钢—混组合结构中PBL剪力键的静力及疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对在钢-混组合结构中使用日益广泛的PBL剪力键展开研究,系统地研究了PBL剪力键的静力性能,并对其疲劳性能进行初步探索。
     论文总结了部分国内外典型的PBL剪力键推出试验,对比了试验结果之间的差异,根据试件构造特点将已有推出试验构造分为两类,设计了不同构造的推出试验来验证两种构造之间的差异。试验结果表明,两种构造的荷载-滑移曲线、极限荷载、极限滑移量以及破坏过程、破坏形态都存在明显差异。造成两种构造试验结果差异的根本原因是剪力键埋置深度不同,剪力键周边混凝土的应力环境不同。对于钢-混结合梁和钢-混结合段中的PBL剪力键,在进行试验研究时应给予区分。
     在推出试验结果的基础上,对PBL剪力键力学性能的合理定义进行研究,并给出了各种规格PBL剪力键的设计承载力、抗剪刚度、极限承载力和延性系数。分析了PBL剪力键力学性能的影响因素,综合比较了PBL剪力键设计承载力计算公式的研究成果并根据推出试验结果,提出了综合考虑各种影响因素的PBL剪力键设计承载力计算公式。
     提出了PBL剪力键的双线性弹簧简化计算模型,建立了PBL剪力键集群的荷载-滑移协调模型;将双线性弹簧简化计算模型应用到PBL剪力键集群的荷载-滑移协调模型中,提出了PBL剪力键集群的简化计算方法,验证了这种计算方法的可靠性,并分析了PBL剪力键集群的荷载分布规律及其影响因素。
     对PBL剪力键的推出试验展开非线性数值模拟,将试验结果与数值分析结果对比,验证了数值模拟的可靠性。通过数值模拟方法再现了PBL剪力键的破坏过程,结合推出试验结果与数值模拟结果,分析了两类试验构造中PBL剪力键在不同受力阶段的传力机理;对PBL剪力键的破坏机理进行了研究,分析了各种破坏模式的起因,归纳了不同构造参数可能引起的破坏模式及力学性能差异。
     按照正交试验方法设计了PBL剪力键的数值仿真试验以研究构造参数对力学性能的影响,对仿真试验结果的统计分析表明:PBL剪力键设计承载力的显著影响因素是钢板开孔直径、贯穿钢筋直径、混凝土强度以及开孔钢板厚度,抗剪刚度的显著影响因素是混凝土强度、钢板开孔直径、贯穿钢筋直径及开孔钢板厚度。根据PBL剪力键力学性能影响因素的次序、交互作用以及因素指标变化关系,确定了合理的构造参数。结合钢-混组合结构的实际情况,给出了钢-混结合段与结合梁中PBL剪力键的合理参数取值范围。
     通过18个试件的疲劳试验,对PBL剪力键的疲劳性能进行了研究。疲劳试验得到了不同疲劳荷载对应的疲劳寿命,以及钢和混凝土之间的残余滑移量与疲劳荷载之间的关系。将静力破坏过程与疲劳破坏过程进行对比,研究了PBL剪力键的疲劳破坏机理。利用极差分析与方差分析方法,分析了PBL剪力键构造参数对其疲劳性能的影响,研究发现在混凝土强度等级相同的情况下,钢板开孔直径及厚度是PBL剪力键疲劳性能的主要影响参数,并且开孔直径的影响更大。建立了PBL剪力键的疲劳荷载与疲劳寿命之间的关系表达式,为评估PBL剪力键的疲劳寿命提供了便利。
     选取残余滑移量作为损伤变量,按照残余滑移量与荷载循环之间的关系建立了PBL剪力键的二阶段线性疲劳累积损伤演化模型。对PBL剪力键疲劳损伤后的静力性能进行了试验研究,研究结果显示,疲劳损伤使得PBL剪力键的承载力有所降低。对于有贯穿钢筋的PBL剪力键,疲劳损伤使得其抗剪刚度增大,而对于无贯穿钢筋的PBL剪力键,疲劳损伤后的抗剪刚度减小。
The PBL shear connector which is increasingly widely used in steel-concrete composite structure is studied in this dissertation. Systematical research on its static performance is conducted, and the fatigue property is preliminarily explored.
