect Ratio C-MEMS Structures. Journal of Microelectromechanical Systems, 2005, 14(2): 348-358.
    [39] Yi F, Miao P, Peng L, et al. A New Method for Fabrication of SU-8 Structures with High Aspect Ratio Using Mask-Back Exposure Technique. Journal of Semiconductors, 2004, 25(1): 26-29.
    [40] Tabata O, Terasoma K, Agawa N, et al. Moving mask LIGA (M2LIGA) process for control of side wall inclination. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1999: 252-256.
    [41] Tabata O, You H, Matsuzuka N, et al. Moving mask deep X-ray lithography system with multi stage for 3-D microfabrication. Microsystem Technologies, 2002, (8): 93-98.
    [42] Lee S K, Lee K C, Lee S S. Microlens fabrication by the modified LIGA process. Proceedings of Micro ElectroMechanical Systems. LasVegas, NV, USA, IEEE, 2002:520-523.
    [43] Lee S K, Kim D S, Yang S S, et al. Microlens fabrication by the modified LIGA process and its modeling and analysis. Conference Digest of Optical MEMS’2002. Hotel de la Paix, Lugano, Switzerland, IEEE/LEOS, 2002: 77-78.
    [44] Aigeldinger G. Implementation of an Ultra Deep X-ray Lithography System at CAMD. University Freiburg, 2001.
    [45] Ehrfeld W. Electrochemistry and Microsystems. Electrochimica Acta, 2003, 48: 2857-2868.
    [46] Yi F, Zhang J, Xie C. Activities of LIGE and Nano LIGA Technologies at BSRF. Journal of Physics: Conference Series 34, 2006: 865-869.
    [47] Qu W, Wenzel C, Jahn A, et al. UV-LIGA: A promising and low-cost variant for microsystem technology. In: Proceedings of Conference on Optoelectronic and Microelectronic Materials and Devices, Piscataway: IEEE, 1999: 380-383.
    [48] Lorenz H, Despont M, Fahrni N, et al. High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sensors and Actuators, 1998, (64): 33-39.
    [49] Holmes A S. Excimer laser micromachining with half-tone masks for the fabrication of 3-D microstructures. IEE Proceedings - Science, Measurement and Technology, 2004, 151 (2): 85-92.
    [50] Holmes A S. Laser processes for MEMS manufacture. RIKEN Review No. 43 (Focused on 2nd International Symposium on Laser Precision Microfabrication (LPM2001)): 63-69.
    [51]沈蓓军,王润文,路敦武,等.激光LIGA工艺制作微机械元件.仪器仪表学报, 1999, 20(4): 109-111.
    [52] Kuo C L, Huang J D, Liang H Y, et al. Fabrication of 3D Metal Microstructures Using a Hybrid Process of Micro-EDM and Laser Assembly. International Journal of Advanced Manufacturing Technology, 2003, (21): 796-800.
    [53]陈迪,张大成,丁桂甫,等. DEM技术研究.微细加工技术, 1998, (4): 1-6.
    [54] Mita M, Mita Y, Toshiyoshi H, et al. Multiple-height Microstructures Fabrication by ICP-RIE and embedded Masking layer. Transactions of the Institute of Electrical Engineers of Japan, Part E, 120E (11): 493-497.
    [55]刘明,谢常青,王从舜等编著.微细加工技术.北京:化学工业出版社, 2004.
    [56]黄燕花,董申,袁光辉,等.微电极精密车削技术.电加工与模具, 2003(4): 14-16.
    [57] Bang Y, Lee K, Oh S. 5-axis micro milling machine for machining micro parts. International Journal of Advanced Manufacturing Technology, 2005, (25): 888-894.
    [58] Challer Th, Bohn L, Mayer J, et al. Microstructure grooves with a width of less than 50μm cut with ground hard metal micro end mills. Precision Engineering, 1999, (23): 229-235.
    [59]于滨.微细电火花线切割加工控制系统及工艺规律研究. [博士学位论文].哈尔滨:哈尔滨工业大学, 2004.
    [60]王振龙,赵万生,狄士春,等.微细电火花加工技术的研究进展.中国机械工程, 2002, 13(10): 894-899.
    [61] Liao Y S, Chen S T, Lin C S. Development of a High Precision Tabletop Versatile CNC Wire-EDM for Making Intricate Micro Parts, Journal of Micromechanics and Microengineering, 2005,15(2): 245-253.
    [62]曾繁章,郭钟宁,刘江文.微细电化学加工技术, 2005, 34(5):11-14.
