壳聚糖衍生物在活性染料染色棉织物净洗中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性染料由于染色工艺成熟、色谱齐全、价格适中、色牢度较高等优点成为印染纤维素类纺织品的首选染料。但是,染色过程中活性染料在上染、固着的同时有高达20~40%的活性染料会发生水解,而不能与纤维素发生反应形成共价键结合,但其扩散和吸附性能与未水解活性染料相似,因此容易扩散进入纤维内部,并吸附其表面形成“浮色”;另外染深色时,吸附于织物表面的染料分子易形成多分子层式缔合物,产生“位阻”现象,又导致产生浮色。未固着染料的存在会降低染色织物的色牢度,这个问题在染色过程中无法有效解决,因此染色结束后必须通过净洗工艺除去织物表面的浮色以提高染色织物的色牢度。
     目前普遍采用水溶性高分子化合物或其与表面活性剂的复配物净洗染色织物上的浮色,并通过水溶性高分子化合物与浮色染料及织物纤维在净沈浴中作用的方式阻止洗脱的浮色对白底沾色。基于此方案,本论文以易生物降解的天然原料壳聚糖为修饰对象,通过引入羧甲基、氨基羧酸、羟基羧酸、内酰胺基、烷基的方式制备了N,O-羧甲基壳聚糖(NOCC)、乙二胺四乙酸酰化壳聚糖(ETC)、氮川三乙酸酰化壳聚糖(NTC)、柠檬酸酰化壳聚糖(CAC)、5-甲基吡咯烷酮壳聚糖(MPC)、异丁基壳聚糖(IBC)六种壳聚糖衍生物,研究了它们在活性染料染色棉织物净洗中的应用性能。
     研究壳聚糖衍生物的螯合、分散性和pH缓冲性能表明,含有羧基取代的衍生物具有较高的螯合、分散能力和pH缓冲能力,而取代基为内酰胺和烷基的衍生物分散能力尚可,但螯合能力较差;羧基含量越高,衍生物的螯合、分散力越强;对于相同结构的衍生物,较高的分子量具有较高的螯合、分散力,但分子量太高的衍生物螯合、分散力反而降低。
     研究壳聚糖衍生物的取代基、取代度、分子量对净洗效果的影响结果表明,引入羧甲基、氨基羧酸及羟基羧酸的壳聚糖衍生物的净沈性能高于引入内酰胺结构和烷基结构的壳聚糖衍生物;增加羧基的取代度可以提高净沈效果,但是羧基含量太高,增加了与染料分子之间的静电斥力,反而导致净洗效果降低;对于不含羧基的衍生物增加取代度也可以改善净洗效果;增加分子量可以提高净洗效果,分子量太高,导致壳聚糖衍生物在水中有效结合染料分子的量降低,从而使净洗效果降低。
     通过对NOCC与不同表面活性剂复配体系的研究表明,NOCC分子中的部分羧基与十二烷基二甲基甜菜碱(DDB)分子中的季铵基以静电力发生结合,使复合体系的表面张力增加,且临界胶束浓度也提高;NOCC的加入可以压缩十二烷基硫酸钠(SDS)离子头基的双电层,使复合体系的表面张力降低,临界胶束浓度减小;NOCC分子可以与十八烷基聚氧乙烯醚(C_(18)EO_(20))分子间以氢键、范德华力等结合,使复合体系表面张力降低,临界胶束浓度增加;降低表面张力的能力顺序:NOCC-SDS>NOCC-DDB>NOCC-C_(18)EO_(20)。NOCC加入DDB、SDS、C_(18)EO_(20)三类表面活性剂中均可以增加体系对水解活性翠蓝KN-G(RBE21)的增溶能力,但是SDS体系的效果较差,低浓度下C_(18)EO_(20)的效果较好,高浓度下DDB效果较好。NOCC-表面活性剂复合体系用于净洗过程中,均是通过与浮色染料和染色织物两种途径发生作用,而且作用后经过水沈后均不会沉积在织物表面。抑制染料上染棉织物的能力:NOCC-C_(18)EO_(20)>NOCC-DDB>NOCC-SDS。NOCC-C_(18)EO_(20)协同作用的净洗效果较好,NOCC-DDB协同作用的净洗效果次之,NOCC-SDS协同作用的效果较差,这与NOCC-表面活性剂体系对水解RBE21的增溶顺序一致,这说明净沈剂对洗脱染料的增溶作用在净洗过程中起主导作用。
     通过研究不同结构水解活性染料对棉织物的吸附表明,对于具有相同活性基的活性染料,母体为铜络合偶氮、铜酞菁、蒽醌结构的水解染料对棉织物的吸附量较高;相对不含杂环结构的偶氮染料,含杂环结构单偶氮水解活性染料对棉织物的吸附量较高;相同母体结构的染料,取代基越复杂,染料分子越大,分子量越大,对棉织物的吸附量越大;均三嗪型活性染料水解后对棉织物的亲和力增加,而乙烯砜型活性染料在加碱前对棉织物的亲和力最低,加碱后变为最高,水解后亲和力又降低,这说明均三嗪型染料水解后可以增加染色织物浮色的净洗难度,而乙烯砜型水解后则可以降低净洗难度。
     通过壳聚糖衍生物抑制不同结构水解活性染料对织物的吸附研究表明,疏水相互作用在水解活性染料对织物的吸附过程中起主要作用,即要将水解染料从织物上洗除,主要应该通过增加染料在水中溶解度的方法;壳聚糖衍生物主要是通过静电力、氢键等有效地抑制洗脱染料对棉织物的吸附,而不是疏水作用力。
     通过研究膨润土负载季铵盐壳聚糖(CTA-CTS)在活性染料染色棉织物净洗工艺中的应用表明,膨润土负载CTA-CTS制备净洗剂的较佳工艺条件为:CTA-CTS与膨润土质量比1:5,CTA-CTS的取代度0.93,分子量为100.0 kDa;膨润土负载CTA-CTS的净洗机理主要是通过吸附作用破坏浮色染料在织物和水溶液中的分配平衡,使浮色染料不断向水溶液中迁移,直至达到新的平衡;膨润土负载CTA-CTS对活性染料染色织物的净洗可以达到目前常规净洗剂的净洗效果,而净洗残液的吸光度值和COD_(Cr)值接近常规值的1/10,可以降低废水处理的负荷。采用循环洗涤的方法,证明膨润土负载CTA-CTS可以降低净洗过程中膨润土在织物上的沉积。
The consumption of reactive dyes is on the rise and is expected to remain so in the near future for their acceptable price,good color values and reasonably good fastness properties.However,the reactive dyes suffer the disadvantage of incomplete exhaustion and hydrolysis up to 20~40%during dyeing and hence there is considerable loss of dyes. Additionally,unreacted and hydrolyzed reactive dyes can adhere to the substrate physically decreasing the fastness,because the hydrolyzed dyes are usually similar to the original dye in diffusion and adsorption properties.When applying reactive dyes in full depths,especially inefficient reactive dyes,the effectiveness of fixation may decrease.As a consequence,in order to achieve optimum fastness,the resultant dyeings need to be thoroughly washed-off to remove the unfixed dyes.
     Water-soluble polymers have been frequently applied in the formulation of soaping agent in wash-off reactive dyeings,in order to inhibit the restaining of released dyes to cotton fabrics.For this scheme,chitosan,a natural and readily biodegradable material, was modified through the introduction of carboxymethyl groups,amino carboxylic acid, hydroxyl carboxylic acid,lactam groups and alkyl groups to prepare N, O-carboxymethyl chitosan(NOCC),N-ethylenediaminetetraacetic acylated chitosan (ETC),N-nitrilotriacetic acylated(NTC),N-citrylated chitosan(CAC),5-methyl pyrrolidinone chitosan(MPC) and N-isobutyl chitosan(IBC),respectively.The six chitosan derivatives were applied to wash-off reactive cotton dyeings and determined the effectiveness in removing unfixed reactive dyes.
