CTE-RHA复合核酶的构建及抑制HCV RNA复制和相应蛋白表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的构建实验所需的真核表达载体,特别是人源性tRNA val启动子驱动CTE介导的核酶高效表达载体pPHCV5-CR以及对应的无CTE介导的载体pPHCV5-R;建立HCV Subgenomic Replicon稳定转染和表达的细胞株;探讨核酶和核酶-CTE复合物对丙型肝炎病毒亚基因组的影响,进一步探讨丙型肝炎治疗研究方向。
     研究方法
     1、构建相应的核酶载体
     合成CTE-DNA,设计、构建含tRNAval启动子的核酶和带有CTE的含tRNAval启动子的核酶。
     2、建立HCV Subgenomic Replicon稳定转染和表达的细胞株
     在脂质体lipofectamine TM2000介导下,将含有HCV Subgenes的真核表达质粒pHCV BM4-5导入人肝癌细胞系QSR7701中,经G418筛选抗性克隆,扩大培养,建立转染克隆细胞系。用反转录聚合酶链反应(RT-PCR)和蛋白印迹法证实转染成功及其蛋白表达。
     3、观察四种质粒pPHCV5-R1、pPHCV5-R2、pPHCV5-CR1、pPHCV5-CR2对HCV Subgenomic Replicon稳定转染和表达的细胞株中HCV RNA和相应病毒蛋白表达的影响。
     结果
     1、经测序后证实,成功构建相应的核酶载体,为下一步实验奠定基础。
     2、经RT-PCR和Western Blot证实,成功建立稳定转染HCV
     Subgenomic Replicon和表达的细胞株。
     3、用构建的普通核酶pPHCV5-R1、pPHCV5-R2和复合核酶pPHCV5-CR1、pPHCV5-CR2瞬时转染含HCV亚基因复制子的稳定转染QSG7701细胞株,48小时后收集细胞进行RT-PCR和WesternBlot,RT-PCR(以β-actin为内对照)结果显示:pPHCV5-CR1转染组未见明显扩增目的条带,pPHCV5-R1转染组可见扩增目的条带,亮度低于未转染组和空质粒转染组;pPHCV5-CR2转染组可见扩增目的条带,亮度低于未转染组和空质粒转染组,pPHCV5-R2转染组可见扩增目的条带,亮度与未转染组和空质粒转染组接近。这些提示:复合核酶(带有CTE)在细胞内的切割靶RNA的效率明显高于普通核酶。普通核酶难以切割的位点,复合核酶能进行有效的切割;普通核酶能进行切割的位点,带CTE-核酶的切割效率明显提高。WesternBlot(以β-actin为内对照)结果显示:应用软件分析各组细胞目的蛋白表达量无明显差异,可能与瞬时转染作用时间短、蛋白表达变化不明显,也可能与实验重复次数少、可用数据少或者检测方法有关。
     结论新型核酶(带有CTE)在细胞内的切割靶RNA的效率明显高于普通核酶。普通核酶难以切割的位点,带CTE-核酶能进行有效的切割;普通核酶能进行切割的位点,带CTE-核酶的切割效率明显提高。
Objective To construct ribozyme high-performance expression eukaryotic vector with engineered tRNAval promotor mediated by CTE(constitutive transport element) or not; To construct a cell line transfected and expressed stably with HCV Subgenomic Replicon; To study the inhibition effect of ribozyme / ribozyme-CTE on intracellular HCV mRNA, which may establish a new therapeutic approach for hepatitis C.
     Methods
     1、To construct ribozyme expression eukaryotic vectorFirst, to synthesize CTE-DNA; Then, to design and construct the ribozymes with tRNAval promoter as well as the ribozymes with both tRNAval promoter and CTE.
     2、To construct a cell line transfected and expressed stably with HCV Subgenomic Replicon
     Using Lipofectmine~(TM)2000, the plasmid P~(HCV BM4-5) with HCV Subgenomic Replicon and p~(RC/CMV) were transfected into QSG7701 cells respectively. Then the cell line with stable expression of HCV Subgenomic Replicon was obtained after the G418 screening, and non-transfected QSG7701 cells as control. It was verificated by RT-PCR and Western Blotting.
     3、To study the effect of pPHCV5-R1,pPHCV5-R2,pPHCV5-CR1 as well as pPHCV5-CR2 on HCV Subgenomic Replicon and the corresponding protein.
     Result
     1、Construct ribozyme expression eukaryotic vector successfully, which was verificated by sequencing.