     Some of the typical push-out tests at home and abroad are summarized, and the differences between the results are comparatively analyzed. Based on the construction feature of the test specimen, the push-out configurations are grouped into two categories, and a variety of push-out tests is designed to verify the differences between them. The results show that the load-slippage curve, ultimate load, ultimate slippage, failure process and failure mode are significantly different from each other, reasons for which are the embedment depth of the PBL shear connector and the stress environment of the surrounding concrete. Moreover, the PBL shear connector in steel-concrete composite beam and steel-concrete composite joint should not be generally treated.
     On the basis of the push-out test results, the reasonable definition for the mechanical property of the PBL shear connector is researched, and the design bearing capacity, shear stiffness, ultimate bearing capacity and ductility factor in various specifications are obtained. The factors influencing the mechanical property of the PBL shear connector is analyzed, and the research achievement of the design bearing capacity formula is overall compared. In accordance with the push-out test results, a regressive design bearing capacity formula considering all kinds of influencing factors is presented.
     A bilinear spring simplified model for PBL shear connector is proposed, and the load-slippage coordination model for PBL shear connector group is established. Applying the bilinear spring simplified model into the load-slippage coordination model, a simplified calculation method for PBL shear connector group is presented and proved to be reliable. The law of the load distribution of PBL shear connector group and its influencing factors are analyzed.
     The nonlinear numerical simulation for push-out tests of PBL shear connector is performed, and the numerical results are proved reliable by comparing with test results. The PBL shear connector's failure process is represented through the numerical simulation method. Combining the results from push-out test and the numerical simulation method, the load transfer mechanism of PBL shear connector at each stage for two configurations is analyzed. On the basis of the research on the failure mechanism of the PBL shear connector, causes of different failure modes are studied, and diversities of the failure mode and mechanical property resulted from different structural parameters are summarized.
     Based on the orthogonal experimental method, numerical simulation tests are designed to investigate the structural parameters'effect on the mechanical property of PBL shear connector. Statistical analysis of simulation results show that the significant influencing factors of design bearing capacity are successively the diameter of opening hole, diameter of perforate rebar, strength of concrete and thickness of perforate plate, while the factors of the shear stiffness are successively strength of concrete, diameter of opening hole, diameter of perforate rebar and thickness of perforate plate. According to the order and interaction of influencing factors and the relationship between index and factors, the reasonable structural parameters are determined. Considering the actual situation of steel-concrete composite structure, the rational parameter range for the steel-concrete composite beam and composite joint is presented.
     Fatigue tests of18specimens are carried out to inverstigate the fatigue property of PBL shear connector. The fatigue life and residual slippage corresponding to fatigue load are obtained by fatigue tests. Comparing fatigue failure process with static failure process, the fatigue failure mechanism is studied. Through range analysis and variance analysis, the structural parameters'impact on fatigue performance is studied. The results show that in the case of same concrete strength, the open hole diameter and the thickness of perforate plate are main influencing factors of PBL shear connector's fatigue performance, and the open hole diameter has greater impact.The relationship between fatigue load and fatigue life is established which provide a convenient to evaluate the fatigue life of PBL shear connectors.
     The residual slippage between steel and concrete is selected as the damage variable. According to the relationship between residual slippage and load cycles, the two-stage linear fatigue damage accumulation model is proposed. Model tests are performed to investigate the static performance of fatigue damaged PBL shear connectors. The test results show that fatigue damage make PBL shear connectors'bearing capacity reduced, and make the shear stiffness increase for PBL shear connectors with perforate rebar while decrease without perforate rebar.
引文
[1]I.M. Viewst. Investigation of stud Shear connection for composite concrete and steel T beam[J]. ACI journal, April,1956.
    [2]Slutter R. G., Fisher J. W. Fatigue strength of shear connectors[R]. Highway research record No.117 S65-88 1966.
    [3]Colin Davies. Small-scale Push-out tests on Welded stud shear connector[J]. Concrete, September,1967.
    [4]Colin Davies. Tests on Half-scale Steel-Concrete Composite Beams with Welded Stud Connectors [J]. The Structural Engineer,1969,47(1)
    [5]Ollgaard J, Slutter R G, Fisher J W. The Strength of Stud Shear Connection in Lightweight and Normal-Weight Concrete [J]. AISC, Engineering Journal,1971,8(1):55-64
    [6]聂建国,孙国良.钢-混凝土组合梁槽钢剪力连接件基本性能和极限承载力研究[J].郑州工学院学报,1985年第2期:33-44.