     By comparing the performances of these chitosan derivatives,it showed that the carboxyl substituted derivatives exhibited the higher chelation,dispersion and pH buffering,and the derivatives substituted with lactam and alkyl groups exhibited a general dispersion capacity but poor chelation capacity.For the derivatives with the same substituted groups,increase the molecular weight can strength their chelation and dispersion capacity,but the too high molecular weight leads to the decrease of chelation and dispersion capacity.The chelation and dispersion effectiveness of chitosan derivatives increased with the increase of degree of substitution values of carboxyl groups.
     Three problems associated with the use of chitosan derivatives in the wash-off process viz.,the substituted groups,degree of substitution and molecular weight,were investigated.The results indicated that the wash-off performance with the carboxyl substituted derivatives of chitosan was better than lactam and alkyl substituted ones. The wash-off effectiveness of chitosan derivatives increases with the increase of the degree of substitution of carboxyl groups,but the too high carboxyl contents lead to increase the electrostatic repulsion between dye molecules and chitosan derivatives and result in a lower wash-off effectiveness.For MPC and IBC,the wash-off effectiveness also increases with increasing the degree of substitution.The results from wash-off tests with different molecular weight of chitosan derivatives suggested that increase in molecular weight of chitosan derivatives can increase the wash-off effectiveness; however,the results also showed that too high molecular weight produced a sharp reduction in wash-off effectiveness because the amount of effective groups of chitosan derivatives to combine with dyes decreased.
     Surface tension studies on the interactions of different types of surfactants in the presence and absence of NOCC respectively,were also conducted.It was showed that the presence of NOCC slightly increased the surface tension and critical micelle concentration value of dodecyl dimethyl betaine(DDB).This result can illustrate that electrostatic attraction between the molecules of NOCC and DDB exist,forming hydrophilic complexes soluble in the solution.NOCC acted as a polyelectrolyte increase the number of counter ions in the Stern and diffuse layers,screening the electrostatic repulsion between the head groups of SDS,which can illustrate the slight decrease of surface tension and critical micelle concentration value of SDS upon addition of NOCC. Octadecyl polyoxyethylene ether(C_(18)EO_(20)) and NOCC can bind to form hydrophilic complexes due to hydrogen bonding,which can account for the significant decrease of surface tension below critical micelle concentration and critical micelle concentration value of the solution containing NOCC.The surface activity acted in the order: NOCC-SDS>NOCC-DDB>NOCC-C_(18)EO_(20).Spectroscopic studies on the hydrolyzed Reactive Turquoise Blue KN-G(RBE21) in surfactant solutions showed that upon addition of NOCC,synergistic solubilization by NOCC and surfactants on the hydrolyzed RBE21 was observed.In higher concentration,NOCC-DDB showed higher solubiliztion ability to hydrolyzed RBE21 than NOCC-C_(18)EO_(20),and in lower concentration correspondingly less.However,the hydrolyzed RBE21 was slightly solubilized in NOCC-SDS micelles by adoption of the aggregate forms.
