多重螺旋箍筋增韧轻质混凝土抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震是人类面临的严重自然灾害之一。我国属地震多发国家,需要考虑抗震设防的地域分布广,研究建筑结构的抗震性能十分必要与迫切。地震力与结构的自重有关,降低静载重可以减小建筑物在地震时的惯性力,从而降低建筑物的地震反应。轻集料混凝土具有自重轻、轴压强度高、与钢筋的弹性阶段协同工作能力强、抗裂性能和抗震性能好的优点,若将其用于抗震结构无疑具有极大的潜力。但由于轻集料混凝土的强度通常较低,弹性模量较小,脆性问题突出,直接将其用于钢筋混凝土柱还存在强度、刚度和延性难以满足重要建筑结构要求的技术问题。据此,本文对由普通优质集料取代部分轻集料制备而成的高强轻质混凝土(HSLC)的性能进行了研究,建立了高强轻质混凝土的本构关系,探明了混凝土材料与钢筋的配合关系,探讨了高强轻质混凝土与钢筋的匹配设计原理,提出了采用多重螺旋箍筋形式对高强轻质混凝土进行增韧的抗震设计方法,通过理论分析和力学计算得到了多重螺旋箍筋柱正截面承载力计算公式,对高强轻质混凝土-多重螺旋箍筋柱抗震性能和经济性进行了综合分析。
     论文开展的主要工作和取得的重要成果有:
     制备了强度等级为C60高强混凝土(HSC)、高强轻集料混凝土(HSLAC)和HSLC,获得了HSC、HSLAC和HSLC的单轴受压应力-应变全曲线,分析了三种混凝土材料的裂缝扩展模式和在单轴荷载作用下的变形特性及破坏形态。对高强轻质混凝土应力-应变全曲线进行数据拟合,得到其应力-应变全曲线数学方程式,为高强轻质混凝土结构设计与有限元分析提供了参考依据。
     基于抗震性能的要求,研究了混凝土材料与钢筋的配合关系,对普通箍筋约束HSLC、HSC和HSLAC受压构件进行了低周反复荷载试验,对比研究了相同箍筋约束条件下,HSLC、HSC和HSLAC三种混凝土框架柱的破坏形态、滞回特性、延性、耗能能力和刚度退化等抗震性能。结果表明,用普通优质集料取代部分轻集料可以提高轻集料混凝土的抗震性能,HSLC不仅可以降低结构自重,减小地震破坏力,还可以满足重要结构对混凝土承载力、刚度和延性的要求。通过体积配箍率对钢筋HSLC柱抗震性能影响规律的研究,探明了混凝土材料与钢筋的配合关系,探讨了HSLC与钢筋的匹配设计原理。
     依据HSLC的物理力学性能及其与钢筋的配合关系,鉴于圆形螺旋箍筋优异的约束效应,提出了利用多重螺旋箍筋对HSLC进行增韧的抗震设计思路和设计方法,设计制作了单螺旋、4-螺旋和5-螺旋箍筋约束HSLC框架柱试件;针对现有关于约束混凝土理论模型用于分析多重螺旋箍筋柱存在的问题,从单个螺旋箍筋柱力学理论出发,分析了多重螺旋箍筋混凝土柱的正截面承载能力,提出了多重螺旋箍筋混凝土柱正截面强度计算公式,该公式为多重螺旋箍筋柱的设计及研究提供了理论及计算依据。
     系统研究了单螺旋、4-螺旋和5-螺旋箍筋形式下,钢筋HSLC柱的破坏特征、滞回特性、延性、耗能能力和刚度退化等抗震性能,重点研究了轴压比和配筋率对5-螺旋箍筋柱的影响作用,并对高强轻质混凝土-多重螺旋箍筋柱抗震性能和经济性进行了综合分析。结果表明,5-螺旋箍筋技术可以大幅度提高钢筋HSLC框架柱的延性和耗能能力;在相同抗震设防等级下,多重螺旋箍筋增韧高强轻质混凝土比普通钢筋混凝土降低自重近20%,减少用钢量高达15%以上,大大降低了构件抗震设防成本。
Earthquake is one of the most serious natural disasters faced by human being. China is an earthquake-prone country with great losses caused by earthquakes, so it is quite necessary and urgent to study the seismic performance of structures and bridge. Seismic force is related to the weight of structure, which can be decreased by reducing the building dead-load. Lightweight aggregate concrete (LAC) has great potential applications in seismic structure for its advantages of low density, high specific strength, crack resistance, earthquake-proof, and high cooperation deformation capability with reinforcement during elastic stage. However, LAC can't be used directly into reinforced concrete column due to its disadvantages of low compressive strength, low modulus and high brittleness. In this thesis, based on the research of interface strengthening technology, the high strength lightweight concrete (HSLC) was prepared, and which was confined by multi-spiral stirrups. The multi-spiral confined HSLC column has good ductility and seismic performance. The multi-spiral stirrups with less steel consumption greatly reduce the cost of earthquake resistance protection of compression member.