    [63]王建业,徐家文.电解加工原理及应用.北京:国防工业出版社, 2001.
    [64]章成军.电解加工原理及应用.现代车用动力, 2003.
    [65]朱荻.国外电解加工的研究进展.电加工与模具, 2000(1): 11-16.
    [66]李小海,王振龙,赵万生.微细电化学加工研究新进展.电加工与模具, 2004(2): 1-5.
    [67] H. T.库特利雅夫采夫等著,陈国亮等译.应用电化学.上海:复旦大学出版社, 1992.
    [68] Griffiths S K, Nilson R H, Ting A, et al. Modeling electrodeposition for LIGA microdevice fabrication. Microsystem Technologies, 1998, 4: 98-101.
    [69] Griffiths S K, Nilson R H, Bradshaw R W, et al. Transport limitations in electrodeposition for LIGA microdevice fabrication. Proceedings of the SPIE Symposiumon Micromachining and Microfabrication Process Technology IV. Santa Clara, CA: SPIE, 1998, 3511: 364-375.
    [70] Nilson R H, Griffiths S K. Natural convection in trenches of High Aspect Ratio. Journal of the Electrochemical Society, 2003, 150: C401-C412.
    [71] Xia C. Simulation of Electrodeposition in Ultra-Deep Micro Cavities. Pittsburgh: Carnegie Mellon University, 2001.
    [72] Wang W, Leith S D, Schwartz D T. Convective-Diffusive Mass Transfer Inside Complex Micro-Molds During Electrodeposition. Journal of microelectromechanical systems, 2002, 11(2): 118-124.
    [73] Issaev N N, Schrodt A G, Khan Malek C. Consumption-related development in microelectroforming. Microsystem Technologies, 2001, 7:44-46.
    [74]刘益芳,崔宏巍,吕文龙,等.利用微电铸制作镍悬臂梁.厦门大学学报(自然科学版), 2005, 44(5): 658-660.
    [75] Tsai T H, Yang H, Chein R. New electroforming technology pressure aid for LIGA process. Microsystem Technologies. 2004, 10: 351-356.
    [76] Yang H, Kang S W. Improvement of thickness uniformity in nickel electroforming for the LIGA process. International Journal of Machine Tools & Manufacture, 2000, 40: 1065-1072.
    [77] Drese K S. Design rules for electroforming in the LIGA process. Journal of the Electrochemical Society, 2004, 151(6): D39-D45.
    [78] Pan L W, Yuen P, Lin L. 3D electroplated microstructures fabricated by a nove height control method. Microsystem Technologies, 2002, (8): 391-394.
    [79] Pan L W. Selective Electroplating and Bonding for the Integration of Microstructures. Ph.D. thesis of University of Michigan, 2001.
    [80] Basol B M, Uzoh C E, Talieh H, et al. Electrochemical mechanical deposition (ECMD) technique for semiconductor interconnect applications. Microelectronic Engineering, 2002, (64): 43-51.
    [81] El-Giar E M, Said R A, Bridges G E, et al. Localized Electro-chemical Deposition of Copper Microstrutures. Journal of the Electrochemical Society, 2000, 147(2): 586-591.
    [82] Li Y, Zheng Y, Yang G, et al. Localized electrochemical micromachining with gap control. Sensors and Actuators, 2003, 108(1-3): 144-148.
    [83]明平美. UV-LIGA与微细电火花加工组合制造技术基础研究. [博士学位论文].南京:南京航空航天大学, 2006.
    [84] Madden J D, Hunter I W. Three-dimensional microfabrication by localized electrochemical deposition. Journal of Microelectromechanical System, 1996, (5): 24-32.
    [85] Cohen A L, Frodis U, Tseng F G, et al. EFAB: Low-cost, automated electrochemical batch fabrication of arbitrary 3D microstructures. SPIE, 1999, Santa Clara, CA, September 22, 1999.
    [86] Datta M, Lubomyr T R. Application of chemical and electrochemical micromachining in the electronic industry, Journal of Electrochemical Society, 1989, 136(6): 285-291.
    [87] Datta M. Electrochemical Micromachining in Electrochemical Technology: Innovations and New Developments, Tokyo, 1996.
    [88] Datta M. Fabrication of an Array of Precision Nozzles by Through-Mask Electro chemical Micromachining, Journal of Electrochemical Society, 1995, 142 (11): 655-669.