     2、Construct cell lines transfected and expressed stably with HCV Subgenomic Replicon, which was verificated by RT-PCR and Western Blotting.
     3、The plasmids that contain these classic ribozyme genes and new ribozyme genes were transfected into QSG7701 cells using Lipofectmine~(TM)2000.The following experiments were carried out after 48 hours of transfection. RT-PCR and WesternBlotting were used to detect HCV RNA and corresponding protein respectively. The results of RT-PCR suggested that those new rebozymes with CTE could cut target RNAs more effective than classic ribozymes without CTE. Those new ribozymes with CTE could cut target RNAs that classic ribozymes could not cut. The results of WesternBlotting suggested that the quantity of HCV protein didn't change markedly, which may be due to low detection efficiency or limited data available.
     Conclusion New combined ribozymes with CTE was more effective than rebozymes without CTE.
引文
[1] Cech TR, Zaug AJ, Grabow ski PJ. In vitro splicing of the ribosomal RNA precursor of tetrahymena: Involvement of a guano sine nucleotide in the excision of the intervemingsequence. Cell 1981, 27: 487
    [2] Guerrier-Takada C, Gardiner K, Marsh R, Pace N, Altman S. The RNA moiety ofribonuclease P is the catalytic subunit of the enzyme. Cell 1983, 35: 8492857
    [3] Kiehntopf M, Esquivel EL, Branch MA, et al. Clinical application of ribozymes[J]. Lancet, 1995, 345: 1027
    [4] Emilsson GM, BreakerRR. Deoxyribozymes: new activities and new applications[J]. Cellular and Molecular Life Sciences, 2002, 59: 596-607
    [5] PuertaFE, Romero LC, Barroso DA, etal. Ribozymes: recent advances in the development of RNA tools[J]. FEMS Microbiology Reviews, 2003(27): 75-97
    [6] Doherty EA, Doudna JA. Ribozyme structures and mechanisms. Annu Ren Biochem2000, 69: 597-615
    [7] Takagi Y, Warashina M, Stec WJ, et al. Recent advances in the elucidation of the mechanisms of action of ribozymes. Nucleuc Acid Res, 2001, 29(9): 1815-1834
    [8] 王俊峰,廖祥儒,付伟.大分子核酶的结构和催化机制[J].生命的化学.2002,22(3):221~224
    [9] 王俊峰,廖祥儒,付伟,等.小型核酶的结构和催化机理[J].生物化学与生物物理进展.2002,29(5):674-677
    [10] Takagi Y, Warashina M, Wojciech JS, el al. Recent advances in the elucidation of the mechanisms of action of ribozymes. Nucleic Acids Research, 2001, 29(9): 1815~1834
    [11] Lafontaine DA, Norman DG, Lilley DMJ. Structure, folding and activity of the VS ribozyme: importance of the 2-3-6 helical junction EMBO[J], 2001, 20(6): 1415~1424
    [12] Andersen AA, Collins RA. Intramolecular secondary structure rearrangement by the kissing interaction of the Neurospora VS ribozyme Proc Natl Acad Sci USA. 2001, 98(14): 7730~7735
    [13] Hiley SL, Collins RA. Rapid formation of a solvent-inaccessible core in the Neurospora Varkud satellite ribozyme. EMBO[J], 2001, 20(19): 5461~5469
    [14] 卢忠心,曹亚.脱氧核酶及其应用进展[J].国外医学分子生物学分册,2003,25(5):282 285
    [15] 于乐成,王升启,顾长海,等.DNA生物催化功能研究进展[J].中国生物化学与分子生物学报,2002,18(4):391~397
    [16] Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc NatlAcad SciUSA, 1997; 94(9): 4262-4266
    [17] Kurreck J, Bieber B, Jahnel R et al. Comparative study of DNA enzymes and ribozymes against the same full-length messenger RNA of the vanilloid receptor subtype I. J Biol Chem[J], 2002; 277(9): 7099-7107
    [18] Cairns MJ, Saravolac EG; Sun LQ. Catalytic DNA: a novel tool for gene suppression. Curr Drug Targets, 2002; 3(3): 269
    [19] Been MD, Wlckham GS. Self-cleaving ribozymes of hepatitis delta virus RNA Eur J Biochem, 1997; 247(3): 741~753
    [20] Hagen M, Cech TR. Self-splicing of the Tetrahymena intron from mRNA in mammalian cells. EMBO[J], 1999, 18(22): 6491-6500.