     The main results obtained in this study are as follows:
     Main factors influencing the mechanic properties of HSLC were found out. Key technique of interface strengthening for preparing HSLC was grasped. The proportion parameters of HSLC, high strength concrete (HSC) and high strength. lightweight concrete (HSLAC) with the same strength of C60 were confirmed. The stress-strain curves of HSLC, HSC and HSLAC were obtained by tests; the deformation properties, failure model and damage mechanism were also discussed. Formula of constitutive relations model of HSLC was revised, which established the theoretic foundation for structural design and finite element analysis.
     In order to study the match relationship between concrete and stirrups, failure patterns, "P-△" hysteretic curves, skeleton curves, ductile coefficients, energy dissipation and strength degeneration of steel reinforced HSLC, HSC and HSLAC columns were studied by low cyclic reversed loading test. Results indicate that HSLC can reduce the weight of structures, so as to decrease the earthquake destructive force; it can also meet the need of important building on load capacity, ductility and stiffness.
     The toughening seismic design idea of multi-spiral stirrups for confined HSLC was proposed, and 8 multi-spiral confined HSLC column specimens were prepared for the low cyclic reversed loading test. Based on the three-direction stress law of confined concrete, the load carrying capacity of the rectangular cross section concrete column with multi-spiral is analyzed, and the calculated equation of the load carrying capacity is proposed, which provides a theory and calculation basis for multi-spiral confined concrete column design and research.
     The seismic performances of single spiral,4-spiral and 5-spiral HSLC columns were studied, including failure patterns, hysteretic curves, skeleton curves, ductile coefficients, energy dissipation and strength degeneration. The influences of axial compression ratio and reinforcement ratio on the seismic properties of 5-spiral confined HSLC columns were discussed. It is verified through experiments that multi-spiral confined concrete columns have better mechanical properties than single spiral columns and the multi-spiral significantly increase the column's strength, plasticity, ductility and anti-seismic capability. Under the same seismic fortification level, the multi-spiral stirrup reduces the steel consumption by more than 15%.
引文
[1]范立础,卓卫东.桥梁延性抗震设计[M].人民交通出版社,2001,5.
    [2]Jerome F. Hajjar. Composite steel and concrete structural systems for seismic engineering[J]. Journal of Constructional Steel Research,2002 (58):703-723.
    [3]范立础.现代化城市桥梁抗震设计若干问题[J].同济大学学报(自然科学版),1997,(2):147-154.
    [4]过镇海,时旭东.钢筋混凝土原理[M].清华大学出版社,2003.
    [5]Mitehell D, Bruneau M, Williams M, et al. Performance of bridges in the 1994 Northridge earthquake[J]. Canadian Journal of Civil Engineering,1995,22(2):415-427.
    [6]卓卫东.桥梁延性抗震设计研究[D].上海:同济大学,2000.
    [7]H. Sezen, A.S. Whittaker, K.J. Elwood, K.M. Mosalam. Performance of reinforced concrete buildings during the August 17,1999 Kocaeli, Turkey earthquake, and seismic design and construction practise in Turkey[J], Engineering Structures 2003 (25):103-114.
