附加荷载作用下土层锚杆受力特性及病害机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锚杆技术广泛应用于边坡加固、斜坡稳定、深基坑支护、结构加固和硐室稳定等工程中。锚杆的使用状态随着环境的作用和变迁发生着各种变化,如预应力的损失、浆体和钢筋体的腐蚀、断裂等,这些病害极大影响锚杆的工作状态。对锚杆工程进行病害调查、病害机理研究、准确掌握在役锚杆是否处于有效的工作状态是一项十分重要的工作。通过模型试验、数值模拟和理论分析,着重研究了土层锚杆在附加荷载作用下的受力特性和破坏特征、界面脱粘机理、水作用下的受力特性及预应力损失规律、锈蚀及锈胀机理。主要内容如下:
     (1)通过全长粘结型锚杆在地面附加荷载作用下的模型试验,研究了土层锚杆的受力特性,试验结果表明:对于边坡内全长粘结型锚杆,滑坡体的下滑力首先作用于锚头和滑面处锚杆,然后通过锚杆和土体间的剪切作用向两侧传递;地面荷载在锚固系统内随时间的作用效果表现为“先增大,后降低”的规律,即地面附加荷载长时间作用对坡体的稳定有较大的影响,而瞬间作用对坡体的稳定性影响较小;坡体内全长粘结型锚杆是一种以受拉为主的“拉弯复合构件”,即在地面附加荷载作用下,中上层锚杆表现为滑面外侧受拉而滑面内侧受弯,下层锚杆则表现为整体受拉状态。
     (2)通过集中锚固型锚杆模型试验得出,压力型锚杆的抗滑性能优于拉力型锚杆,在同一坡体内,前者分担的荷载是后者的1.5~2倍左右。在荷载作用过程中,锚杆的受力都会随时间进行调整,坡顶受力逐渐变小,坡底受力逐渐增大。当地面附加荷载与水耦合作用时,滑坡体的范围扩大,锚杆的受力由整体受拉逐渐转变为整体受弯,且上层锚杆的受弯作用最大。
     (3)在全长粘结型锚杆试验的基础上建立了锚杆的有限元分析模型,计算得出了各层锚杆在有无地面附加荷载作用下的受力特性。结果表明:无地面附加荷载时,锚杆的受力主要来自于土体自重;当附加荷载作用时,坡体内的应力分布受附加荷载的支配,随附加荷载的增加,整个锚固系统的受力重心逐渐由下层锚杆向上转移,且中间锚杆的作用最大。
     (4)采用拉拔试验,分析了土体含水量对土层锚杆极限抗拔力的影响以及预应力损失规律,结果表明:土体含水量越大,锚杆极限抗拔力越小;含水量的突然增大,会使得基本稳定的预应力陡然剧增,然后继续降低。
     (5)应用Stang理论,建立了土层锚杆灌浆体与土体界面脱粘的计算模型,推出了土层锚杆灌浆体与土体界面脱粘的理论判据。当锚杆所受的拉力达到临界荷载时,锚固段外端的剪切力也达到临界值,此处界面开裂,发生脱粘现象;之后,最大剪应力随着裂纹的扩展向锚固段远端转移;最后整体发生脱粘,锚固体被拔出。临界荷载与界面粘结强度、剪切模量、锚固体的弹性模量、截面积以及长度有关。
     (6)根据Phillips公式,提出了锚杆杆体与灌浆体界面脱粘的裂纹扩展理论。认为,与完整的锚固体相比,开裂锚固体的脱粘速度要大的多;而且,当其中一段或多段独立的锚固体单元发生完全脱粘时,其与土体间相互作用的长度也相应减小,所以极限抗拔力会大大减小。
     (7)通过分析土层锚杆的界面特征,提出了杆体与灌浆体界面脱粘的软化边界层理论。对于变形钢筋,当胶着力破坏后,杆体与灌浆体发生相对滑动,肋的斜向挤压力对灌浆体会产生楔的作用,不仅使灌浆体被挤碎,同时使外围灌浆体出现内部斜裂缝及径向裂缝。随着荷载的增大,裂缝逐渐向纵向及外围发展。当径向裂缝向纵深发展并与斜裂缝相交时,该范围内灌浆体抗剪强度则会极大降低,在杆体周围形成一个软化边界层。软化边界层的出现使滑动显著增大,导致钢筋与灌浆体界面的粘结退化。
     (8)根据钢筋锈蚀原理,通过分析土层锚杆的工作环境,得出无腐蚀环境中锚杆钢筋锈蚀原因,主要有空浆或少浆、砂浆密度不均匀、锚固体产生裂缝、杆体弯曲与孔壁接触等。应用弹性力学理论,推导出钢筋锈蚀导致砂浆开裂的临界条件。
     论文通过试验,并结合数值分析,对附加荷载作用下土层锚杆的受力特性进行了研究,对土层锚杆界面脱粘、锈蚀以及水的作用等典型病害机理进行了分析,此研究成果可供公路边坡及基坑工程乃至其它岩土锚固工程设计、施工以及病害分析与防治参考,是确保锚固工程安全可靠的重要理论。
Bolt is widely used in such engineerings as slope reinforcement, slope stability, deep foundation pit supporting, structural strengtherning, chamber stability, et al.. With different effects and transition of environment, however, the use status of the bolt produces change subsequently, such as prestress loss, corrosion and rupture of slurry and steel etc., and these diseases have great impact on on bolt’s work status. So, it is rather important work to investigate the defects of bolt engineering, research the mechaniim of the defect and analyze the in-service bolt’s work status. In this paper, according to the results from model test, numerical simulation and theoretical analysis, the force characteristics and breakage feature of the anchored bar in soil under imposed load is studied, the interface disbondment mechanics is analyzed, as well as the force characteristics under the effect of water, the loss law of prestress, and the mechanism of rusting and corrosive expanding are discussied.The following contributions have been made:
     1. For the full bonded anchor in the slope, the downsliding force firstly loads on the anchor head and the part of anchor at slide face, and then transfers to both sides along the anchor due to shearing action between anchor and soil. The long-term effect of ground load has great influence on the slope stability, and the effect in a very short time is less. A full bonding anchor in slop is a tension and flexural composite member, and tension is the main.