    [7]张少云,孙国良.钢-混凝土组合梁栓钉剪力连接件抗剪强度及性能研究[J].郑州工学院学报,1987(6)
    [8]陈忠延,史家钧李炳生韩学宏.大直径栓钉承载力的试验研究[J].土木工程学报,1993,26(2):67-74
    [9]聂建国,沈聚敏,袁彦声.钢-混凝土组合梁中剪力连接件实际承载力的研究[J].建筑结构学报,1996,17(2):21-29
    [10]Gattesco N, Giuriani E, Gubana A. Low-Ccycle Fatigue Test on Stud Shear Connectors [J]. The Journal of Structural Engineering,1997(2):145-150
    [11]聂建国,谭英,王洪全.钢-高强混凝土组合梁栓钉剪力连接件的设计计算[J].清华大学学报,1999,39(12):94-97
    [12]叶梅新,吏林山.混凝土受拉状态下钢-混凝土组合结构中栓钉的承载力的研究[J].长沙铁道学院学报,2003,21(1):8-12
    [13]刘玉擎,武建敏,蒋劲松.使用状态对焊钉连接件抗剪性能影响的试验研究[J].桥梁建设,2007(6):23-25.
    [14]聂建国,刘明,叶列平.钢-混凝土组合结构[M].北京:中国建筑工业出版社,2005.
    [15]American Association of State Highway and Transportation Officials. LRFD Bridge design specifications (2005)[S], AASHTO, Washington, D.C.
    [16]British Standards Institution BS5400. Steel, concrete & composite bridges[S].1982.
    [17]European Committee for Standardization, Eurocode4:Design of composite steel and concrete structures[S].2004.
    [18]中华人民共和国建设部.钢结构设计规范(GB50017-2003)[S].北京:中国计划出版社,2003.
    [19]中华人民共和国电力行业标准.钢-混凝土组合结构设计规程(DL/T 5085-1999)[S].北京:中国电力出版社,1999
    [20]Leonhardt E.F., Andrae W., Andrae H.P. Harre W. "New Improved Shear Connector With High Fatigue Strength for Composite Structures (Neues, vorteilhaftes Verbundmittel fur Stahlverbund--Tragwerke mit hoher Dauerfestigkeit)", Beton--Und Stahlbetonbau, Vol.12, pp.325-331,1987.
    [21]刘荣,余俊林,刘玉擎,吴定俊,鄂东长江大桥混合梁结合段受力分析[J].桥梁建设,2010(3):33-35,62.
    [22]司秀勇,肖林,白象忠.斜拉桥桥塔钢-混凝上结合段模型试验研究[J],中国铁道科学,2011.32(5).
    [23]胡建华,侯文崎,黄琼.混合梁自锚式悬索桥钢混接合段结构形式的对比试验研究[J].铁道科学与工程学报,2007.4(5):28-34.
    [24]梁会东.钢-混凝土接头试验研究与受力性能分析[D].成都:西南交通大学硕士学位论文,2006.
    [25]占玉林,赵人达,毛学明,牟廷敏,范碧琨.钢-混凝土组合桥面板试验研究与理论分析[J].西南交通大学学报,2006.41(3):360-365
    [26]张勇,南京长江第三大桥桥塔钢混结合段结构特性研究[D].成都:西南交通大学硕士学位论文,2006.
    [27]卫星,李小珍,李俊,强士中.钢-混凝土混合结构在大跨度连续刚构桥中的应用[J].中国铁道科学,2007,28(5):43-46.
    [28]M.R.Velendanda, M.U.Hosain. Behaviour of perfobond rib shear connector:push-out tests [J] Canadian Journal of Civil Engineering.1992,19(1),1-10.
    [29]E.C.Oguejioforand M.U.Hosain.A parametric study of perfobond rib shear connectors [J]. Canadian Journal of Civil Engineering.1994,21(4):614-625.
    [30]Roberts W.S,. Heywood R.J. Development and Testing of a New Shear Connector for Steel Concrete Composite Bridges [J]. Proceedings,4th International Bridge Engineering Conference on Short and Medium Span Bridges. Developments in Short and Medium Span Bridge Engineering'94. Halifax, Novia Scotia, Canada,1994:137-145.
    [32]Hosaka T,Mitsuki K,Hiragi H,Ushijima Y,Tachibana Y,Watanabe H.An experimental study on shear characteristics of perfobond strip and it's rational strength equations [J] Journal of the Structural Engineering,JSCE 2000,46A:1593-1604.