     In wash-off process,NOCC and surfactants acted on released dyes and cotton fibers and would not deposit on cotton fibers after sufficient wash with water.The effects of inhibiting hydrolyzed RBE21 from staining cotton fabrics were found to be in the order: NOCC-C_(18)EO_(20)>NOCC-DDB>NOCC-SDS.The synergy effects of NOCC and surfactants in wash-off tests showed that the wash-off performance was in the same order with solubilization effects.This result confirmed that the wash-off process of reactive dyeings with NOCC-surfactant complexes was dominated by solubilization effect.
     Investigations have been made of the adsorption of different hydrolyzed reactive dyes to cotton fabrics to establish key factors governing dye transfer in wash-off reactive dyeings.The results showed that for the reactive dyes with same reactive groups, possessing chromophores of azo-copper complex,copper phthalocyanine and anthraquinone,were found to be higher affinity for cotton fabrics.Heterocyclic azo dyes showed higher affinity to cotton fabric than other azo dyes.Adsorption to cotton fabric increased with apolar substituent on dyes,implicating entropic factors dominated the binding process.Dyes with triazine reactive groups tended to increase the adsorption to cotton after they were hydrolyzed,while hydrolysis was likely to be opposing contibutions for dyes with vinyl sulfone reactive groups.These studies help to illustrated that the hydrolyzed dyes with triazine reactive groups increased the difficulty of wash-off process,while the hydrolyzed dyes with vinyl sulfone reactive groups can easily be washed-off.
     The influence of sulphonate groups in different pH solutions showed that adsorption to cotton was strongly influenced by hydrophobic interactions.These studies help to highlight the role of solubilization effects in wash-off process.Chitosan derivatives were extremely effective at preventing adsorption of released dyes in washing bath to cotton and they tended to bind dyes more by electrostatic,polar or hydrogen bonding interactions rather than hydrophobic interactions.
     A kind of dye absorbent was prepared from the combination of N-hydroxypropyl trimethylammonium chloride chitosan(CTA-CTS) and Ca-bentonite and was employed as builders in wash-off unfixed dyes from RBE21 dyed cotton fabric.CTA-CTS loaded bentonite was studied by means of IR,XRD and SEM.The factors influencing wash-off effectiveness,including the amount of CTA-CTS and the achievable degree of substitution and molecular weight were investigated.The results show that the optimum weight ratio of chitosan to bentonite was 1:5,DS=0.93,Mw=100.0 kDa.The experiments demonstrated that the reactive dyeings washed with this absorbent can reach the soaping fastness level of ordinary soaping agent;meanwhile the residual washing liquor had ca.1/10 absorbance and COD_(Cr) values of ordinary ones.
引文
[1]Blackburn R S,Burkinshaw S M.A greener approach to cotton dyeings with excellent wash fastness.Green Chemistry,2002,4:47-52
    [2]Burkinshaw S M,Katsarelias D.A study of the wash-off and aftertreatment of dichlorotriazinyl reactive dyes on cotton.Dyes and Pigments,1995,29(2):139-153
    [3]Shrivastava R,Keskar V H.Cotton dyeing with reactive dyes and influence of washing off agents.Colourage,2005,(12):90-99
    [4]Heissler H,Siemensmeyer K,Bastian A,Richter R.Washing off reactive dyeings and prints.Melliand Textilberichte,2004,10:776-777
    [5]Cireli A,Yurdakul B.Application of cyclodextrin to the textile dyeing and washing processes.Journal of Applied Polymer Science 2006,100:208-218
    [6]袁慎峰,陈志荣.活性染料常用净洗剂和消泡剂研究进展.纺织学报,2002,23(3):241-242
    [7]丁呈华,田基民.无泡皂洗剂的开发与应用.印染助剂,2003,20(3):32-33
    [8]陆用海,胡征宇.洗涤剂配方原理(四).日用化学工业,1992,2,40-48
