复式钢管混凝土轴压性能及节点抗震试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土经过多年的发展,在传统钢管混凝土的基础上,已经出现了多种新的结构形式。由于钢管混凝土在高层建筑、大跨桥梁等结构工程中广泛的应用,柱承受的荷载越来越大,因此出现了内置型钢、内置钢管或多管以及CFRP筒增强的新型钢管混凝土重载柱,本文统称之为复式钢管混凝土结构。该结构在有效减小构件截面面积的同时,又可明显提高承载能力和抗火能力,而且具有更好的延性。近几年的理论研究和工程实践表明,应用复式钢管混凝土是切实可行的,并且有很大的发展潜力。
     本文以复式钢管混凝土作为研究对象,为方便分析和便于设计应用,将复式钢管混凝土分为内圆钢管、型钢、CFRP增强型钢管混凝土及复式空心钢管混凝土四种形式。对各种截面的复式钢管混凝土的轴压性能进行理论分析和数值计算,拟建立统一可行的刚度和承载力计算方法。另一方面,节点是钢管混凝土体系中非常重要而又薄弱的环节。而我国大多数建筑的楼盖采用钢筋混凝土梁板结构,推广应用钢管混凝土柱的关键之一是解决钢管混凝土柱与钢筋混凝土梁的连接。因此本文设计了一种新型复式钢管混凝土柱与钢筋混凝土梁的连接形式——外钢管不连通环梁节点,由于楼层间外钢管不连通,梁纵筋可在节点区内贯通,传力路径明确,节点整体性强,施工简便,具有良好的应用前景。本文主要研究工作有:
     1.抗压刚度和承载力是结构构件重要的力学性质。本文基于简单叠加、钢管混凝土统一理论和弹性力学的方法对复式钢管混凝土轴压刚度进行了研究;分析了混凝土横向变形系数、钢管泊松比和含钢率是影响组合柱轴压刚度的主要因素。
     2.本文提出了组合约束效应系数,把钢管混凝土统一理论研究成果推广应用于复式钢管混凝土轴压强度计算中,所得到的承载力计算公式形式统一,计算简便;同时,运用双剪统一强度理论分析各种工况下复式钢管混凝土组成部分的极限承载能力,根据极限平衡原理得出组合柱的轴压承载力。以上两种方法均取得了较好的结果,并对复式钢管混凝土承载力的影响因素进行了分析。
     3.根据轴压性能研究,分析复式钢管混凝土的性能影响参数,并对各类型的复式钢管混凝土进行参数优化设计,得出最优的复式钢管混凝土设计理念。通过对各种截面复式钢管混凝土在受力性能和经济性上的对比,以及出于对其梁柱连接形式的考虑,认为内圆外方双钢管混凝土是比较理想的复式钢管混凝土结构,在实际工程中具有广阔的应用前景。
     4.对四个复式钢管混凝土外钢管不连通环梁节点试件进行低周反复荷载试验,分析研究该类型节点在恒定轴力和反复剪力作用下的抗震性能,对结构的破坏形态、破坏机制、滞回曲线、骨架曲线、位移延性、刚度退化、耗能能力等性能进行了较为深入系统的研究。建立了该新型外钢管不连通环梁节点的恢复力模型,可以较好地反映其滞回性能,可作为结构弹塑性地震反应分析时参考。
     5.采用有限元软件ANSYS对复式钢管混凝土节点进行三维非线性有限元模拟,得到了节点单调加载的荷载-位移曲线,并与试验的骨架曲线进行比较。同时对该节点的轴压性能进行研究,分析节点的内部受力机理,讨论了混凝土强度,内钢管尺寸及环梁配筋对节点轴压受力性能的影响。结合试验研究和有限元结果对该新型节点承载力验算、设计方法和构造措施提出一些建议。
Concrete Filled Steel Tube (CFST) has already experienced several structural forms from the traditional ones after many years of development. As CFST has been used widely in high-rise buildings, long-span bridges etc, the columns are required to increases not only high bearing capacity but also good ductility. Therefore, one new CFST column reinforced by circular steel tube or steel column or CFRP cylinder, has arisen as heavy-loaded columns which is called composite CFST structure in this thesis. This structure can effectively reduce members' cross-section area, and also significantly improve the load capacity, anti-fire capabilities with better ductility. In recent years, the composite CFST structure has been verified its feasibility in theoretical research and engineering practice, showing a great potential for more development.