    [33]Jiri Studnicka,Josef Machacek,Ales Krpata,Marcela Svitakova,Perforated shear connector for composite steel and concrete beams.Proceedings of the Conference: Composite Construction in Steel and Concrete IV,2000:367-378.
    [34]Ushijima Y,Hosaka T,Mitsuki K,Watanabe H,Tachibana Y,Hiragi H.An Experimental study on shear characteristics of Perfobond strip and its rational strength equations.In:Eligehausen R,editor. Proceedings of the international symposium on connections between steel and concrete.University of Stuttgart;2001:1066-75.
    [35]Medberry S.B, Shahrooz B.M.Perfobond shear connector for composite construction[J].AISC Chicago 2002; 1:2-12.
    [36]Isabel Valente, Paulo J.S. Cruz.Experimental analysis of Perfobond shear connection between steel and lightweight concrete[J] Journal of Constructional Steel Research,60 (2004):465-479.
    [37]Peter Chromiak, Jiri Studnicka Load Capacity of Perforated Shear Connector [J]. An International Journal for Engineering and Information Sciences 2006,1(3):23-30.
    [38]Jin-Hee Ahn,Chan-Goo Lee,Jeong-Hun Won,Sang-Hyo Kim.Shear resistance of the perfobond-rib shear connector depending on concrete strength and rib arrangement[J].Journal of Constructional Steel Research,2010,66:1295-1307.
    [39]J.P.S.Candido-Martins, L.F. Costa-Neves, P.C.GdaS.Vellasco. Experimental evaluation of the structural response of Perfobond shear connectors [J]. Engineering Structures,32 (2010):1976-1985.
    [40]宗周红,车惠民.剪力连接件静载和疲劳试验研究[J].福州大学学报,1999,27(6):61-66.
    [41]周浩.南京长江三桥桥塔钢-混结合段剪力键选型试验研究[D].成都:西南交通大学硕士学位论文,2005.
    [42]张清华,李乔,唐亮.桥塔钢-混凝土结合段剪力键破坏机理及极限承载力[J].中国公路学报,2007,20(1):85-90
    [43]张清华,李乔,卜一之.PBL剪力连接件群传力机理研究Ⅰ:理论模型[J].土木工程学报,2011,44(4):1-7
    [44]张清华,李乔,卜一之.PBL剪力连接件群传力机理研究Ⅱ:极限承载力[J].土木工程学报,2011,44(5):101-108
    [45]刘玉擎,周伟翔,蒋劲松.开孔板连接件抗剪性能试验研究[J].桥梁建设2006(6):1-4.
    [46]周伟翔.连续组合梁桥钢与混凝土连接试验研究[D].上海:同济大学硕士学位论文,2007
    [47]胡建华,叶梅新,黄琼.PBL剪力连接件承载力试验[J].中国公路学 报,2006,19(6):65-72.
    [48]李小珍,肖林,张迅,刘德军.钢-混凝土结合段PBL剪力键承载力试验研究[J].哈尔滨工业大学学报,2009,sup.2(41):181-186
    [49]许燕,刘平,王仪.ECC混凝土应用于PBL剪力键试验研究[J].混凝土,2010(3):43-45.
    [50]许燕,曹大富,王仪,刘平.开孔钢板连接件承载力试验研究[J].特种结构,2010(5):46-49,34.
    [51]许燕,王仪与刘平.开孔钢板连接件承载力计算公式研究[J].四川建筑科学研究,2010(5):30-33.
    [52]蔡军伟,杨勇,周丕健,谢标云.采用轻骨料砼的PBL剪力键受力性能[J].广西大学学报(自然科学版),2010(1):39-43.
    [53]夏高,赵灿晖,张育智,李乔.PBL传剪器极限承载力的试验研究[J].西南交通大学学报,2009,44(2):166-170.
    [54]E.C.oguejiofor, M.U.Hosain. Behaviour of perfobond rib shear connectors in composite beams. Full size tests [J]. Proceedings-1990 CSCE Annual Conference and 1st Biennial Environmental Speciality Conference, Hamilton, Ont, Can,1990,4(2):751.
    [55]E.C.oguejiofor, M.U.Hosain. Behavior of perfobond rib shear connectors in composite beams:full-size tests[J]. Canadian Journal of Civil Engineering.1992,19(2):224-235
    [56]E.C.oguejiofor, M.U.Hosain. Tests of full-size composite beams with Perfobond rib connectors [J]. Canadian Journal of Civil Engineering.1995,22(3):80-92
    [57]Roberts W.S., Heywood R.J. An Innovation to Increase the Competitiveness of Short Span Steel Concrete Composite Bridges [J], Proceedings, Fourth International Conference on Short and Medium Span Bridges. Developments in Short and Medium Span Bridge Engineering'94, Halifax, Novia Scotia, Canada,1994:1160-1171
    [58]Machacek, Josef; Studnicka, Jiri. Perforated shear connectors [J]. Steel and Composite Structures,2002,2(1):51-66..