    [21] Lan N, Rooney BL, Lee SW, et al. Enhancing RNA repair etTlciency by combining trans2splicing ribozyme that recognize different accessible site on a target RNA[J]. Mol Ther, 2000, 2(3): 245-255
    [22] Brannvall M, Kirsebom LA. Metalion cooperativity in ribozyme cleavage of RNA. ProcNatlAcad Sci USA. 2001, 98(23): 12943~12947
    [23] Lai MM. The molecular biology of hepatitis delta virus. Annu Rev Biochem, 1995, 64: 259~286
    [24] Shih I-H, Been MD. Involvement of a cytosine side chain in proton transfer in the rate-determining step of ribozyme self-cleavage Proc Natl Acad Sci USA, 2001, 98(4): 1489~1494
    [25] PersidisA. Ribozyme therapeutics[J]. Nat Biotechnol, 1997, 15(9): 921-922
    [26] Andrew MK, Martin DC, Susan MF, et al. Uniformly modified 2'-deoxy-2'-fluoro phosphorothioateoligonucleotides as nuclease- resistant anti-sense compounds with high affinity and specificity for RNA targets[J] Med. Chem. 1993; 36: 831
    [27] Beigelman L, McSwiggen JA, Draper KG, et al. Chemical Modification of Hammerhead Ribozymes.[J] Biol Chem 1995; 270(43): 25702
    [28] Frank S, Harald D, Nassim U. 1-Deazaadenosine: synthesis and activity of base-modified hammer-head ribozymes. Nucleic Acids Research 1998; 1010
    [29] Leirdal M and Sioud M: High cleavage activity and stability of hammerhead ribozymes with a uniform 2'-amino pyrimidine modification Biochem Biophys Res Commun 1998; 250(1): 171
    [30] Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme[J]. Proc Natl Acad Sci USA, 1997, 94(8): 4262-4266
    [31] Santoro SW, Joyce GF. Mechanism and utility of an RNA-cleaving DNA enzyme[J] Biochemistry, 1998, 37(38): 13330-13342
    [32] Calms MJ, Hopkins TM, Witherington C, et al. Target site selection for an RNA-cleaving catalytic DNA[J]. Nat Biotechnol, 1999, 17(5): 480-486
    [33] Yen L, Strittmatter SM, Kalb RG. Sequence-specific cleavage of Huntingtin mRNA by catalytic DNA[J]. Ann Neurol, 1999, 46(3): 366-373
    [34] Sioud M, Leirdal M. Design of nuclease resistant protein kinase calpha DNA enzymes with potential therapeutic application[J]. J Mol Biol, 2000, 296(3): 937-947
    [35] Sun LQ, Cairns MJ, Gerlach WL, et al. Suppression of smooth muscle cell proliferation by a c-myc RNA-cleaving deoxyribozyme[J]. J Biol Chem, 1999, 274(24): 17236-17241
    [36] AsahinaY, Ito Y, Wu CH, et al. DNA ribonucleases that are active against intracellular hepatitis B viral RNAtargets [J] Hepatology, 1998, 28 (2): 547-554
    [37] Breaker RR. Catalytic DNA: in training and seeking employment[J]. Nat Biotechnol, 1999, 17(5): 422-423
    [38] 祁国荣.核酶的22年[J].生命的化学,2004,24(3):262~265
    [39] 黄巧文,陈志春,王英豪.基因工程技术在药物筛选中的应用[J]福建中医学院学报,2004,14(1):49-51
    [40] 潘勤,章晓联,汪付兵,等.运用SELEX技术筛选特异性高亲和IVB型纤毛结构蛋白RNA适配子[J]中国生物制品学杂志,2004,17(5):280~283
    [41] David P. Bartel and Jack W. Szostak. Isolation of New Ribozymes from a Large Pool of Random Sequences[J]. Science, 1993(261), 1411-1418
    [42] TravisJ. End game[J]. Science News. 1995(148): 53
    [43] joyce GF. Directed evolution of RNA enzyme. Science. 1994(257): 635-641
    [44] Matthew L, Andrew D. Ellington. In Vitro Selection of a Deoxyribozyme That Can Utilize Multiple Substrates[J]. Mol Evol, 2002(54): 180-190
    [45] 周洁华,包鹏辉,彭庆,等,动态组合化学筛选和合成抑制Ⅰ型内含子的先导物[J]中国生物化学与分子生物学学会编.第三届全国暨2003年中外RNA研讨会论文集,2003,38
    [46] Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme [J]. Proc Natl Acad Sci USA, 1997, 94 (8): 4262-4266
    [47] Rogers J, Chang AH, Von Ahsen U, et al. Inhibition of the self-cleavage reaction of the human hepatitis Delta virus ribozyme by antibiotics[J] Mo I Biol, 1996, 259(5): 916~925