     To facilitate the analysis and design applications, the composite CFST was classified as four forms, i.e. inner-steel-tube-enhanced CFST, steel-column-enhanced CFST, CFRP-enhanced CFST and hollow composite CFST. For various sections of the composite CFST, this paper established a unified calculation method of the compressive stiffness and bearing capacity by theoretical analysis and numerical calculation. On the other hand, the connection is the very important and weak part in CFST system. While the reinforced concrete beam-slab structure is applied in the majority of Chinese buildings. Therefore, to solve the problem of connection between CFST and RC beams is one of the keys to apply CFST structure. This paper put forward one new connection——Ring Beam Joint with Discontinuous Outer Tube between composite CFST and RC beams. The outer tube is discontinuous in joint zone, longitudinal reinforcement of RC beam can be run through to ensure loads transferred in the joint core zone, and the construction can preserve the structural integrity, so this new joint has a good application prospects.
     The mayor contributions of the work presented in this thesis are listed as follows:
     1. Compressive stiffness and bearing capacity are the important mechanical properties of structural elements. Based on simple superposition, unified theory of CFST and method of elasticity, axial compression stiffness of composite CFST has been studied. The main factors such as coefficient of lateral deformation of concrete, Poisson's ratio of steel and steel ratio, evidently influenced the axial compression stiffness of the composite column.
     2. This paper presented the composite confinement factor in order to apply unified theory of CFST into the strength calculation of composite CFST, and the formula can be easily used for all the sections included. Meanwhile, every component of the composite CFST under the ultimate state was analyzed by the Twin Shear Unified Strength Theory. Then according to principle of superposition, the compressive bearing capacity of the composite columns can be calculated by the method of limit equilibrium. The both methods have achieved good agreement with the experimental results, and the influencing factors to the axial bearing capacity were also analyzed.
     3. Optimal design was obtained for every type composite CFST columns by Parameter Optimization according to the axial behaviors analysis. With consideration of the connection with RC beams, the section of circle inside and square outside was considered as more ideal one among the various sections of composite CFST columns by comparison of mechanical properties and steel ratio among all the sections of composite CFST. This optimal composite CFST structure can be widely applied in practice engineering.
     4. In order to study the seismic behavior of this new connection system, the thesis carries out the experiment of 4 specimens under the cyclic loading. Failure modes, damage mechanism, hysteresis curve, skeleton curve, displacement ductility, stiffness degradation and energy dissipation capability of the joint under fixed axial force and repeated shear force were analyzed in detail. The restoring force model of the Ring Beam Joint with Discontinuous Outer Tube was established with consideration of the better hysteretic behavior, which can be available of the elastic-plastic seismic response analysis as references.
     5. A three-dimensional nonlinear finite element analysis was performed to simulate the joint behavior by software ANSYS. The obtained load-displacement curve of monotonic loading simulation was compared with the skeleton curve of experimental results. At the same time the axial properties was studied in order to analyze the joint's internal mechanism. The axial behaviors were discussed under the influence of the strength of concrete, inner steel tube and reinforcement of ring beam. Coming from the results of experiment and finite element method, some suggestions were put forward for checking the bearing capacity, and some design method and construction measures were also given for the new joint.
引文
[1]蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003.
    [2]韩林海.钢管混凝土结构[M].北京:科学出版社,2000.
    [3]钟善桐.钢管混凝土结构(第三版)[M].北京:清华大学出版社,2003.
    [4]蔡绍怀.我国钢管混凝土结构技术的最新进展[J].土木工程学报,1999,32(4):16-26.
    [5]Xu Jishan. The Triaxial Behavior of Concrete and Its Application to concrete Filled Steel Tube[C]. Proc. of the International Specialty Conference on Concrete Filled Steel Tubular Structures, Harbin, China, Aug.1985.
    [6]JCJ 01-89钢管混凝土结构设计与施工规程[S].
    [7]CECS 28:90钢管混凝土结构设计与施工规程[S].
    [8]CECS159-2004矩形钢管混凝土结构技术规程[S].
    [9]DBJ13-51-2003福建省工程建设标准—钢管混凝土结构技术规程[S].
    [10]CECS 188-2005钢管混凝土叠合柱结构技术规程[S].
    [11]钟善桐.高层钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社,1999.
    [12]韩林海,钟善桐.钢管混凝土力学[M].大连:大连理工大学出版社,1996.
    [13]韩林海,钟善桐.钢管混凝土压弯扭构件工作机理研究[J].建筑结构学报,1995,16(4):32-39.
    [14]韩林海,陶忠,刘威.钢管混凝土结构—理论与实践[J].福州大学学报(自然科学版),2001,29(6):24-34.
    [15]赛格广场.深圳赛格广场投资发展有限公司[R].1997.