    [59]Medberry, Sara B. Shahrooz, Bahrain M.Perfobond shear connector for composite construction [J] Engineering Journal,2002,39(1):2-12
    [60]Kim, Hyeong-Yeol, Jeong, Youn-Ju. Experimental investigation on behaviour of steel-concrete composite bridge decks with perfobond ribs [J]. Journal of Constructional Steel Research,2006,62 (5):463-471.
    [61]强士中,卫星等.重庆石板坡长江大桥加宽改造工程钢-砼接头试验设计研究报告[R].成都:西南交通大学,2005.
    [62]张勇.南京长江第三大桥桥塔钢混结合段结构特性研究[D].成都:西南交通大学硕士学位论文,2005.
    [63]占玉林,赵人达,毛学明等.钢-混凝土组合桥面板试验研究与理论分析[J],西南交通 大学学报2006,41(3):360-365.
    [64]任剑.钢-混凝土组合结构疲劳性能试验研究[D].成都:西南交通大学硕士论文,2006.
    [65]田军伟,郑罡,唐光武等.重庆石板坡长江大桥复线桥钢-混凝土接头模型静载与疲劳试验研究[J].公路交通技术,2007(2):113-117.
    [66]胡建华,蒲怀仁.PBL剪力键钢混结合段设计与试验研究[J].钢结构,2007,22(2):62-68.
    [67]杨勇,祝刚,周丕健,聂建国,谢标云.钢板-混凝土组合桥面板受力性能与设计方法研究[J].土木工程学报,2009(12):135-141
    [68]E.C.oguejiofor, M.U.Hosain. Numerical analysis of push-out specimens with Perfobond rib connectors [J]. Computers& Struetures.1997,62(4):617-624
    [69]Nishido Takayuki, Fujii Katashi, Ariyoshi Takafumi. Slip behavior of perfobond rib shear connectors and its treatment in FEM [J]. Proceedings of the Conference: Composite Construction in Steel and Concrete IV, Banff, Alta., Canada 2000:379-390
    [70]张清华,李乔,唐亮.剪力连接件的三维非线性仿真分析方法[J].西南交通大学学报,2005,40(5):595-599
    [71]张霞.钢-混凝土组合梁剪力连接件的受力性能研究[D].重庆交通学院硕士学位论文,2005
    [72]Suhaib Yahya Kasim Al-Darzi, Ai Rong Chen and Yu Qing Liu. Finite Element Simulation and Parametric Studies of Perfobond Rib Connector [J]. American Journal ofApplied Sciences 2007,4(3):122-127
    [73]赵洁,聂建国.钢板-混凝土组合梁的非线性有限元分析[J].工程力学,2009,26(4):105-112.
    [74]崔冰,赵灿辉,董萌,唐亮.南京长江第三大桥主塔钢混结合段设计[J].公路,2009,5:100-107.
    [75]肖林,李小珍,卫星.PBL剪力键静载力学性能推出试验研究[J].中国铁道科学,2010,31(3):15-20.
    [76]刘玉擎.有限元弹簧在桥梁结构分析中的应用研究[J].桥梁建设,2005,6:19-22.
    [77]韩宝远.有限元法在钢混结构非线性分析中的应用[J].唐山学院学报,2008,21(4):43-45.
    [78]Andra,H.P. Economical Shear Connectors with High Fatigue Strength[C], IABSE SYMPOSIUM,1990,167-172.
    [79]F.W. Klaiber, T.J. Wipf, J.C. Nauman, Y-S. Siow. Investigation of Two Bridge Alternatives for Low Volume Road-Beam In Slab Bridge[R]. IOWA STATE UNIVERSITY OF SICIENCE AND TECHNOLOGY,2000
    [80]杨勇,霍旭东,薛建阳,周丕健,聂建国.钢板-混凝土组合桥面板疲劳性能试验研究[J].工程力学,2011,28(8):37-44.