    [8]黄承逵,纤维混凝土结构[M].北京:机械工业出版社,2004.1-10
    [9]徐礼华,夏冬桃,夏广政,等.钢纤维和聚丙烯纤维对高强混凝土强度的影响[J].武汉理工大学学报,2007(4):58-60、98.
    [10]张育宁,方秦,候晓峰,等.高掺量聚丙烯纤维混凝土动力性能的SHPB试验研究[J].混凝土,2006,(9):54-56、59.
    [11]丁一宁,曹继锋.聚丙烯长纤维高性能混凝土性能研究[J].大连理工大学学报,2007(5):707-711.
    [12]A. Sivakumar, Manu Santhanam. A quantitative study on the plastic shrinkage cracking in high strength hybrid fibre reinforced concrete[J]. Cement and-Concrete Composites,2007, 29(7):575-581.
    [13]C. Lee, H. Kim. Orientation factor and number of fibers at failure plane in ring-type steel fiber reinforced concrete[J]. Cement and Concrete Research,2010,40(5):810-819.
    [14]R. V. Balendran, F. P. Zhou, A. Nadeem, A. Y. T. Leung. Influence of steel fibers on strength and ductility of normal and lightweight high strength concrete[J]. Building and Environment,2002,37(12):1361-1367.
    [15]O. Kayali, M.N. Haque, B. Zhu. Some characteristics of high strength fiber reinforced lightweight aggregate concrete[J]. Cement & Concrete Composites.2003(25):207-213.
    [16]Miguel Angel Pindado, Antonio Aguado, et al. Fatigue behavior of polymer-modified porous concretes[J]. Cement and Concrete Research,1999,29(7):1077-1083.
    [17]Chama Y. Handbook of polymer-Modified Concrete and Mortars-Properties and Process Technology[M]. USA:Noyes Publications.1995:54-89.
    [18]Jane Proszek Gorninski, et, al. Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and portland cement concrete[J]. Cement and Concrete Research,2004,34(11):2091-2095.
    [19]D. W. Fowler. Polymers in concrete:a vision for the 21st century[J]. Cement & Concrete Composites,1999,21:449-452.
    [20]申爱琴,李祝龙,王小明.聚合物乳液改性水泥混凝土的微观结构[J].混凝土,2001(3):40-42.
    [21]胡曙光,丁庆军,田耀刚等.高强高阻尼混凝土的制备方法,ZL200710053633.9.
    [22]胡曙光,田耀刚,丁庆军,王发洲.高阻尼混凝土的抗渗性能研究[J].武汉理工大学学报,2008(6):25-28、36.
    [23]田耀刚,胡曙光,王发洲,丁庆军.具有阻尼功能的高强混凝土疲劳性能分析[J].建筑材料学报,2009(3):328-331.
    [24]Fattuhi, N.& Clark, L.1996. Cement-based materials containing shredded scrap truck tyre rubber[J]. Construction and Building Materials MA 20.1996,10 (4):229-236.
    [25]F. Herna'ndez-Olivares, G. Barluenga, M. Bollati, B. Witoszek. Static and dynamic behaviour of recycled tyre rubber-filled concrete[J]. Cement and Concrete Research,2002, 32(10):1587-1596.
    [26]陈振富,柯国军,胡绍全,等.橡胶混凝土小变形阻尼研究[J].噪声与振动控制,2004(3):32-34.
    [27]杨林虎,朱涵,李强.橡胶集料钢筋混凝土梁截面的延性[J].济南大学学报(自然科学版),2007(1):28-30.
    [28]李悦,吴玉生,王敏,等.橡胶集料混凝土物理力学性能研究[J].武汉理工大学学报,2008(1):55-57.
    [29]李悦,吴玉生,杨玉红,等.钢筋橡胶集料混凝土结构性能研究[J].北京工业大学学报,2008(12):1280-1285.
    [30]Yue Li,Zhao-Xing Han,Min Wang, et al. Study on the phisical and mechanical properties of crumb rubber recycled aggregate concrete [C]. Proceedings of the Tenth International Symposium on Structural Engineering for Young Experts, Volume Ⅱ:1830-1834.
    [31]方鄂华,钱稼茹,叶列平.高层建筑结构设计[M].北京:中国建筑工业出版社,2003.