    [16]ASCCS Seminar Report. Concrete filled steel tubes-a comparison of international codes and practices[R]. Innsbruck,1997.
    [17]#12
    [18]Design of composite steel and concrete structures[S], Part 1.1:General rules and for buildings,2004.
    [19]BRID GE R Q, MAR TIN D, O'Shea. Behavior of thin-walled steel box sections with or without internal restraint[J]. Journal of Constructional Steel Research,1998,47:73-91.
    [20]British Steel. SHS design manual for concrete filled columns[M]. London,1990.
    [21]Load and Resistance Factor Design Specification for Structural Steel Buildings[S]. American Institute of Steel Construction, INC,1999.
    [22]中国工程建设标准化协会标准.矩形钢管混凝土结构技术规程(CECS 159:2004) [S].北京:中国计划出版社,2004.
    [23]Zhong S. T. New Concept and Development of Research on Concrete—Filled Steel Tube(CFST) [C]. Proc. of 2nd International Symposium on Civil Infrastructure Systems. Hong Kong, China, Dec.1996,9-12.
    [24]Matsui C. Strength and behavior of frame with concrete filled square Steel tubular columns under earthquake loading[C]. Proceedings of the International Specialty Conference on Concrete Filled Steel Tubular Structures,1985,104-111.
    [25]Han L H, Yang Y F. Influence of Concrete compaction on behavior of concrete filled steel tubes with rectangular sections[J]. Advances in Structural Engineering-An International Journal 2001,4(2): 93-100.
    [26]吕天启,赵国藩.内(圆)钢管增强方钢管混凝土偏压柱极限承载力分析数值方法[J].大连理工大学学报,2001,41(5):612-616.
    [27]赵大洲.钢骨-钢管高强混凝土组合柱力学性能的研究[D].大连:大连理工大学,2003.
    [28]蔡绍怀,焦占拴.复式钢管混凝土柱的基本性能和承载力计算[J].建筑结构学报,1997,18(6):20-25.
    [29]张春梅,阴毅,周云.双钢管高强混凝土柱轴压承载力的试验研究[J].广州大学学报(自然科学版),2004,3(1):61-65.
    [30]顾威,赵颖华,尚东伟.CFRP钢管混凝土轴压短柱承载力分析[J].工程力学,2006,23(1):149-153
    [31]江韩.轴心受压双钢管混凝土短柱的理论分析[D].南京:东南大学,2008.
    [32]李国祥,程文漾.双层钢管混凝土短柱轴心受压承载力的试验研究[C].第15届全国结构工程学术会议论文集(No.Ⅱ),2006.
    [33]裴万吉.复式钢管混凝土柱力学性能分析[D].西安:长安大学,2005.
    [34]王清湘,朱美春,冯秀峰.型钢-方钢管自密实混凝土轴压短柱受力性能的试验研究[J].建筑结构学报,2005,26(4):27-31.
    [35]邓远征.钢骨-钢管混凝土轴压短柱承载力和组合刚度研究[D].大连:大连理工大学,2005.
    [36]朱美春.钢骨-方钢管自密实高强混凝土轴压柱力学性能研究[D].大连:大连理工大学,2005.
    [37]顾威.圆截面CFRP-钢复合管混凝土轴压短柱试验研究[J].沈阳建筑大学学报(自然科学版),2004,20(2):118-120.
    [38]李帼昌,麻丽等.内置CFRP圆管的方钢管高强混凝土轴压短柱承载力计算初探[J].沈阳建筑大学学报(自然科学版),2008,24(1):62-66.
    [39]王志浩,成戎.复合方钢管混凝土短柱的轴压承载力[J].清华大学学报(自然科学版),2005,45(12):1596-1599.
    [40]黄宏,陶忠,韩林海.圆中空夹层钢管混凝土柱轴压工作机理研究[J].工业建筑,2006,36(11):11-14.
    [41]Zhao X. L., Grzebieta R. H., Elchalakani M.. Tests of concrete-filled double skin circular hollow sections[C]. Proceedings of the First International Conference on Steel and Composite Structures, Pusan, Korea,283-290,2001.
    [42]Xiao-Ling ZHAO, Raphael Grzebieta. Strength and Ductility of Concrete Filled Double Skin (SHS Inner and SHS Outer) tubes[J]. Thin-Walled Structures,2002,40:199-213.
    [43]杨俊杰,徐汉勇,彭国军.八边形中空夹层钢管混凝土轴压短柱力学性能的研究[J].土木工程学报,2004,37(10):33-38.
    [44]S. Wei, S. T. Mau, C. Vipulanandan, S. K. Mantrala. Performance of New Sandwich Tube under Axial Loading:Experiment [J]. Journal of Structural Engineering,1995,121(12):1806-1814.