    [81]Eurocode4. Design of composite steel and concrete structures, Part 2:Bridge[S]. London: BSI,1999
    [82]日本钢构造协会.圆柱头焊钉的推压试验方法[S].1996
    [83]Joint Committee IABSE/CEB/FIP/ECCS. Composite Structures (Modal Code)[S]. London:Construction Press,1981
    [84]J.da.C.Vianna,L.F.Costa-Neves,P.C.G.da S. Vellasco,S.A.L.de Andrade. Structural behaviour of T-Perfobond shear connectors in composite girders:An experimental approach[J]. Engineering Structures,2008,30(9):2381-2391.
    [85]HIROO SHINOZAKI, HIROSHII MIKAMI, NORIMICHI NAKAJIMA, KENTAROU KAWAKAMI. An Experimental Study on the Ultimate Capacity of Perfobond Strips under Pull-out State[R]. reports of technical research institute of SUMITOMO MITSUI construction CO.,LTD.
    [86]European Committee for Standardisation (CEN). Eurocode 4. Design of composite steel and concrete structures, Part 2:Bridge(ENV 1994-2) [S]. London:BSI,1999.
    [87]Nishiumi K. et al. shear strenth of perfobond rib shear connector under the confinement [J]. Journal of JSCE,1999, No.633:193-203
    [88]Ver'issimo GS, Valente MIB, Paes JLR, Cruz PJS, Fakury RH. Design and experimental analysis of a new shear connector for steel and concrete composite structures. In:Taylor and Francis Group,editor.Proceedings of the 3rd international conference on bridge maintenance, safety and management.2006.
    [89]钟善桐.钢管混凝土结构.哈尔滨:黑龙江科学技术出版社,1994
    [90]韩林海,钟善桐.钢管混凝土力学.大连:大连理工大学出版社,1996
    [91]过镇海,时旭东.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [92]Bathe, K. J., Finite Element Procedures[M]. Prentice-Hall, Englewood Cliffs,1996.
    [93]宋天霞,邹时智,杨文兵.非线性结构有限元计算[M].武汉:华中理工大学出版社,1996.4
    [94]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.6
    [95]朱伯芳.有限元法原理与应用[M].北京:中国水利水电出版社,1998.10
    [96]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2010.4
    [97]江见鲸.关于钢筋混凝土数值分析中的非线性本构关系[J].力学进展.1994,Vol.24,No.1
    [98]江见鲸.钢筋混凝上非线性有限元分析[M].西安:陕西科学技术出版社,1994
    [99]Hognestad E. A study of combined bending and axial load in reinforced concrete members. Bulletin Series No 399,University of Illinois Engineering Experimental Station,1951
    [100]肖林.钢-混组合结构中剪力键的试验研究[D].成都:西南交通大学硕士论文,2008
    [101]洪伟,吴承祯.试验设计与分析——原理·操作·案例[M].北京:中国林业出版社,2004
    [102]Hegger J, Sedlacek G, Doinghaus P, Trumpf H. Studies on the ductility of shear connectors when using high-strength concrete [J]. International Symposium on Connections between Steel and Concrete,University of Stuttgart,10-12 September 2001, vol.2, p.1025-45
    [103]Reid, J.W.. Bridge Alternatives for Low-Volume County Roads[D]. M.S. Thesis, Iowa State University, Ames, Iowa,1997
    [104]Klaiber, F.W., Wipf, T.J., Reid, J.R., and Peterson, M.J.. Investigation of Two Bridge Alternatives for Low Volume Roads, Concept 2:Beam-in-Slab Bridge[R]. Iowa Department of Transportation Project HR-382, ISU-ERI-Ames 97405, Iowa State University, Ames, Iowa,1997.
    [105]Jin-Hee Ahna, Ji-Hyun Yoona Jong-Hak Kimb. Evaluation on the behavior of abutment-pile connection in integral abutment bridge[J]. Journal of Constructional Steel Research 2011,67:1134-1148
    [106]陈开利,余天庆.混合梁斜拉桥结合段设计技术的新发展[J].铁道标准设计,2006(5):43-44.
    [107]李小珍,肖林等.高速铁路特殊桥梁新结构和新工艺技术-空间刚架结构钢混结合段静力性能研究[R].成都:西南交通大学,2011
    [108]李乔,唐亮等.南京长江第三大桥索塔钢-混结合段传力机理与试验研究[R].成都:西南交通大学,2005
    [109]福克斯著,漆平生等译.工程中的金属疲劳[M].北京:中国农业机械出版社,1983.