    [48] Oliver JE, De Abreu DM, Rastogi T, et al. Enhancement ofneurospors VS ribozyme cleavage by tuberactinomycin antibiotics [J]EMBO, 1995, 14(13): 3247~3251
    [49] Cairns MJ, Hopkins TM, Witherington C, et al. Target site selection for an RNA-cleaving catalytic DNA [J]. Nat Biotechnol, 1999, 17(5): 480-486
    [50] Santoro SW, Joyce GE Mechanism and utility of an RNA-cleaving DNA enzyme [J]. Biochemistry, 1998, 37 (38): 13330-13342
    [51] Cairns MJ, Hopkins TM, Witherington C, et al. The influence of arm length asymmetry and base substitution on the activity of the 10-23 DNA enzyme[J]. Antisense Nucleic Acid Drug Dev, 2000, 10(5): 323-332
    [52] 于乐成,顾长海,李奇芬,等.核酶抗肝炎病毒研究现状,中华肝脏病杂志,1999,7(增刊):63~64
    [53] Kilpatrick MW, Phylactou LA, Godfrey M, et al. Delivery of a hammerhead ribozyme specifically down-regulates the production of fibrillin-1 by cultured dermal fibroblasts. Hum. Mol. Genet 1996; 5: 1939-1944
    [54] FengMZ, Jackson WH Jr, Goldman CK, et al. Stable in vivo gene transduction via a movel adenoviral/retroviral chimeric vector. Nature Biotechnol 1997; 15: 866
    [55] He TC, Zhou S, Costa LT, et al. A simplified system for generating recombinant adenovimses. Proc Natl Acad Sci USA, 1998, 95: 2509-2514
    [56] Seyhan AA, Amaral J, Burke HM. Intracellular RNA cleavage by the hirpin ribozyme. Nuclei Acids Res, 1998, 26 (15): 3494~3504
    [57] 金哲元,陆长德,李光地,等.定点切割甲型肝炎病毒RNA片段的Ribozyme的设计和性质研究。病毒学报,1993,9(6):1~6
    [58] Beck J, Nassal M. Efficient hammerhead ribozyme-mediated cleavage of the structured hepatitis B Virus encapsidation signal in vitro and in cell extracts but not in intact cells. Nucleic Acids Res, 1995, 23 (24): 4954-4962
    [59] Weizsacker FV, Tritz R, Yei S, et al .Leavage of hepatitis B virus RNA by three ribozymes transcribed from a single DNA template. Biophys Commun, 1992, 189 (2): 743-748
    [60] Ruiz J, Wu CH, Ito Y, et al . Design and preparation of a multimeric self-cleaving hammerhead ribozyme.Biotechniques, 1997, 22 (2): 338—345
    [61] Welch PJ, Tritz R, Yei S, et al. Intracellular application of hairpin ribozyme gene against hepatitis B virus. Immusol Inc, 1997, 4 (7): 736—743
    [62] Lieber A, He CY, Polyak SJ, et al. Elimination of hepatitis C virus RNA in infected human hepatocytes by adenovirus-mediated expression of ribozymes. [J] Vorol, 1996, 70 (12): 8782-8791
    [63] Sakamoto N, Wu CH, Wu GY. Intracellular cleavage of hepatitis C virus RNA and inhibition of viral protein translation by hammerhead ribozymes. [J] J Clin Invest. 1996, 98 (12): 2720-2728
    [64] Welch PJ, Tritz R, Yeis, et al. A potential therapeutic application of hairpin ribozymes in virto studies of gene therapy for hepatitis C virus infection. Gene Ther, 1996, 3 (11): 994-1001
    [65] Ohkawa K, Yuki N, Kanazawa Y.Cleavage of viral RNA and inhibition of viral translation by hepatitis C RNA-specific hammerhead ribozyme in vitro [J] J Hepatol, 1997, 27: 781
    [66] Takagi Y, Warashina M, Stec W J, et al. Recent advances in the elucidation of the mechanisms of action of ribozymes. Nucleic Acids Res, 2001, 29 (9): 1815— 1834
    [67] Sarver N, Cantin EM, Chang PS et al. Ribozymes as potential anti-HIV-1 therapeutic agents Science 1990, 247: 1222
    [68] Amer MK, Elad H. RNA splicing and ribozyme cleavage by use of terminal transferase-dependent PCR[J]. Human Gene Therapy, 1998, 9 (2): 587-595
    [69] Weerasinghe M, Chank SG, Lank B, et al. The p5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis[J]. J Virol 1991, 65 (2): 5531-5536