    [9]Correll D L.The role of phosphorus in the eutrophication of receiving waters:a review.Journal of Environmental Quality,1998,27(2):261-266
    [10]Burkinshaw S M,Katsarelias D.The wash-off of reactive dyes on cellulosic fibres.Part 2.Monochlorotriazinyl dyes on cotton.Dyes and Pigments,1997,33(1):11-31
    [11]Burkinshaw S M,Anthoulias A.The wash-off of reactive dyes on cellulosic fibres.Part Ⅰ:Dichlorotriazinyl dyes on cotton.Dyes and Pigments,1996,31(3):171-193
    [12]Burkinshaw S M,Gandhi K.The wash-off of reactive dyes on cellulosic fibres.Part 3.Dichlorotriazinyl dyes on lyocell.Dyes and Pigments,1997,34(1):63-74
    [13]Burkinshaw S M,Katsarelias D.The wash-off of reactive dyes on cellulosic fibres.Part 4:The use of different alkalis with monochlorotriazinyl dyes on cotton.Dyes and Pigments,1997,35(3):249-259
    [14]Saraf N M,Alat D V.Selecting a sequestering agent - more than a complex? Colourage,2005,12(2):100-104
    [15]Perry R,Kirk P W W,Stephenson T,Lester J N.Environmental aspects of the use of NTA as a detergent builder.Water Research.1984,18:255-276
    [16]Yoshida Y,Makimura M,Tamura S.Staining method for man-made suede with uniform coloring and good resistance to fading and dye migration.JP 2003193376
    [17]Graham S.Directions for environmentally biodegradable polymer researcher.Accounts Chemical Research,1993,26:105-110
    [18]Bertleff W,Neumann P,Baur R,Kiesling D.Aspects of polymer use in detergent.Journal of Surfactant and Detergents,1998,1(3):419-424
    [19]陈颖.棉染色的生态评价.印染,1997,23(4):43-43
    [20]王菊芬.活性染料净洗剂Dekol s应用实践.印染,1997,23(3):17-18
    [21]Akcakoca E P,Ozguney A T,Atav R.The efficiency of washing agents in the post-dyeing removal of hydrolyzed reactive dye.Dyes and Pigments,2007,72(1):23-27
    [22]http://www.\2_Cleaner technology in reactive dyeing of cotton,Danish Environmental Protection Agency.Htm
    [23]Cireli A,Yurdakul B.Application of cyclodextrin to the textile dyeing and washing processes.Journal of Applied Polymer Science,2006,100:208-218
    [24]Oakes J,Gratton P,Paul P K C.A spectroscopic and modelling study of polymer/dye interactions.Coloration Technology,2003,119(3):150-157
    [25]Oakes J,Dixon S.Adsorption of dyes to cotton and inhibition by polymers.Coloration Technology,2003,119(3):140-149
    [26]Oakes J,Dixon S.Color.Adsorption of dyes to cotton and inhibition by surfactants,polymers and surfactant-polymer mixtures.Coloration Technology,2003,119(6):315-323
    [27]Oakes J,Gratton P.Solubilisation of dyes by surfactant micelles.Part 1:Molecular interactions of azo dyes with nonionic and anionic surfactants.Coloration Technology,2003,119(2):91-99
    [28]Oakes J,Gratton P.Solubilisation of dyes by surfactant micelles.Part 2:Molecular interactions of azo dyes with cationic and zwitterionic surfactants.Coloration Technology,2003,119(2):100-107
    [29]林运招,吴明华.皂洗剂在深色抓毛印花布中的应用.印染,2004,30(4):26-28
    [30]Saito S.Critical surfactant concentration in the interaction between nonionic surfactants and polymeric acids,effects of temperature,pH and salts.Journal of the American Oil Chemists' Society,1989,66(7):987-993
    [31]Schaffer J F,Woodhams R T.High frequency titration of polyelectrolytes.Tenside Detergents,1979,16(5):240-246
    [32]Crutchfield M M,Papanu V D,Warren C B.Polymeric Acetal Carboxylates,a Method for Their Preparation and Their Use in a Detergent Composition.European Patent 1 004 to Monsanto,1978
    [33]Gledhill W E,Saeger V W.Degradation of Sodium Polyglyoxylate,a Non-persistent Metal Sequestrant,in Laboratory Ecosystems.Journal of Industrial Microbiology and Biotechnology,1987,2:97-110
    [34]Du Vosel A,Francalanci F,Magiorotti P.Polyamino Acids as Builders for Detergent Formulations,European Patent 454126 to Montedipe,1990
    [35]Kroner M,Bertleff W.Polyaspartic acids - biodegradable cobuilder.S(O|¨)FW Journal,1996,122:756-761.