    [45]冯九斌,钢管高强混凝土轴压性能及强度承载力研究[D].哈尔滨:哈尔滨建筑大学,1995.
    [46]Stephen P, Schneider Associate Member, ASCE. Axially Loaded Concrete—Filled Steel Tubes[J]. Journal of Structural Engineering.1998(10):1125-1137
    [47]Eurocode 4, Design of Steel and Concrete, Part.1 General Rules and Rule doe Building[S].
    [48]DB29-57-2003天津市工程建设标准[S].
    [49]Load and Resistance Factor Design Specification for Structural Steel Buildings[S]. American Institute of Steel Construction, INC,1999.
    [50]JGJ 138-2001J 130-2001中华人民共和国行业标准,型钢混凝土组合结构技术规程[S].
    [51]GJB4142-2000中华人民共和国国家军用标准[S].
    [52]DBJ 13-51-2003钢管混凝土结构技术规程[S].
    [53]DL/T5085-1999中华人民共和国电力行业标准[S].
    [54]钟善桐.钢管混凝土统一理论——研究与应用[M].北京:清华大学出版社,2006.
    [55]赵均海.强度理论及工程应用[M].北京:科学出版社,2003.
    [56]Yu Mao-Hong. Unified strength theory and its applications[M]. Berlin, Heidelberg:Springer,2004.
    [57]俞茂宏.混凝土强度理论及其应用[M].北京:高等教育出版社,2002.
    [58]W. Z. Zhang and B. M. Shahrooz. Strength of Short and Long Concrete-Filled Tubular Columns[J]. ACI Structural Journal.1999.96(2):230-238.
    [59]H. Shakir-Khalil and A.AI-Rawdan. Experimental Behaviour and Numerical Modeling of Concrete-Filled Rectangular Hollow Section Tubular Columns [C]. Proceedings of the Engineering Foundation Conference, ASCE. New York, NY, USA,1997:222-235.
    [60]Malvar L J, Kenneth B M, John E C.. Numerical modeling of concrete confined by fiber-reinforced composites[J]. J. Compos. Constr.,2004.8(4):315-322.
    [61]周天华.方钢管混凝土柱-钢梁框架节点抗震性能及承载力分析[D].西安:西安建筑科技大学,2004.
    [62]方小丹,李少云,钱稼茹,等.钢管混凝土柱-环梁节点抗震性能的试验研究[J].建筑结构学报,2002,23(6):10-18.
    [63]刘志斌,钟善桐.钢管混凝土柱钢筋混凝土双梁节点的刚性研究[J].哈尔滨建筑大学学报,2001,34(4):26-29.
    [64]YOKOYAMA Y, MORITA K, KAWAMATA Y, et al. Structural behavior of steel—beam to concrete —filled square tube column connections reinforced with inner ring stiffener[C]. Proceedings of the third International Conference on Steel—Concrete Composite Structures,1991,165-170.
    [65]OH Y S, SHIN K J, MOON T S. Test of concrete-filled box column to H-beam connections[C]. Proceedings of Fifth Pacific Structural Steel Conference,1998,881-886.
    [66]黄霭明.钢筋混凝土环梁节点对钢管混凝土柱承载能力影响的研究[D].广州:华南理工大学,1999.
    [67]曲慧,陶忠,韩林海.CFST柱—RC梁钢筋环绕式节点抗震性能试验[J].工业建筑,2006(11):26-31
    [68]王再峰.钢管约束混凝土柱—钢筋混凝土梁节点滞回性能试验研究[D].福州:福州大学,2006.
    [69]陈洪涛,吴时适,肖永福,等.钢管混凝土框架钢筋贯通式刚性节点的实验研究[J].哈尔滨建筑大学学报,1999,32(2):21-25.
    [70]杨润强.低周反复荷载作用下钢管混凝土环梁节点试验研究[D].广州:华南理工大学,1999.
    [71]宋欣.钢管混凝土柱环梁节点设计方法研究[D].广州:华南理工大学,2000.
    [72]蔡健,黄泰贇.钢管混凝土柱节点的应用现状和存在问题[J].建筑结构,2001,31(7):8-10.
    [73]Cheng C T, Hwang P S, Lu L Y, Chung L Y. Connection behavior of steel beam to concrete-filled circular steel tubes[C]. Proceeding of 6th ASCCS Conference, Los Angeles, USA,2000,581-589.
    [74]钟善桐.钢管混凝土的刚度分析[J].哈尔滨建筑大学学报,1999,32(3):13-18.