    [110]钱冬生.钢桥疲劳设计[M].成都:西南交通大学出版社,1986
    [111]Laman, J.A. Nowak,A.S. Fatigue-LoadModelsforGirderBridges[J], Journal of Struetural Engineering, ASCE,1996,122(7):726-733
    [112]中华人民共和国铁道部.铁路桥梁钢结构设计规范[S].北京:中国铁道出版社,2005.
    [113]童乐为,沈祖炎,陈忠延.城市道路桥梁的疲劳荷载谱[J].土木工程学报.1997,30(5):20-27
    [114]潘际炎.铁路钢桥疲劳可靠性设计及铁路桥梁荷载谱研究[J].铁道学报,1992,14(4):58-66
    [115]中华人民共和国铁道部.铁路桥梁检定规范[S].北京:中国铁道出版社,2004.
    [116]中国机械工程学会焊接学会.焊接手册(第三卷:焊接结构)[M].北京:机械工业出版 社,2001
    [117]Nowa,A.S. Nassif,H.andFrank,H..Fatigue Load Spectra for Steel Girder Bridge[R]. TransPortation Research Record 1393,1992:154-161
    [118]Agersko,H. Nielsen,A.. Fatigue in steel highway bridges under random loading[J] Journal of Structure.Engineering. ASCE,1999,125(2),152-162
    [119]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003
    [120]Zhao,Z., Haldar,A.,Breen, EL. Fatigue reliability Evaluation of Steel Bridges[J]. Journal of Structure.Engineering, ASCE,1994,120(5),1608-1623
    [121]Moses F. Calibration of lodad factors for LRFR bridge evaluation[R]. NCHRP Report454, TransPortation Research Board,2001, Washington,D.C
    [122]Albreeht,P.andYazdani, N.(1986).Risk Analysis of Extending Bridge Service Life[R]. Report No.FHWA/MD.84101, DePt. of Civil Engineering,University of Maryland, CollegePark,MD
    [123]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000
    [124]孙志雄.焊接断裂力学[M].西安:西北工业大学出版社,1990
    [125]Siow, Y.S. Push-Out Fatigue Tests of the Alternate Shear Connector, M.S. Thesis, IowaState University,Ames,Iowa,1998
    [126]Thurlimann, B. Fatigue and Static Strength of Stud Shear Connectors[J], Jour. ACI, Vol.30,No 12,pp.1287-1302,June 1959
    [127]Lascheidt H. On the problem of fatigue strength of steel bars embedded in concrete [D]. PhD.Thesis, Aachen 1965
    [128]中华人民共和国建设部.混凝土结构设计规范(GB50010-2002)[S].北京:中国计划出版社,2003.
    [129]宋玉普.混凝土结构的疲劳性能及设计原理[M].北京:机械工业出版社,2006.8
    [130]Terpfers R, and Kutti T. Fatigue stength of plain ordinary and lightweight concrete[J], Jour. ACI, may 1979:635-652
    [131]Satio M, and Imai S. Direct tensile fatigue of concrete by the use of friction grips [J]. Journal of the ACI, Proc,1983,80(5),431-438
    [132]Holmen J O. Fatigue of concrete by constant and variable amplitude loadding[J]. Bulletin No 79-1, Division of Concrete Structures, NTH-Trondheim,1979:218
    [133]Van leeuwen J, and Siemes A J M. Miner's rule with respect to plain concrete[J]. HERON,1979,24(1)
    [134]杨晓华,姚卫星,段成美.确定性疲劳累积损伤理论进展[J].中国工程科学,2003.5(4):81-87
    [135]Miner M.A. Cumulative damage in fatigue [J]. Journal of Appl. Mech.1945,12(3): A159-16
    [136]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002
    [137]Grover H J. An observation concerning the cycle ratio in cumulative damage [A]. In Symposium on Fatigue of Aircraft Structures [C]. ASTM STP 274,Philadelphia,1960. 120-124
    [138]Manson S S, Freche J C, Ensign S R. Application of a double linear damage rule to cumulative fatigue [A]. InFatigue Crack Propagation [C]. ASTM STP 415,Philadelphia, 1967.384-412
    [139]Marco S M, Starkey W L. A concept of fatigue damage[J]. Transaction of the ASME, 1954,76:627-632
    [140]Manson S S, Halford G R. Practical implementation of the double linear damage rule and damage curve appoach for treating cumulative fatigue damage [J]. Int J Fract,1981,17(2):169-192