    [36]Paik Y H,Swift G.Polysaccharides as Raw Materials for the Detergent Industry.Chem.Ind.1995:55-59
    [37]Engelskirehen K,Fischer H,Kottwitz B,Upadek H,Nitsch C.Wash and cleaning agents with selected builder systems.WO Patent Application 93/08251 to Henkel,1993
    [38]李俊,董志炜.活性染料生物酶皂洗工艺的应用探讨.染整科技,2004,(1):30-36
    [39]Shelke V.Enzymatic decolourisation of denims:A novel approach.Colourage,2001,48(1):25-26
    [40]Hans Sejr Olsen,Per Falholt.The role of enzymes in modem detergency.Journal of Surfactants and Detergents,1998,1:555-567
    [41]Mehmet Akalin,Nigar Merdan,Dilara Kocak,Ismail Usta.Effects of ultrasonic energy on the wash fastness of reactive dyes.Ultrasonics,2004,42:161-164
    [42]Naoji K,Nobuhide T,Takayuki S,Kaori T.A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents.Carbohydrate Research,2000,324:268-274
    [43]Whistler R S,Bemiller J N.Alkaline Degradation of Amino Sugars.J.Org.Chem.,1962,27(4):1161-1164
    [44]Rudall K M,Kenneth M.Chitin/protein complexes of insect cuticles.Adv.Insect.Physiol.,1963,1:257-313
    [45]Hayes E R,Davies D H,Munvoe V G.Organic acid solvent systems for chitosan.Proc.Int.Conf.Chitin/Chitosan 1th,1977,103-106
    [46]Vasnev V A,Tarasov A I,Markova G D,Vinogradova S V,Garkusha O G.Synthesis and properties of acylated chitin and chitosan derivatives.Carbohydrate Polymers,2006,64:184-189
    [47]Kurita K,Koyama Y,Murakami K,Yoshida S,Chau N.Studies on chitin XH.Chitin dervatives having 1,4-Dihydronicotinamide groups for asymmetric reduction.Polymer Journal,1986,18(9):673-679
    [48]Kurita K.Controlled functionalization of the polysaccharide chitin.Prog.Polym.Sci,2001,26:1921-1971
    [49]Le Tien C,Lacroix M,Ispas-Szabo P,Mateescu M-A.N-acylated chitosan:hydrophobic matrices for controlled drug release.Journal of Controlled Release,2003,93:1-13
    [50]Li D-H,Liu L-M,Tian K-L,Liu J-C,Fan X-Q.Synthesis,biodegradability and cytotoxicity of water-soluble isobutylchitosan.Carbohydrate Polymers,2007,67:40-45
    [51]Sashiwa H,Shigemasa Y Chemical modification of chitin and chitosan 2:preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins.Carbohydrate Polymers,1999,39:127-138
    [52]Ormrrod D J,Holmes C C,Miller T E.Dietary chitosan inhibits hypercholesterolaemia and atherogenesis in the apolipoprotein E-deficient mouse model of atherosclerosis.Atherosclerosis,1998,138(2):329-334
    [53]Kaifu K,Nishi N,Komai T,Tokura S,Somorin O.Studies on chitin V.Formylation,Propionylation,and Butyrylation of Chitin.Polymer J,1981,13(3):241-245
    [54]George A F R,Kathryn E T.The formation of gels by reaction of chitosan with glutaradehyde.Die Makromolekulare Chemie,2003,190(5):951-960
    [55]Xing R,Liu S,Guo Z,Yu H,Zhong Z,Ji X,Li P.Relevance of molecular weight of chitosan-N-2-hydroxypropyl trimethyl ammonium chloride and their antioxidant activities.European Journal of Medicinal Chemistry,2008,43:336-340
    [56]Spinelli V A,Laranjeira M C M,F(?)vere V T.Preparation and characterization of quaternary chitosan salt:adsorption equilibrium of chromium(Ⅵ) ion.Reactive & Functional Polymers,2004,61:347-352
    [57]孙勇,李素兰.壳聚糖开发与应用研究进展.应用科技,2000,27(9):34-36
    [58]Juli(?) M R,Pascual E,Erra P.Influence of the molecular mass of chitosan on shrink-resistance and dyeing properties of chitosan treated wool.Coloration Technology,2000,116(2):62-67
    [59]Lim S-H,Hudson S H.Application of a fibre-reactive chitosan derivative to cotton fabric as a zero-salt dyeing auxiliary.Coloration Technology,2004,120(3):108-11
    [60](O|¨)ktem T.Surface treatment of cotton fabrics with chitosan.Coloration Technology,2003,119(4):241-246
    [61]Pascual E,Juli(?) M R.The role of chitosan in wool finishing.Journal of Biotechnology,2001,89:289-296
    [62]Yuen C W M,Ku S K A,Kan C W,Choi P S R.Enhancing textile ink-jet printing with chitosan.Coloration Technology,2007,123(4):267-270
    [63]鲍萍,曹书梅.壳聚糖在蛋白质纤维织物中的应用.毛纺科技,2000,(5):42-44
    [64]Canal J M.Chitosan Boosts Dyeing Efficient.International Dyer J.,1998,182(2):16-20
    [65]Xie W,Xu P,Wang W,Liu Q.Preparation and Antibacterial Activity of a Water-Soluble Chitosan Derivative.Carbohydrate Polymers,2002,50:35-40