    [70] Phylactou LA, Cowan KN , Gaohk G,et al. Retrovirally expressed anti-HIV ribozymes confer a selective survival advantage on CD4+ T cells in vitro [J]. Biophys Acta, 1998, 1372 (3): 55-60
    [71] Westaway SK, Ghuty D, Boot K, et al. Characterization of the azoarcus ribozyme: tight binding to guanosine and substrate by an unusually small group I ribozyme [J]. Antisense Nucleic Acid Drug Dev, 1998, 9 (2): 621-627
    [72] Wang L, Raid F. Alessandro M, Takacla G, et al. The role of the cleavage site 2'- hydroxyl in the tetrahymena group I ribozyme reaction[J]. Human Gene Therapy, 1998, 9 (3): 1283-1286
    [73] Konopka K, Koizumi M, Schmaid G, et al. Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA[J]. Biochem Biophys Acta, 1998, 1372 (2): 55-60
    [74] Sriram B, Banerjea AC. In vitro selected RNA cleaving DNA enzymes from a combinatorial library are potent inhibitors of HIV-1 gene expression [J]. Bio-chem J, 2000, 352 (Pt3): 667-673
    [75] Ramezani A, Ding SF, Joshi S. Inhibition of HIV-1 replication by retroviral vectors expressing monomeric and multimeric hammerhead ribozymes. Gene Ther. 1997; 4 (8): 861-867
    [76] Ramezani A, Ma XZ, Nazari R et al. Development and testing of retroviral vectors expressing multimeric hammerhead ribozymes targeted against all major clades of HIV-1. Front Biosci. 2002; 1 (7): a29-36
    [77] Irie A, Anderegg B, Kashani Sabet M, et al. Therapeutic efficacy of an adenovirus mediated anti-H-ras ribozyme in experimental bladder cancer. Anti-sense Nucleic Acid Drug Dev, 1999; 9 (4): 341—349
    [78] Sioud M, Sorensen DR. A nuclease-resistant protein kinase C alpha ribozyme blocks glioma cell growth. Nat Biotechnol ,1998; 16 (6): 556—561
    [79] Sioud M, Leirdal M. Design of nuclease resistant protein kinase calpha DNA enzymes with potential therapeutic application[J]. J Mol Biol, 2000, 296(3): 937-947
    [80] Yokoyama Y, Takahashi Y, Shinohara A, et al. Attenuation of telomerase activity by a hammerhead ribozyme targeting the template region of telomerase RNA in endometrial carcinoma cells. Cancer Res, 1998; 58 (23): 5406—5410
    [81] Irie A, Uchida T, Ishida H, et al. p53 Mutation in bladder cancer patients in Japan and inhibition of growth by in vitro adenovirus-mediated wild-type p53 transduction in bladder cancer cells. Mol Urol. 2001; 5 (2 ): 53-58
    [82] Irie A, Matsumoto K, Anderegg B, et al. Growth inhibition efficacy of an adenovirus expressing dual therapeutic genes, wild-type p53, and anti-erbB2 ribozyme, against human bladder cancer cells. Cancer Gene Ther. 2006; 13 (3): 298-305
    [83] Daley GQ, Testa H, Chank J, et al. Marked inhibition of glioblastoma target cell tumorigenicity in vitro by retrovirus-mediated transfer of a hairpin ribozyme against deletion-mutant epidermal growth factor receptor messenger RNA[J]. Science, 1990, 247 (8) 824-829
    [84] Yen L, Strittmatter SM, Kalb RG. Sequence-specific cleavage of Huntington mRNA by catalytic DNA[J] .Ann Neurol, 1999, 46 (3): 366-373
    [85] Kilpatrick MW, Phylactou LA. Towards an RNA-based therapy for Marfan syndrome. Mol Med Today. 1998; 4 (9): 376-381
    [86] Lewin AS, Drenser KA, Hauswirth WW, et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med. 1998; 4 (8): 967-971
    [87] Morishita R, Yamada S. Novel therapeutic stratepy for atherosclerosis ribozyme oligonucleotides against apolipoprotein selectively inhibition apolipoprotein but not plasminogen gene express. Hum Gene Ther, 1996, 118(1): 574-579