    [89] Datta M, Romankiw L T. Electrochemical micromachining tool and process for through-mask patterning of thin metallic films supported by non-conducting or poorly conducting surfaces, U.S. Patent, 5284554, 1994-02-08.
    [90] Shenoy R V, Datta M. Effect of Mask Wall Angle on Shape Evolution during Through-Mask Electrochemical Micromachining, Journal of Electrochemical Society, 1996, 143: 544-549.
    [91]张朝阳,朱荻,王明环.超短脉冲电流微细电解加工技术研究.中国机械工程, 2005(14): 1295-1298.
    [92] Mineta T. Electrochemical etching of a shape memory alloy using new electrolyte solutions. Journal of Micromechanic and Microengineering, 2004(14): 76-80.
    [93] Datta M. Microfabrication by electrochemical metal removal. IBM Journal of Research and Development, 1998, Vol.42 (5): 655-669.
    [94]高上品.电解液射流成形加工的应用研究.机械制造, 2003, 41(464): 12-13.
    [95] Johns B A. Advanced Machining Techniques for Turbine Blades. Industrial Lubrication and Tribology, 1984, 36(1): 4-9.
    [96] Ahmed M S, Duffield A. Deep hole drilling using ECM, SME Technical Paper (Series) MS, 1989: 809-816.
    [97] Kozak J, Rajurkar K P, Balkrishna R. Study of electrochemical jet machining process, Transactions of the ASME, 1996, 118: 490-499.
    [98]施文轩,张明歧,殷旻等,电射流加工工艺研究和发展,电加工与模具, 2001, 1: 36-39.
    [99] Schuster R, Kirchiner V, Allongue P, et al. Electrochemical micromachining. Science, 2000, 289(5476): 98-101.
    [100]王建业.电解加工技术的新发展高频窄脉冲电流电解加工.新技术新工艺, 1998(2):37-41.
    [101] Chang W H. Micromachining of p-type 6H-SiC by electrochemical etching Sensors and Actuators, A: Physical, v112, n12004 (15): 36-43.
    [102] Schuster R, Kirchner V, Allongue P, et al. Electrochemical Micromachining. Science, 2000, Vol.289(7): 98-101.
    [103] Allongue P, Jiang P, Kirchner V, et al. Electrochemical Micromachining of p-Type Silicon. Jour- nal of Physical Chemistry, B, 2004, Vol.108, n38 (23): 14434-14439.
    [104] Kirchner V, Cagnon L, Schuster R, et.al. Electrochemical machining of stainless steel microelements with ultrashort voltage pulses. Applied Physics Letters, 2001,Vol.79 (11): 1721-1723.
    [105] Kirchner V, Xia X, Schuster R. Electrochemical Nanostructuring with Ultrashort Voltage Pulses. Accounts of Chemical Research, 2001, Vol.34(5): 371-377.
    [106] Trimmer A L, Hudson J L. Single-step electrochemical machining of complex nanostructures with ultrashort voltage pulses. Applied Physics Letters, 2003, Vol.82 (19): 3327-3329.
    [107] Kock M, Kirchner V, Schuster R. Electrochemical micromachining with ultrashort voltage pulses-a versatile method with lithographical precision.Electrochimica Acta, 2003, 48(20-22): 3213-3219.
    [108] Allongue P, Jiang P, Kirchner V, et al. Electrochemical micromachining of p-Type Silicon. Journal of Physical Chemisrry B, 2004, 5: 1-6.
    [109] Trimmer A L, Hudson J L, Kock M, et al. Single-step electrochemical machining of complex nanostructures with ultrashort voltage pulses. Applied Physics Letters, 2003, 82(19): 3327-3329.
    [110] Shin H S, Kim B H, Chu C N. Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses. Journal of Micromechanics and Microengineering, 2008, 18, 1-6.
    [111]李小海,王振龙,赵万生.微细电化学加工研究新进展.电加工与模具, 2004(2): 1-5.
    [112] Zhu D, Wang K, Qu N S. Micro Wire Electrochemical Cutting by Using In Situ Fabricated Wire Electrode. Annals of the CIRP, 2007, 56(1): 241-244.
    [113]余宏兵.镍基高温合金微细电解铣削加工试验研究. [硕士学位论文].南京:南京航空航天大学, 2010.
    [114]王昆,朱荻,张朝阳.微细电解线切割加工的基础研究.中国机械工程, 2007, 18(7): 833-837.
    [115] Kim B H, Na C W, Lee Y S, et al. Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid. CIRP Annals-Manufacturing Technology, 2005, 54(1): 191-194.