     2. In the same slope, the antislip behavious of pressure-type anchor is stronger than that one of tensile-type, and the load shared by the former is about 1.5 to 2.0 times as much as that one of the latter. During the course of loading, with increasing time the force loaded on the upper anchor gradyally decreases, and that one loaded on the lower anchor increases. Under the coupling action between additional load from ground and water, the extent of sliding mass enlarges, the whole stress state of anchor gradually changes from tension to bend, and the compact-bending effect on the upper anchor is most obvious.
     3. Based on the model test results of the full bonded anchor, the finite element analysis model of anchor was established. The computing results show that without additional load the stress of anchor mainly results from dead- weight of soil; when the additional load gradually increases, the gravity center of stress on the bolt reinforcement system slowly shifts from lower to upper anchor, and the maximum stress occurs on the the middle part of anchor.
     4. The results of pull-out test show that the ultimate pull-out resistance is getting smaller with increasing water content, and the sudden increase of water content causes the pre-stress sudden increase in a short time, and then decrease again.
     5. Using Stang’s theory, a calculation model of grouting mass on anchored bar in soil and soil interface debonding is set up. The criterion about grouting mass of anchored bar in soil and soil interface debonding is reduced in the paper. The results show that when the tensile stress of anchor reaches the ctitical value, the shearing force also reaches the ctitical one on anchorage zone out end with cracking interface, and then the maximal shearing stress changes to the anchorage zone out end with crack propagation, and finally the whole anchorage system debonds, the bolted mass is extracted.
     6. According to Phillips formula, the crack expansion theory of interface debonding of lanchor grouting mass is put forward. The analysis shows that the debonding velocity of anchor interface with cracks is more quickly than that one of a perfect interface, and when one or more individual anchor element appears to be total debonding, the ultimate pullout capacity significantly reduces because of the decrease of interaction length between the anchor and the soil.
     7. According to interface characteristics of the anchored bar in soil, the soften boundary later theory of interfacial debonding between the rod and grouting mass is proposed. For deformed bars, the relative slip occurs between the rod and grouting mass after the adhension is destroied, the oblique extruding force of rib causes wedging action for grouting mass, which makes the grouting mass crushed, and induces diagonal and radial cracks in the grouting mass. Those cracks developes to longitudinal direction and surrounding with increasing load, which results in the decreas in shearing strength of the grouting mass, a soften boundary layer surrounding the rod is formed. In this state, the bonding between steel bar and grouting mass will be degenerated.