    [66]Hong K N,Park N Y,Lee S H,Meyers S P.Antibacterial activity of chitosans and chitosan oligomers with different molecular weights.International Journal of Food Microbiology,2002,74:65-72
    [67]Yang M-R,Chen K-S,Tsai J-C,Tseng C-C,Lin S-F.The antibacterial activities of hydrophilic-modified nonwoven PET.Materials Science and Engineering,2002,20:167-173
    [68]Muhannad J,Furkert F H,Muiller B W.A new lipid emulsion formulation with high antimicrobial efficacy using chitosan.European Journal of Pharmaceutics and Biopharmaceutics,2002,53:115-123
    [69]Helander I M,Nurmiaho-Lassila E-L,Ahvenainen R,Rhoades J,Roller S.Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria.International Journal of Food Microbiology,2001,71:235-244
    [70]李维贤,师严明.壳聚糖的柠檬酸溶液用于真丝抗皱的研究.印染,2001,27(11):5-7
    [71]崔淑玲,刘金树.壳聚糖用于涤纶织物抗静电整理的研究.印染助剂,2002,19(4):34-35
    [72]解谷声 译.涤纶织物用壳聚糖作抗静电整理.辽宁丝绸,2002,(3):34-37
    [73]季莉,施亦东.水溶性壳聚糖在涤纶织物后整理上的应用研究.纺织科技进展,2005,(3):28-29
    [74]关立平,陈维国.羊毛壳聚糖处理及其缩绒性能的研究.毛纺科技,1999,(1):41-43
    [75]Juli(?) M R,Cot M,Erra P,Jocic D,Canal J M.Use of chitosan on hydrogen peroxide pretreated wool.Textile Chemist and Colorist,1998,30(8):78-83
    [76]Roberts George A F,Wood F A.A study of the influence of structure on effectiveness of chitosan as an anti-felting treatment for wool.Journal of Biotechnology,2001,89(2):297-304
    [77]Erra P.Shrinkage properties of wool treated with low temperature plasma and chitosan biopolymer.Textile Research Journal,1999,69(11):811-816
    [1]Abou-Okeil A,Hakeim O A.Effect of metal ion binding of chitosan on the printability of pretreated wool fabric.Coloration Technology,2005,121(1):41-44
    [2]No H K,Meyers S P.Application of chitosan for treatment of wastewaters.Reviews of environmental contamination and toxicology,2000,163:1-27
    [3]Lee M-Y,Hong K-J,Shin-Ya Y,Kajiuchi T.Adsorption of hexavalent chromium by chitosan-based polymeric surfactants.Journal of Applied Polymer Science,2005,96(1):44-50
    [4]Alves N M,Mano J F.Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications.International Journal of Biological Macromolecules,2008,43(5):401-414
    [5]Takagishi T,Kim Y J,Hosokawa T,Morimoto K,Kono K.Amphiphilic copolymers with increased affinity for substrates.Journal of Polymer Science Part A:Polymer Chemistry,1993,31(2):365-371
    [6]Takagishi T,Baba T,Hosokawa T.Crosslinked polymers with increased affinity for methyl orange.Die Macromolecular Rapid Communications,1988,9:553-558
    [7]Takagishi T,Fujii S,Kuroki N.Peculiar temperature dependence on the binding of pentyl orange by crosslinked poly(vinylpyrrolidone).Journal of Polymer Science-Polymer Chemistry Edition,1982,20(1):221-225
    [8]Takagishi T,Hayashi A,Kuroki N.Cross-linked polyvinylpyrrolidones with increased affinity and specificity for methyl orange and its homologs.Journal of Polymer Science-Polymer Chemistry Edition,1982,20:1533-1547
    [9]Francois Q,Marguerite R,Brigitte P-D.Influence of Molecular Weight and pH on Adsorption of Chitosan at the Surface of Large and Giant Vesicles.Biomacromolecules,2008,9(1):396-402
    [10]Peniston,Q.P.,& Johnson,E.L.Process for Depolymerization of Chitosan.US Patent Office,Pat.No.3922260,1975
    [11]Chen S-C,Wu Y-C,Mi F-L,Lin Y-H,Yu L-C,Sung H-W.A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery.Journal of Controlled Release,2004,96:285-300
    [12]Andreas B-S,Christina P,Claudia Valenta.Novel bioadhesive chitosan-EDTA conjugate protects leucine enkephalin from degradation by aminopetidase N.Pharmaceutical Research,1997,14(7):917-922
    [13]Andreas B-S,Andreas S-S.Synthesis and in vitro evaluation of chitosan-EDTA-protease-inhibitor conjugates which might be useful in oral delivery of peptides and proteins.Pharmaceutical Research,1998,15(2):263-269
    [14]Waldo A-M,Carlos P-C.Preparation of a novel polyampholyte from chitosan and citric Acid.Makromol.Chem.,Rapid Commun,1993,14:735-740
    [15]Rinaudo M,Desbri(?)res J,Le Dung P,Thuy Binh P,Dong N T.NMR investigation of chitosan derivatives formed by the reaction of chitosan with levulinic acid.Carbohydrtate Polymers,2001,46:339-348