    [116] Yong L, Yunfei Z, Guang Y, et al. Localized electrochemical micro machining with gap control. Sensors and actuators, 2003, (108): 144-148.
    [117]王昆,朱荻,王明环.微米尺度线电极的电化学腐蚀法制备.机械科学与技术, 2006, 25(9): 1073-1075.
    [118]王昆,张朝阳.微细电解线切割加工控制系统.机械科学与技术. 2007, 26(7): 845-849.
    [119] He R, Chen S, Yang F, et al. Dynamic diffuse double-layer model for the electrochemistry of nanometer-sized electrodes. Journal of Physical Chemisrry B, 2006, 110: 3262-3270.
    [120]饶伟,李定国.双电层吸附离子的动力学研究.海军工程大学学报, 2009, 21(4): 108-112.
    [121]田昭武.电化学研究方法.北京:科学出版社, 1984.
    [122]张朝阳.纳秒脉冲电流微细电解加工技术研究. [博士学位论文].南京:南京航空航天大学, 2007.
    [123] Kenney J A, Hwanga G S. Two-dimensional computational model for electrochemical micromachining with ultrashort voltage pulses. Applied Physics Letters, 2004, 84(19): 3774-3776.
    [124] Rajurkar K P, Zhu D, McGeough J A, et al. New Developments in Electro-Chemical Machining. Annals of the CIRP, 1999, 48 (2): 567-577.
    [125] Bhattacharyya B, Munda J, Malapati M. Advancement in electrochemical micro-machining. International Journal of Machine Tools & Manufacture, 2004, 44(15): 1577-1589.
    [126] Bhattacharyya B, Doloi B, Sridhar P S. Electrochemical micro-machining: new possibilities for micro-manufacturing. Journal of Materials Processing Technology, 2001, 113(1-3): 301-305.
    [127]Lee E S, Baek S Y, Cho C R. A study of the characteristics for electrochemical micromachining with ultrashort voltage pulses. International Journal of Advanced Manufacturing Technology, 2007, 31 (7-8): 762-769.
    [128] Kenney J A, Hwanga G S. Electrochemical machining with ultrashort voltage pulses: modelling of charging dynamics and feature profile evolution. Nanotechnology, 2005, 16(7): 309-313.
    [129]范植坚,李新忠,王天诚,等.电解加工与复合电解加工.北京:国防工业出版社, 2008.
    [130]李小海.微细电解加工系统及其工艺技术研究. [博士学位论文].哈尔滨:哈尔滨工业大学, 2006.
    [131] Bhattacharyya B, Munda J. Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain. International Journal of Machine Tools & Manufacture, 2003, 43: 1301-1310.
    [132]王昆.微细电解线切割加工技术的基础研究. [博士学位论文].南京:南京航空航天大学,2007.
    [133]清水贤资,鸿田五郎(彭斌译).脉冲电路.北京:科学出版社, 2000.
    [134]龙宪惠,陈明俊,傅友登.脉冲与数字电路.成都:四川大学出版社, 1991.
    [135]李晓维.虚拟议器技术分析.电子测量与仪器学报, 1996(3): 9-l3.
    [136]朱树敏.电化学加工技术.北京:化学工业出版社, 2006.
    [137]严宗毅.低雷诺数流理论.第1版.北京:北京大学出版社, 2002.
    [138]文书明.微流边界层理论及其应用.第1版.北京:冶金工业出版社, 2002.
    [139]电解加工编译组.电解加工.国防工业出版社, 1977.
    [140] De Silva A K M, McGeough J A. Process monitoring of electrochemical micromachining. Journal of Materials Processing Technology, 1998, 76:165-169.
    [141]严敬.工程流体力学.重庆大学出版社, 2007: 124-126.
    [142]王至尧.电火花线切割工艺.北京:原子能出版社, 1987.
    [143] Wise K, Najafi K. Mcrofabrication techniques for integrated sensor and Microsystems. Sciences, 1991, 1254: 1335-1342.
    [144]刘妤,温志渝,杨红韵.多轴微加速度传感器的进展.传感器与微系统, 2007, 26(4): 4-6.
    [145]石庚辰.微机械加速度传感器及应用.测控技术, 2003, 22(3): 5-8.
    [146]于桂臻,孟伟,任国晶.谐振梁在高量程加速度传感器非线性测试中的应用.计量与测试技术, 2004(2): 18-19.
    [147]郭兰中,李新勇.振动时效消除残余应力的机理及应用.兰州工业高等专科学校学报, 2005, 12(2): 39-42.