     8. On the basis of steel corrosion principle, the different working environments of anchor are analyzed. In a no corrosive environment, the main rusting reasons of reinforced bar are no or little mortar, uneven mortar density, cracks in anchoring section, bended bolt-bar, et al.. The critical condition of corrosion expansion crack is suggested according to elasticity theory.
引文
[1]程良奎,范景伦,韩军等.岩土锚固.北京:中国建筑工业出版社,2003
    [2] Phillips S H E. Factors affecting the design of anchorages in rocs. London: Cementation Research Ltd.,1970
    [3]汤康民主编.岩土工程.武汉:武汉工业大学出版社,2001,6
    [4]梁炯鉴主编.锚固与注浆技术手册.北京:中国电力出版社,1999
    [5]徐年丰,陈胜宏.我国预应力锚索加固技术的发展与存在的问题.水利水电快报,2001,2 (10)
    [6]方从严,卓家寿.锚固加固机理的试验研究现状.河海大学学报,2005,3(6)
    [7]肖世国,周培德.非全长粘结刑锚索锚固段长度的一种确定方法.岩石力学与工程学报,2004, 23 ( 9):1530-1534
    [8]顾金才,沈俊,陈安敏,明治清.锚索预应力在岩体内引起的应变状态模型试验研究.岩石力学与工程,2000,19(增):917-921
    [9]曹国金,姜弘道,熊红梅.一种确定拉力型锚杆支护长度的方法.岩石力学与工程学报, 2003,22(7):1124-1145
    [10]尤春安.锚固系统应力传递机理理论及应用研究[学位论文].泰安:山东科技大学. 2004
    [11]吴璋.黄土地层预应力锚杆(索)锚固机理的研究[学位论文].北京:煤炭科学研究总院. 2005
    [12] [英] T H.汉纳著.胡定等译.锚固技术在岩土工程中的应用.北京:中国建筑工业出版社,1986
    [13]张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型.岩土工程学报, 2002, 24(2):188-192
    [14]张洁.桩基及锚固工程的分析计算方法研究[学位论文].杭州:浙江大学,2005
    [15]尤春安.全长粘结式锚杆受力分析.岩石力学与工程学报,2000,19(3):339-341
    [16]朱训国,关洪峰.预应力锚索锚固段粘结破坏本构模型研究.大连大学学报, 2007, 28(6):20-26
    [17]杨双锁,康力勋.锚杆作用机理及不同锚固方式的力学特征.太原理工大学学报, 2003,34(5):540-543
    [18]朱浮声,郑雨天.全长粘结式锚杆的加固作用分析.岩石力学与工程学报, 1999(增):1105-1109
    [19]夏柏如,谢建清,王贵和编.岩上锚固技术与支挡工程.北京:中国地质大学,1997.10.
    [20]蒋忠信.拉力型锚索锚固段剪应力分布的高斯曲线模式.岩石力学与工程学报, 2001,23( 6):659-662
    [21]朱玉,卫军,廖朝华.确定预应力锚索锚固长度的符合幕函数模型法,武汉理工大学学报,2005,27(8):60-63
    [22]程良奎,胡建林.土层锚杆的几个力学问题.中国岩土锚固工程协会编.岩土工程中的锚固技术.北京:人民交通出版社,1996
    [23]范秋雁,陈波,沈冰.考虑施工过程的基坑锚杆支护模型试验研究.岩土力学, 2005, 26(12):1874-1878
    [24]何思明.预应力锚索作用机理研究[学位论文].西南交通大学,2004
    [25] lutz L. Gergeley p. Mechanics of band and slip of deformed bars in concrete[J],Journal of American Concrete Institute.1967,64(11):711-721
    [26] Hansor,N.W.Influence of surface roughness of prestressing strand on band performance[J], Journal of Prestressed Concrete Institute.1969,14(1):32-45
    [27] Goto, Y., Cracks formed in concrete around deformed tension bars[J],Journal of American Concrete Institute, 1971, 68 (4): 244-251.