    [16]Li D-H,Liu L-M,Tian K-L,Liu J-C,Fan X-D.Synthesis,biodegradability and cytotoxicity of water-soluble isobutylchitosan.Carbohydrate Polymers,2007,67(1):40-45
    [17]Alder-Nissen J.Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid.J Agric Food Chem,1979,27(6):1256-1262
    [18]Krasaechol N,Sanguandeekul R,Duangmal K,Owusu-Apenten R K.Structure and functional properties of modified threadfin bream sarcoplasmic protein.Food Chemistry,2008,107:1-10
    [19]Uchegbu I F,Sadiq L,Arastoo M,Gray A I,Wang W,Waigh R D,et al.Quaternary ammonium palmitoyl glycol chitosan-a new polysoap for drug delivery.International Journal of Pharmaceutics,2001,224:185-199
    [20]Marguerite R,Dung P L,Claude G,Michel M.Substituent distribution on N,O-CMC by 1H and 13C-NMR.Int J Biol Macromol,1992,14(3):122-128
    [21]韦国顺,尹光辉.洗涤剂中高聚物的性能及应用评价.日用化学品科学,1998,6:41-43
    [22]Fellx H.Richter,Ekhard W.Winkler,Richard H.Baur.The Calcium Binding Capacity of Polycarboxylates.J A O C S,1989,66(11):1666-1672
    [23]兰淑仙,金雅凤,张训天,金鲜花.螯合分散剂分散力测试方法研究.印染助剂,2002,19(5):49-50
    [24]Schwuger M J,Liphard M.Cobuilders and optical brighteners.Collid and Polymer Science,1989,267(4):336-344
    [25]孙宾,章胜红.新型聚丙烯酸类助洗剂的合成及其助洗机理研究.日用化学品科学,2000,23:213-216
    [26]Oakes J,Dixon S.Adsorption of dyes to cotton and inhibition by polymers.Coloration Technology,2003,119(3):140-149
    [27]Oakes J,Dixon S.Adsorption of dyes to cotton and inhibition by surfactants,polymers and surfactant-polymer mixtures.Coloration Technology,2003,119(6):315-323
    [28]Sugimoto M,Morimoto M,Sashiwa H,Saimoto H,Shigemasa Y.Preparation and characterization of water-soluble chitin and chitosan derivatives,Carbohydrate Polymers 1998,36:49-59
    [29]Hjerde R J N,Varum K M,Grasdalen H,Tokura S,Smidsrod O.Chemical composition of O-(carboxymethyl)-chitins in relation to lysozyme degradation rates.Carbohydrate Polymers,1997,34,131-139
    [30]Schwuger M J,Liphard M.Cobuilders and optical brighteners.Colloid and Polymer Science,1989,267(4):336-344
    [31]Witiak D.Polymers in Detergents and Cleaners.Hanser Publishers,Munich/Vienna/New York,1994:113
    [1]Bertleff W,Neumann P,Baur R,Kiessling D.Aspects of polymer use in detergents.Journal of Surfactants and Detergents,1998,1(3):419-424
    [2]Godzisz D,Ilczyszyn M M.Ilczyszyn M.Classification and nature of hydrogen bonds to betaine.X-ray,13C CPMAS and IR description of low barrier hydrogen bonds.Journal of Molecular Structure,2002,606:123-127
    [3]Barck M,Stenius P.Interactions between carboxymethylcellulose and cationic surfactants 1.Phase equilibrium and surface tensions.Colloids and Surfaces A:Physicochemical and Engineering Aspects,1994,89(1):59-69
    [4]Camp P J,Jones A C,Neely R K,Speirs NM.Aggregation of Copper(Ⅱ)Tetrasulfonated Phthalocyanine in Aqueous Salt Solutions.J Phys Chem A,2002,106:10725-10732
    [5]Fu L-Y,Wen X-H,Xu L-J,Qian Y.Removal of a copper-phthalocyanine dye from wastewater by acclimated sludge under anaerobic or aerobic conditions.Process Biochem,2002,37:1151-1156
    [6]Xia H,Nogami M.Copper phthalocyanine bonding with gel and their optical properties.Optical Materials,2000,15:93-98
    [7]Oakes J,Gratton P.Solutbilisation of dyes by surfactant micelles.Part 1:Molecular interactions of azo dyes with nonionic and anionic surfactants.Color Technol,2003,119:91-99
    [8]Simon6ic B,Span J.A study of dye-surfactant interactions.Part 3.Thermodynamics of the association of C.I.Acid Orange 7 and cetylpyridinium chloride in aqueous solutions.Dyes and Pigments,2000,46:1-8
    [9]Umlong I M,Ismail K.Micellization behaviour of sodium dodecyl sulfate in different electrolyte media.Colloids and Surfaces A:Physicochem.Eng.Aspects,2007,299:8-14
    [10]Babak V,Lukina I,Vikhoreva G,etal.Interfacial properties of dynamic association between chitin derivatives and surfactants.Colloids and Surfaces A:Physiochemical and Engineering Aspects,1999,147:139-148
    [11]Li C,Zhang L,Yang M,Wang H.Dynamic and steady-state behaviors of reverse saturable absorption in metallophthocyanine.Phys Rev A,1994,49(2):1149-1157
    [12]Balgrove R J,Gruen L C.The aggregation of the tetrasodium salt of copper phthalocyanine 4,4',4',4"-tetrasulphonic acid.Aust J Chem,1972,25:2553-2558