    [75]Zhong Shantong. The comparison of the composite rigidities with the conversion rigidities for CFST members[C]. Proceedings of 6th ASCCS Conference, Los Angeles,2000,22-24.
    [76]马桂军,刘海霞,庞静.钢管混凝土拱桥拱肋刚度计算取值分析[J].东北林业大学学报,2004(5):39-40.
    [77]夏桂云,曾庆元,李传习.钢管混凝土结构抗压刚度[J].长沙交通学院学报,2003,19(1):34-38.
    [78]徐芝伦.弹性力学(第4版)[M].北京:高等教育出版社,2006.
    [79]谢肖礼.圣维南原理在钢管混凝土拱桥分析中的应用[J].中国公路学报,2001,14(2):33-35.
    [80]Yagishita F, Kitoh H, Sugimoto M, Tanihira T, Sonoda K. Double-skin composite tubular columns subjected cyclic horizontal force and constant axial force[C]. Proceedings of the Sixth ASCCS Conference, Los Angeles, USA, March 22-24.2000:497-503.
    [81]陶忠,韩林海,黄宏.圆中空夹层钢管混凝土柱力学性能的研究[J].土木工程学报,2004,37(10):41-51.
    [82]黄平明.受箍混凝土力学机理的研究[J].华东公路,2002,122(1):26-29.
    [83]徐芝纶.弹性力学[M].北京:人民教育出版社,1982.
    [84]黄平明,张征文.内填式钢管混凝土构件受箍机理分析[J].西安公路交通大学学报,2001,21(4):43-45.
    [85]William T Segui. LRFD Steel Design (Second Edition) [S]. California:Books/Code Publishing Company,1998.
    [86]董洪晶.钢管混凝土拱结构力学性能和桁拱计算方法研究[D].西安:长安大学,2003.
    [87]江见鲸.钢管混凝土结构非线性有限元分析[M].陕西科学技术出版社,1998.
    [88]钟善洞,王用纯.关于轴心受压钢管混凝土构件的工作性能和承载力计算的探讨[J].哈尔滨建筑工程学院学报,1978,18(1):1-33
    [89]钟善桐,王用纯.国产建筑钢材弹塑性阶段工作性能和泊桑比的试验研究[J].哈尔滨建筑工程学院学报,1979(1):18-30.
    [90]蒋咏秋,穆霞英.塑性力学基础[M].北京:机械工业出版社,1981.
    [91]王仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1998.
    [92]蒋家奋,汤关祚.三向应力混凝土[M].北京:中国铁道出版社,1988.
    [93]潘友光.钢管混凝土受弯构件承载力研究[J].哈尔滨建筑工程学院学报,1990(2):41-49.
    [94]Sugimoto M, Yokota S, Sonoda K, Yagishita F. A basic consideration on double skin tube-concrete composite columns[C]. Osaka City University and Monash University Joint Seminar on Composite Tubular Structures, Osaka, July,1997.
    [95]MANDER J B, PRIESTLEYM J N, PARK R. Theoretical stress-strain model for confined concrete [J]. J. Struct. Eng.,1988,114(8):1804-1826.
    [96]Cusson D, Paultre P. Stress-strain model for confine high-strength concrete[J]. Journal of Structural Engineering,ASCE,1995,121(3):468-477.
    [97]江韩,储良成等.轴心受压双钢管混凝土短柱正截面受压承载力理论分析及试验研究[J].建筑结构学报,2008(8):29-38.
    [98]苗若愚.应用塑性理论确定钢管混凝土轴压短柱的极限承载力[J].哈尔滨建筑工程学院学报,1982(2):40-54.
    [99]Chaalal O, Shahawy M. Performance of fiber-reinforced polymer:wrapped reinforced concrete column under combined axial flexural loading[J]. ACI Structure Journal,2000,97(4):659-668.
    [100]陈洪涛.各种截面钢管混凝土轴压短柱基本性能连续性的理论研究[D].哈尔滨:哈尔滨工业大学,2001.
    [101]张玉芬,赵均海,李小伟.基于统一理论的复式钢管混凝土轴压承载力计算[J].西安建筑科技大学学报(自然科学版),2009,41(1):41-46.
    [102]张志权,张玉芬,赵均海.型钢增强钢管混凝土柱的轴压承载力计算[J].江南大学学报,2009,8(03):323-326.
    [103]黄明奎,李斌,闻洋.约束效应系数对钢管混凝土构件力学性能影响分析[J].重庆建筑大学学报,2008,30(2):90-93.
    [104]李斌,黄明奎.钢管混凝土约束效应系数研究[J].包头钢铁学院学报,2002,21(1):73-76.