    [28] R. M. Mains. Measurement of the distribution of tensile andbond stresses along reinforcing bars. ACI Journal,1951:4-37
    [29]大冢浩司,后藤幸正.脆性无机质结合素材と弹性骨格素材との界面近傍にみけゎ复合机构にっぃて特定研究.复合材料,昭和48年(公元1974)11月:l22-124
    [30] J. M. PIowman. The measurement of bond strength. RILEM Symposium,Stockholm, 1957:23-27.
    [31] Nison, A. H., Internal measurement of bond slip. ACI Journal, 1972,69(7):439-441
    [32] Mirza S M., Houde J. Study of bond stress-slip relationships in reinforced concrete. ACI Journal, Proceedibgs, 1979,76(1):19-46
    [33] T. P. Tassions.,E. G. Korones. Preliminary results of local bond-slip relationship by means of moire method. ALCAP-CEB Symposium Rome, 1979(5):143-146
    [34] Nakaba K, Todhiyuki K, Tomoki F et al. Bond behavior between fiber-reinforced polymer laminates and concrete. ACI Structural Journal, 2001,93(8):359-367
    [35]徐有邻,沈文都,汪洪.钢筋混凝土粘结锚固性能的试验研究.建筑结构学报, 1994,15(3):26-37
    [36]陈静,刘西拉.锈蚀钢筋混凝土构件粘结滑移本构模型.四川建筑科学研究, 2008, 34(4):1-7
    [37]赵羽习,金伟良.钢筋与混凝土粘结本构关系的试验研究,建筑结构学报, 2002(2): 32-37
    [38]洪小健.不同加载速度下锈蚀钢筋与混凝土粘结滑移试验研究[学位论文].上海:同济大学,2001
    [39]狄生林.钢筋混凝土梁的非线性有限元分析.东南大学学报(自然科学版),1984(2)
    [40]金芷生,朱万福,庞同和.钢筋与混凝土粘结性能试验研究.南京工学院学报, 1985, 15(2):73~85
    [41] Untrauer R E, Henry R L. Influence of normal pressure on bond strength. ACI Journal,Proceedings,1965,62(5):577-585
    [42] Ferguson P M, Thompson J N. Development length of high strength reinforing bars in bond. ACI Journal, Proceedings, 1962,59(7):887-922
    [43] Ferguson P M, Thompson J N. Development length for high strength reinforing bars. ACI Journal, Proceedings, 1965,62(1):71-94[35]
    [44] Naaman A E.,Najm H. Bond-sliP mechanisms of steeI fibers in concrete. ACI Material Journal,1991,2:135-145.
    [45] Muki R., Stermberg E. On the diffusion of load from atransverse tension bar into a semi-infinite elastic sheet, Journal of Applied Mechanics, 1968, 35:737-746
    [46] Muki R., Stermberg E. On the diffusion of an axial load from an infinite cylindrical bar embedded in an elastic medium, International Journal of Solid and Structure, 1969, 5:587-605
    [47] Muki R., Stermberg E. Elastostatic load-transfer to a half-space from a partially embedded axially loaded rod. International Journal of Solid and Structure, 1970, 5:59-90
    [48] Muki R., Stermberg E. Load-absoption by a discontinuous filament in a fiber-reinforced composite. Zeitschrift fur Angewandle Mathematik and Physik, 1971, 22:809-824
    [49] Luk V K., Keer L M. Stress analysis for an elastic half space containing an axially-loaded rigid cylindrical rod. International Journal of Solid and Structure, 1979, 15:805-827
    [50] Phan-Thien N. A contribution to the rigid fiber pull-out problem. Fibre SCI&Tech, 1980, 13:179-186
    [51] Phan-Thien N., Goh C J. On the fibre pull-out problem. Zeitschrift fur Angewandle Mathematik and Mechanik, 1981, 61:89-97
    [52] Bowling J., Groves G. W. The debonding and pull-out of ductile wires from a brittle matrix. Journal of Materials Science, 1979,14(2):431-442
    [53] CoxⅡL et al. elasticity and strength of paper and other fibrous materials. British Jouranl of Applied Physics, 1952,3:72-79
    [54] Gurney C, Hunt J. Quasi-static crack propagation. London:Phil. Trans. Royal Society,1967
    [55] Lawrence P J. Some theoretical considerations of fiber pull-out from an elastic matrix. J. Mater. Sci.,1972,7:1-6