    [13]Zelina J P,Njue C K,Rusling J F,Kamau G N,Masila M,Kibugu J.Influence of surfactant-based microheterogeneous fluids on aggregation of copper phthalocyanine tetrasulfonate.J Porphyrins Phthalocyanines,1999,3:188-195
    [14]Kartal G,Akbas H.Study on the interaction of anionic dye -nonionic surfactants in a mixture of anionic and nonionic surfactants by absorption spectroscopy.Dyes and Pigments 2005,65(3):191-195
    [15]郑忠,胡纪华.表面活性剂的物理化学原理.华南工业大学出版社,1995,136-138
    [1]陈跃文.从活性染料的染色特性看影响牢度的因素.上海印染技术交流研讨会论文集.2003.110-118
    [2]陈荣圻.活性染料染色特性十大参数分析(一).印染,2005,(13):45-49
    [3]陈跃文,吴祖望,胡旭灿,宋华,付新梅,林莉.红色复合多活性基活性染料的结构与性能关系研究.染料与染色,2004,41(2):97-101
    [4]Zhu Z.Some recent advances in kinetic studies in dye chemistry.Dyes and Pigments,1993,23(2):91-120
    [5]Zhu Z,Zhu W.Studies on structural effects in the reaction between model vinylsulfone reactive dyes and methyl-α-D-glucoside Part Ⅰ.Dyes and Pigments,1994,24(4):281-294
    [6]Zhu Z,Zhu W.Studies on structural effects of the reaction between model vinylsulfone reactive dyes and methyl-α-D-glucoside Part Ⅱ:Kinetic studies.Dyes and Pigments,1994,25(2):87-99
    [7]Zhu Z,Zhang X.A homogeneous reaction between a water soluble vinyl sulfonyl reactive dye and methyl-α-D-glucoside Part Ⅰ:Synthesis,purification and identification of the structures of dye-glucoside.Dyes and Pigments,1993,21(3):173-183
    [8]Zhu Z,Zhang X.Homogeneous reaction between a water soluble vinyl sulfonyl reactive dye and methyl-α-D-glucoside Part Ⅱ.A kinetic study.Dyes and Pigments,1993,21(4):243-254
    [9]Oakes J,Gratton P,Paul P K C.A spectroscopic and modelling study of polymer/dye interactions.Coloration Technology,2003,119(3):150-157
    [10]Oakes J,Dixon S.Adsorption of dyes to cotton and inhibition by polymers.Coloration Technology,2003,119(3):140-149
    [11]Yang Y,Haryslak C A.Reuse of reactive dyebaths-dyeing Nylon 6,6-Nylon 6,and wool with hydrolyzed reactive dys.Text Chem Color,1997,29(10):38
    [12]Suwanruji P,Freeman H S.Design,synthesis and application of easy wash-off reactive dyes.Coloration Technology,2006,122:27-36
    [13]Xia H,Nogami M.Copper phthalocyanine bonding with gel and their optical properties.Opt Mater,2000,15:93-98
    [1]Akcakoca E P,Ozguney A T,Atav R.The efficiency of washing agents in the post-dyeing removal of hydrolyzed reactive dye.Dyes and Pigments,2007,72:23-27
    [2]吕家华.拜耳的绿色纺织化学品概念及其产品.印染,2002,28(1):48-50
    [3]尹奋平,何玉凤,王荣民,王云普.粘土矿物在废水处理中的应用.水处理技术,2005,31(5):1-6
    [4]Inglezakis V J,Poulopoulos S G Adsorption and Ion Exchange.Adsorption,Ion Exchange and Catalysis,2006:243-353
    [5]Anirudhan T S,Ramachandran M.Surfactant-modified bentonite as adsorbent for the removal of humic acid from wastewaters.Applied Clay Science,2007,35(3-4):276-281
    [6]Wu,F C,Tseng R L,Juang R S.Adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes.J Hazard Mater,2000,73(1):63-75
    [7]Turan N G,Akdemir A,Ergun O N.Removal of volatile organic compounds by natural materials during composting of poultry litter.Bioresource Technology,2009,100:798-803
    [8]马勇,王恩德,邵红.膨润土负载壳聚糖制备吸附剂.应用化学,2004,2l(6):597-600
    [9]Mao S,Shuai X,Unger F,etal.The depolymerization of chitosan:effects on physicochemical and biological properties.International Journal of Pharmaceutics,2004,281(1-2):45-54
    [10]王香爱,王淑荣.3-氯-2-羟丙基三甲基氯化铵的合成.应用化工,2007,36(6):1190-1193
    [11]Lim S-H,Hudson S M.Synthesis and antimicrobial activity of a water- solnble chitosan derivative with a fiber-reactive group.Carbohydrate Research,2004,339:313-319
    [12]Wang L,Wang A.Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite.Journal of Hazardous Materials,2008,160(1):173-180
    [13]Majoros I J,Keszler B,Woehler S,Bull T,Baker J R.Acetylation of Poly(amidoamine)Dendrimers.Macromolecules,2003,36:5526-5529
    [14]曾德芳.改性累托石/壳聚糖复合絮凝剂的研制与应用研究.武汉理工大学博士论文.2006:72-73
    [15]谭桂娥,束毅峰,陈关良.DG无磷助剂的性能研究.日用化学品科学,2000,23:203-206
    [16]马艳艳,马启敏,江志华.壳聚糖季铵盐的合成及性质研究.中国海洋大学学报,2005,35(3):459-462
    [17]赵剑曦,黄双路,平仙隐,黄长沧.脂肪胺改性膨润土.应用化学,2005,22(9):967-970
    [18]Wang L,Wang A.Adsorption behaviors of Congo red on the N,O-carboxymethyl-chitosan/montmorillonite nanocomposite.Chemical Engineering Journal,2008,1143:43-50