    [105]Han Linhai, Yao Guohuang, Chen Zhipo, et al. Experimental Behavior of Steel Tube Confined Concrete (STCC) Columns[J]. Steel and Composite Structures-An International Journal,2005,5(6): 459-484.
    [106]KENJ I S, HIRO YU KI N, SHOSU KE M, et al. Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns [J]. Journal of Structural Engineering,2004,130(2):180-188.
    [107]李飞.钢管混凝土柱的可靠度与优化分析[D].西安:西安理工大学,2008.
    [108]李小伟,赵均海.方钢管混凝土轴压短柱的力学性能[J].中国公路学报2006(4):77-81
    [109]KENJ I S, HIRO YU KI N, SHOSU KE M, etal. Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns [J]. Journal of Structural Engineering,2004,130(2):180-188.
    [110]黄宏,张安哥.方中空夹层钢管混凝土轴压构件的试验研究[J].铁道建筑,2007(5):10-12.
    [111]陶忠,韩林海,黄宏.圆中空夹层钢管混凝土柱力学性能研究[J].土木工程学报,2004,37(10):41-51.
    [112]K. Newman, J. B. Newman. Failure Theories and Design Criteria for Plain Concrete[J]. Structure Solid Mechanics and Engineering. Design, Proc, London, Wiley Inter Seience,1971.
    [113]潘友光.混凝土强度理论及在钢管混凝土中的应用[J].哈尔滨建筑工程学院学报,1989(3):48-57.
    [114]钱在兹,张自坚.混凝土三向应力破坏的椭圆抛物面准则[C].约束与普通混凝土强度理论及应用会议论文集,烟台,1987.
    [115]S. H. Ahmad, S. P. Shah. Complete Triaxial Stress-Strain Curves for Concrete[J]. J. of the Structural Division, Apr.,1982.
    [116]蔡绍怀,钢管混凝土结构极限分析[R].中国建筑科学研究院结构所,1988.
    [117]Xu Jishan. The Triaxial Behavior of Concrete and Its Application to concrete Filled Steel Tube, Proc. of The International Specialty Conference on Concrete Filled Steel Tubular Structures, Harbin, China, Aug.1985.
    [118]Kenji Sakino, Yan Xiao and Masahide Tomii. Elastic-Plastic Behavior of Concrete Confined in Circular Steel Tube or Spiral Reinforcement[C]. Proc. of The International Specialty Conference on Concrete Filled Steel Tubular Structures(Including Composite Beams), Harbin, China, Aug.1985.
    [119]Ottosen, N. S. A. Failure Criterion for Concrete[J]. J. of Engineering Mechanics, ASCE, Vol.103, Aug.1977.
    [120]顾威.CFRP钢管混凝土柱的力学性能研究[D].大连:大连海事大学,2007.
    [121]Amir Z F, Sami H R. Confinement model for axially loaded concrete confined by Circular FRP tubes[J]:Structure Journal,2001,98(4):451-461.
    [122]蔡邵怀.钢管混凝土结构的计算与应用[M].北京:中国建筑工业出版社,1989.
    [123]潘友光.钢管混凝土中核心混凝土本构关系的研究[J].哈尔滨建筑工程学院学报1989(1):37-47.
    [124]王仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社.1998.
    [125]Razvi S R, Saatcioglu M. Confinement model for high-strength concrete[J]. Journal of Structural Engineering, ASCE,1999,125(3):281-289.
    [126]赵大洲.钢骨-钢管高强混凝土组合柱力学性能的研究[D].大连:大连理工大学,2003.
    [127]蒋家奋,汤关柞.混凝土宏观变形特征与强度的关系[J].混凝土,1989(05):9-17.
    [128]余勇,吕西林.三向受压混凝土的三维本构关系[J].同济大学学报,1998,26(6):622-626.
    [129]Richart F. E., Brandtzaeg A., Brown R. L.. A Study of the Failure of Concrete under Combined Compressive Stresses [J]. Bulletin No.185, University of Illinois, Engineering Experimental Station, Urbana, Illinois, USA, November,1928,104.
    [130]苗若愚.钢管混凝土短柱轴压变形机理及破坏荷载定义的探讨_钢管混凝土轴压短柱试验研究之—[J].哈尔滨建筑大学学报,1984(2):13-24.
    [131]钟善桐.从本构关系研究钢管混凝土工作性能的新成果[J].钢结构,1992(3):4-15.
    [132]黄明奎,汪稔,李斌,等.钢管混凝土变形性能的敏感性因素分析[J].昆明理工大学学报(理工版)2004,29(4):401-404.