    [141]Chaboche J L, Lesne P M. A non-linear continuous fatigue damage model [J]. Fatigue and Fracture of Engineering Materials and Structures,1988,11(1):1-7
    [142]方华灿,陈国民.模糊概率断裂力学[M].山东东营:石油大学出版社,1999
    [143]徐灏.疲劳强度[M].北京:高等教育出版社,1988
    [144]Freudenthal A M, Heller R A. On stress interaction in fatigue and cumulative damage rule [J]. Journal of theAerospace Science,1959,26(7):431-442
    [145]Spitzer R, Corten H T. Effects of loading sequence on cumulative fatigue damage of 7071-T6 aluminum alloy [J]. Proceedings, American Society for Testing and Materials, 1961,61:719-731
    [146]Manson S S, Nachigall A J,Freche J C. A proposed new relation for cumulative damage in bending [J].Proceedings, American Society for Testing and Materials,1961,61: 679-703
    [147]Bui-Quoc T. An interaction effect consideration in cumulative damage on a mild steel under torsion loading [A]. Proceeding of the 5th International Conference on Fracture [C]. Pergamon Press,1981.2625-2633
    [148]Bui-Quoc T. A simplified model for cumulative fatigue damage with interaction effects [A]. In Proceedings of the 1982 Joint Conference on Experimental Mechanics [C]. Brookfield center CT,1982.144-149
    [149]Inglis N P. Hysteresis and fatigue Wohler rotating cantilevers specimen[A]. The Metallurgist [M].1927.23-2
    [150]Halford G R. The energy required for fatigue [J].Journal of Materials,1966,1(1):3-18
    [151]Niu X, Li G X, Lee H. Hardening law and fatigue damage of a cyclic hardening metal [J]. Engineering Fracture Mechanics,1987,26(2):163-170
    [152]童小燕,王德俊,徐灏.疲劳损伤过程的热能耗散分析[J].金属学报,1992,28(4):163-169
    [153]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [154]姚卫星,杨晓华.疲劳裂纹随机扩展模型进展[J].力学与实践,1995,17(3):1-7
    [155]Kommers J B. The effect of overstressing and understressing in fatigue [J]. Proceeding, America Socoiety Testing and Materials,1938,38(PartII):249-268
    [156]Henry D L. A theory of fatigue damage accumulation in steel [J]. Transaction of the ASME,1955,77:913-918
    [157]Cheng Guangxu, Plumtree A. A fatigue damage accumulation model based on continuum damage mechanics and ductility exhaustion [J]. Int J Fatigue,1998,20(7): 495-501
    [158]叶笃毅,王德俊,童小燕,等.一种基于材料韧性耗散分析的疲劳损伤定量新方法[J].实验力学,1999,14(1):80-88
    [159]翟红军,姚卫星.化学纤维增强树脂基复合材料的疲劳剩余刚度研究进展[J].力学进展,2002,32(1):80-88
    [160]Bui-Quoc T. Cumulative damage with interaction effect due to fatigue under torsion loading [J]. Experimental Mechanics,1982, (22):180-187
    [161]吕培印,李庆斌,张立翔.定侧压混凝土双压疲劳损伤模型[J].工程力学,2004,21(5):77-82
    [162]朱劲松,宋玉普定侧压混凝土双轴拉-压疲劳累积损伤试验研究[J].中国公路学报,2005,18(1):40-45
    [163]李朝阳,宋玉普,车轶.混凝土的单轴抗压疲劳损伤累积性能研究[J].土木工程学报,2002,35(2):38-40,56
    [164]李朝阳,宋玉普,赵国藩.混凝土疲劳残余应变性能研究[J].大连理工大学学报,2001,41(3):355-358
    [165]Awad M E, Hilsdorf H K. Strength and deformation of plain concrete subjected to high repeated and substained loads[C]. Abeles Symposium of Fatigue of Concrete. SP-41,ACI,1974:1-13
    [166]谢里阳.疲劳损伤状态的等效性[J].机械强度,1955,17(2):100-10
    [167]Amzallag Cetal. Standardization of the rain flow counting method for fatigue analysis[J].Int J fatigue,1994,16(4):287-293
    [168]吕培印.混凝土单轴、双轴动态强度及变形试验研究[D].大连:大连理工大学,2001
    [169]Corneslissen H A W, and Reinhardt H W. Uniaxial tensile fatigue failure of concrete under constant amplitude and program loading[J]. Mag. Of Concrete Research,
    Dec.1984,36(129):216-227