    [56] Gray R.J. Analysis of the effect of embedded fibre length on fibre debonding and pull-out from an elastic matrix. Part 1:Review of theories. Journal of Materials Science, 1984, 19(3):861-870
    [57] Wang Y J, Li V C,Backer S. Modeling of fibre pull-out from a cement matrix. International Journal of Cement Composite and Lightweight Concrete,1988,10(3):143-149
    [58] Atkinson C, Avila J et al. The rod pull-out problem theory and experiment. J Mech Phy Solids, 1982,30(3)97-120
    [59] Namur G, Naaman A E. A bond stress model for fiber bond stress slip relationship. ACI Material Journal, 1989,86(1):45-57
    [60] Gao Y., Mai Y. and Cotterell B. Fracture of fiber-reinforced materials. Journal of Applied Mathematics and Physics, 198829(7):551-571
    [61] H. Stang, Z. Li, and S. P. Shah. Pullout problem: stress versus fracture mechanical approach. Journal of Engineering Mechanics, 1990,116(10):2136-2150
    [62] Li Z J., Mobasher B., Shah S P. Characterization of interfacial properties in fiber reinforced cementitious composites. Journal of American Ceramic Society, 1991,74(9):2156-2164
    [63] Leung C K. Li V C. Strenth-based and fracture-based approaches in the analysis of fibre debonding. Journal of Materials Science Letters, 1990,9:1140-1142
    [64] Naaman A E., Namur G G., Alwan J M. and Najm H S. Fiber pullout and bond slip.Ⅰ:Analytical study. Journal of Structural Engineering, 1991,117(9)2769-2790
    [65] Naaman A E., Namur G G., Alwan J M. and Najm H S. Fiber pullout and bond slip.Ⅱ:Experimental validation. Journal of Structural Engineering, 1991,117(9):2791-2800
    [66] Sastry A M.,Phoenix S L. and Schwartz P. Analysis of interfacial failure in a composite microbundle pull-out experiment. Composites Science and Technology, 1993,48(1-4):237-251
    [67] Li V C. and Chan Y W. Qetermination of interfacial debond mode for fiber-reinforced cementitious composites. Journal of Engineering Mechanics, 1994,120(4):707-719
    [68] Ouyang C., Pacios A and Shah S P. Pullout of inclined fibers from cementitious matrix. Journal of Engineering Mechanics, 1994,120(12):2641-2659
    [69] Sujivorakul C., Waas A M and Naaman A E. Pullout response of a smooth fiber with anend anchorage. Journal of Engineering Mechanics, 2000,126(9):986-993
    [70]顾震隆,严以牧.低模量单向纤维复合材料的纤维和基体之间的传力机制的实验研究.哈尔滨工业大学学报, 1981(03)
    [71]张汝光,许守勃.纤维增强复合材料的破坏准则.复合材料, 1980(06)
    [72]张汝光,许守勃.纤维增强复合材料的基体和界面控制破坏的强度理论.复合材料学报, Acta Materiae Compositae Sinica, 1985(04)
    [73]刘胜平,李萌,李滨耀.碳纤维增强PEK-C复合材料中纤维和基体间的界面研究.电机与控制学报, Electric Machines and Control, 1989(03)
    [74]傅绍云,周本濂,龙期威.纤维从弹性基体中的脱粘和拔出.金属学报, 1992(11)
    [75]张少实.复合材料纤维与基体界面剪切强度的有限元分析.哈尔滨工业大学学报, 1993(05)
    [76]张少实.纤维与基体界面剪切强度研究.复合材料学报, 1995(03)
    [77]黄玉东,孔宪仁,张志谦,魏月贞.界面层对纤维与基体间载荷传递能力的影响.复合材料学报,1996, 13(3):21-26
    [78]贾普荣,矫桂琼.纤维/基体界面应力分析及界面失效.复合材料学报,1999, 16(3):48-52
    [79]李建辉,邓宗才等.合成纤维与混凝土界面粘结性能研究与发展.混凝土, 2005, 185 (3)
    [80]李建辉,邓宗才,唐劼等。异型粗合成纤维与砂浆基体界面的粘结性能及其微观增强机理.公路,2005,12:166-169
    [81]潘永灿,荀勇.纤维织物与混凝土基体界面粘结性能试验研究.四川建筑科学研究. 2008,34(1):130-132
    [82] Stillborg B.Experimental investigation of steel cables for rock reinforcement in hard rock [Doctoral thesis ].Sweden: Lulea University of Technology,1984
    [83] Heytt A J, Bawden W F, Reichert R D. The effect of rock mass confinement on the bond strength of fully frouted cable bolts. Int J Rock Mech Min Sic. & Genomic Abstr. 1992,29(5):503-524
    [84] Jarred D J, Haberfield C M. Tendon / grout interface performance in grouted anchors. Proc. Ground Anchorages and Anchored Structures. London: Thomas Telford, 1997.