    [133]付美.CFRP钢管混凝土构件力学性能分析[D].大连:大连海事大学,2008.
    [134]张春梅,阴毅,周云.影响钢管混凝土柱轴压承载力的因素分析[J].工业建筑.2004,34(10):66-68
    [135]W. F. Yuan, K. H. Tan, Y. F. Zhang. A Simple Model used in Optimum Design of Concrete-Filled Twin Steel Tubular Column[C]. Proceeding of the 6th International Conference on Advances in Steel Structures, Hong Kong,16-18, December,2009:514-519.
    [136]吕天启,赵国藩.内(圆)钢管增强方钢管混凝土偏压柱极限承载力分析数值方法.大连理工大学学报.2001,41(5):612-616.
    [137]KENJ I S, HIRO YU KI N, SHOSU KE M, et al. Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns [J]. Journal of Structural Engineering,2004,130(2):180-188.
    [138]韩林海.钢管混凝土结构—理论与实践[M].北京:科学出版社,2004.
    [139]吕西林,余勇等.轴心受压方钢管混凝土柱的性能研究:Ⅰ试验[J].建筑结构,1999(10):41-43.
    [140]朱美春.钢骨-方钢管自密实高强混凝土轴压柱力学性能研究[D].大连:大连理工大学,2005.
    [141]ZHAO Yinghua, GU Wei, WANG Qingli. Experimental study on the compressive strength of concrete filled CFRP-steel columns[J]. The Sixth China-Japan-US conference on Composite Material (CJAJCC-6), Chongqing, China 21-23 Jan,2004,7-11.
    [142]]Foley, Christopher M, Lueas, Kravanja. Optimal selection and design of composite steel floor systems considering vibration[J]. American Society of Civil Engineers,2004,1445-1459.
    [143]过镇海.混凝土的强度和变形—试验基础和本构关系[M].北京:清华大学出版社,1997.
    [144]陈庆军,蔡健,林遥明.柱钢管不直通的新型钢管混凝土柱-梁节点(Ⅱ)—轴压下采用环形钢筋加强钢管不直通的节点区的性能[J].华南理工大学学报(自然科学版),2002,30(12):58-61.
    [145]Jianguo Nie, Yu Bai, C. S. Cai. New Connection System for Confined Concrete Columns and Beams. Ⅰ:Experimental Study[J]. J. Struct. Eng.2008,134(12):1787-1799
    [146]徐刚.节点区柱钢管不连通式钢管混凝土柱-梁节点的试验研究[D].广州:华南理工大学,2006
    [147]柏宇.分层钢管混凝土芯柱及其节点的试验研究[D].北京:清华大学,2004.
    [148]GB 50010-2002混凝土结构设计规范[S].
    [149]GB 50011-2001建筑抗震设计规范[S].
    [150]Hawkins N M. The bearing capacity of concrete loaded through rigid plates[J]. Magazine of Concrete Research,1968,20(62):31-40.
    [151]蔡绍怀.混凝土及配筋混凝土局部承压强度[J].土木工程学报,1963,6:1-10.
    [152]GB/T228-2002金属材料室温拉伸试验方法[S].
    [153]JGJ 101-96建筑抗震试验方法规程[S].
    [154]Yousef MAlostaz, StephenP Schoeider. Analytical Behavior of Connections to Concrete filled-Steel Tubes[J]. Journalof Constructional Steel Research,1996,40(2):95-127.
    [155]Stephen P Schneider, Yousef M Alostaz. Experimental Behavior of Connections to Concrete-Filled Steel Tubes[J]. Journal of Constructional Steel Research,1998,45(3):321-352.
    [156]JBeutel, Dthambiratnam, N Perera. Cyclic behaviour of concrete filled-steel tubular column to steel beam connections[J]. Journal of Engineering,2002,24(1):29-38.
    [157]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [158]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47-51
    [159]Ahmed Elremally, Atorod Azizinamini. Experimental behavior of steel beam to CFT column connections[J]. Journal of Constructional Steel Research,2001,57(10):1099-1119.
    [160]Ahmad S H, Shah S P. Stress-strain curves of concrete confined by spiral reinforcement[J]. ACI Journal,1982,79(6):484-490.
    [161]Sheikh S A, Uzumeri. Strength and ductility of tied concrete columns[J]. Journal of Structural Engineering, ASCE,1982,106(5):1079-1102.
    [162]苏明周.箱形截面钢构件在地震作用下的相关屈曲破坏机理及抗震设计对策[D],西安:西安建筑科技大学,1999.
    [163]唐九如.钢筋混凝土框架节点抗震[M].南京:东南大学出版社1989.
    [164]Youssef Belmouen, Pierino Lestuzzi. Analytical mode for Predicting nonlinear reversed cyclic behavior of reinforced concrete structural walls[J]. Engineering structures,2007,29:1263-1276.
    [165]郭子雄,吕西林.高轴压比下RC框架柱恢复力模型试验研究[J].土木工程学报,2004,37(5):32-38.
    [166]张国军,吕西林,刘伯权.高强混凝土框架柱的恢复力模型研究[J].工程力学,2004,24(3):83-90.
    [167]Paulay, T. and Priesiey, M. J. N. Seismic Design of Reinforced Concrete and Masonry Buildings[M]. New York:John Wiley & Sons, INC,1992.
    [168]韩林海,冯九斌.混凝土的本构关系模型及其在钢管混凝土数值分析中的应用[J].哈尔滨建筑大学学报,1995,28(5):26-32.
    [169][美]陈惠发.土木工程材料的本构方程(第二卷,塑性与建模)[M].武汉:华中科技大学出版社,2001.
    [170]陆新征,江见鲸.用ANSYS Solid65单元分析混凝土组合构件复杂应力[J].建筑结构,2003,33(6):22-24.
    [171]ANSYS基本过程手册[S].美国ANSYS公司北京办事处,2000.
    [172]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [173]杨勇,郭子雄,聂建国,等.型钢混凝土结构ANSYS数值模拟技术研究[J].工程力学,2006,23(4):79-86.
    [174]博弈创作室.ANSYS 9.0经典产品基础教程与实例详解[M].北京:中国水利水电出版社,2006
    [175]李皓月,周田朋,刘相新.ANSYS工程计算应用教程[M].中国铁道出版社,2003.
    [176]郝文化.ANSYS在土木工程中应用实例[M].中国水利水电出版社,2005.
    [177]LAU Kin-tak, CHAN Chi-chiu, ZHOU Li-min et al. Strain monitoring in composite strengthened concrete structures using optical fiber sensors [J]. Composite:Part B,2001, (32):33-45.
    [178]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1993.
    [179]A Elremaily, Atorod Azizinamini. Design provisions for connections between steel beams and concrete filled tube columns[J]. Journal of Constructional Steel Research,2001,57(9):971-995.
    [180]凌育洪,宋欣.实用可靠的钢管混凝土柱环梁节点[J].哈尔滨工业大学学报,2004,36(10):1378-1381.
    [181]方小丹,李少云,钱稼茹,等.钢管混凝土柱-环梁节点抗震性能的试验研究[J].建筑结构学报,2002,23(6):10-18.
    [182]宋欣.钢管混凝土柱环梁节点设计方法研究[D].广州:华南理工大学,2000.
    [183]吕西林,李学平.方钢管混凝土结构应用技术研究[J].建筑施工,2000,22(3):48-54.
    [184]李学平,吕西林.方钢管混凝土柱外置式环梁节点的联结面抗剪研究[J].同济大学学报,2002,30(1):11-17.
    [185]陈庆军,蔡健,林遥明.柱钢管不直通的新型钢管混凝土柱梁节点(Ⅰ)—轴压下采用钢筋网加强钢管不直通的节点区的性能[J].华南理工大学学报(自然科学版),2002,30(9):91-95.
    [186]Hajjar J F, Schiller P H, Molodan A. A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip[J]. Engineering Structure,1998,20(8):663-676.
    [187]Fukumoto T, Morita K. Elasto plastic behavior of steel beam to square concrete filled steel tube(CFT)column connections [A]. Xiao Y, Mahin S A. Composite and Hybrid Structures[C]. Los Angeles, Association for International Cooperation and Research in Steel-Concrete Composite Structures,2000,565-572.
    [188]Fujimoto T, Inai E, Kai M. Behavior beam-to-column connection of column system[C]. The 12th WCEE,2000,2197:1-8.
    [189]Bai Y., Nie J.G., Cai C. S.. New connection system for confined concrete column and beams. Ⅱ: Theoretical modeling. J. Struct. Eng,2008,134(12):1800-1809.
    [190]吕西林,李学平.2003.方钢管混凝土柱外置式环梁节点的试验及设计方法的研究[J].建筑结构学报,24(1):7-13.
    [191]梁剑,蔡健,姚大鑫,陈庆军.一种新型钢管混凝土梁柱节点试验研究—RC楼层间钢管非直通型节点[J].华南理工大学学报(自然科学版),2002,30(10):79-83.
    [192]赵鸿铁,杨勇,薛建阳.型钢混凝土柱粘结滑移性能及基本问题[J].力学进展,2003,31(1):74-86.