    [85] Kenro Mitsui, Zongjin Li et al. Relationship between microstructure and mechanical properties of the paste-aggregate interface. ACI Materials Journal,1994,91(1):30-39
    [86] S Caliskan, B L Karihaloo and B I G Barr. Study of rock-mortar interfacesⅡ:strength of interface. Magazine of concrete research, 2002,54(6):463-472
    [87] Cook, R. A. Behavior of chemically bonded anchors. Journal of Structural Engineering,ASCE, 1994,119(9):2744-2762
    [88]官山月,马念杰.树脂锚杆锚固失效的力学分析.矿山压力与顶板管理,1997(3):201-203
    [89]高勤福,马道局.锚杆失效现象分析与防治措施.煤矿开采,2001(4):76-79
    [90]唐树名,饶枭宇,张永兴.公路边坡锚固失效模式及影响因素.公路交通技术, 2005(5):26-29
    [91]成隆.煤巷锚杆失效原因分析及其控制.淮南职业技术学院学报.2007,24(7):7-9
    [92]许明,张永兴,阴可.砂浆锚杆的锚固及失效机理研究.重庆建筑大学学报,2001, 23(6):10-15
    [93]苏学贵,李彦斌,孟秀生.锚索预应力损失影响因素分析.西安科技学院学报, 1999(s1):87-90
    [94]梁旭辉,范伟.岩土锚固的预应力损失.公路.2004(8):114-115
    [95]任新见,张胜民,李世民.土层锚杆预应力损失原因分析与补偿对策研究.预应力技术,2008(4):24-26
    [96]景锋,余美万,边智华等.预应力锚索预应力损失特征及模型研究.长江科学院院报,2007,24(5):52-55
    [97]熊庞民,湘沅.锚杆的耐久性.世界采矿快报,1990(25):12-13
    [98]吕军.支护锚杆腐蚀性问题的分析和处理.广东土木与建筑,2001(11):65-67
    [99]曾宪明,陈肇元,王靖涛等.锚固类结构安全性与耐久性问题探讨.岩石力学与工程学报,2004, 23(13):2235-2242
    [100]赵健,冀文政,张文巾等.现场早期砂浆锚杆腐蚀现状的取样研究.地下空间与工程学,2005,1(7):1157-1162
    [101]曾宪明,李长松,赵健等.模型锚杆腐蚀耦合效应试验研究.预应力技术, 2006, 4:13-20
    [102]汪剑辉,曾宪明,赵强.多因素耦合腐蚀环境下锚杆腐蚀机制试验研究.施工技术,2006,35(11):30-33
    [103]肖玲,李长松,曾宪明等.承载锚杆与非承载锚杆腐蚀力学性能对比试验研究.岩石力学与工程学报,26(4):720-726
    [104]肖玲,李世民,曾宪明等.地下巷道支护锚杆腐蚀状况调查及力学性能试验.岩石力学与工程学报,27(增2):3791-3797
    [105]范建海,张世飙,陈建平等.锚杆锈蚀对锚喷支护安全性影响分析.安全与环境工程,2002,9(4):48-50
    [106]李敏.影响预应力锚索锚固安全性的主要因素研究.路基工程,2006(1):75-76
    [107]程良奎.岩土加固实用技术.北京:地震出版社,1994
    [108]陆士良,汤雷,杨新安著.锚杆锚固力与锚固技术.北京:煤炭工业出版社,1998
    [109]徐波.粘结型锚杆锚固理论与试验研究[学位论文].大连理工大学,2006
    [110]宋根祥,张盛,勾攀峰等.水对树脂锚杆锚固力的影响性研究.矿冶工程,2005,25(5):11-14