    [32]胡曙光,王发洲.轻集料混凝土[M].北京:化学工业出版社,2006.
    [33]王发洲.高性能轻集料混凝土研究与应用[D].武汉:武汉理工大学,2003.
    [34]ESCSI(Expanded Shale, Clay and Slate Institute). Building Bridges and Marine Structures With Structural Lightweight Aggregate Concrete[M]. Publication No.4700,2001.
    [35]Vieira,M., Goncalves,A., Durability of high performance LWAC[C], The 2nd international symposium on light weight aggregate concrete:767-773.
    [36]Norden,G., Thienel,C-K., Pumping of LWAC based on expanded clay in Europe[C], The 2nd international symposium on light weight aggregate concrete:823-832.
    [37]Smeplass,S., Drying of light weight aggregate concrete (LWAC)[C], The 2nd international symposium on light weight aggregate concrete:833-842.
    [38]European Union, Brite EuRamⅢ. LWAC Material properties stat-of-the-art[M]. Economic Design and Construction with light weight aggregate concrete,1998.
    [39]European Union, Brite EuRamⅢ. Technical and economic mixture optimization of high strength lightweight aggregate concrete[J]. Economic Design and Construction with light weight aggregate concrete, Document BE96-3942/R9,2000.
    [40]胡曙光,王发洲,丁庆军.轻集料与水泥石的界面结构[J].硅酸盐学报,2005(6):713-717.
    [41]丁庆军,田耀刚,王发洲,胡曙光,等.集料组成对次轻混凝土宏观性能影响的研究[J].武汉理工大学学报,2005(5):37-39.
    [42]胡曙光,田耀刚,丁庆军.轻集料对高强次轻混凝土物理力学性能的影响[J].混凝土与水泥制品,2007(6):1-4.
    [43]刘沐宇,尹华泉,丁庆军,胡曙光.高强轻集料钢筋混凝土梁抗剪承载力计算[J].华中科技大学学报(自然科学版),2008(3):46-49.
    [44]刘沐宇,李鸥,丁庆军,胡曙光.高强次轻混凝土梁抗弯性能试验研究[J].武汉理工大学学报(交通科学与工程版),2007(1):9-12.
    [45]任泽民,渠运国,戎贤,刘平.HRB500级钢筋网轻骨料混凝土剪力墙抗震性能研究[J].地震工程与工程振动,2007(6):106-112.
    [46]Min-Hong Zhang, Odd E. Gjorv. Penetration of cement paste into lightweight aggregate[J]. Cement and Concrete Research,1992(22):47-55.
    [47]G.M.Glenn, G.M.Gray, W.J.Orts, D.W.Wood. Starch-based lightweight concrete:effect of starch source processing method, and aggregate geometry[J]. Industrial Crops and Products 1999(9):133-144.
    [48]R. Narayan Swamy, Roy Jones, Andy T. P. Chiam. Influence of Steel fibers on the Shear Resistance of Lightweight Concrete I-Beams[J]. Structural Journal,1993,90(1):103-114.
    [49]Iiker Bekir Topcu. Semi lightweight concretes produced by volcanic slags[J]. Cement and Concrete Research,1997,27(1):15-21.
    [50]丁庆军.高强次轻混凝土的研究与应用[D].武汉:武汉理工大学,2006.
    [51]Miguel A. Saladra and Shuaib H. Ahmad. Shear Capacity of Reinforced Lightweight High-Strength Concrete Beams[J]. ACI Structural Journal,1989,86(6):697-704.
    [52]J. L. Clarke MA, phD, MCE, MIStructE, CEng. Shear strength of lightweight aggregate concrete beams[J]. design to BS 8110. Magazine of Concrete Research,1987,39(141): 1112-1115.
    [53]Sheikh, S. A, Uzumeri, S. M. Analytical Model for Concrete Confinement in Tied Columns[J]. ASCE,1982,12:2703-2722.
    [54]Park.R and Paulay T.:Reinforced concrete structures[M], Wiley, New York,1975.
    [55]Lyengar and K.T.S.R.:Stress-strain characteristic of concrete confined in steel binders[J]. Magazine of Concrete Research,1970,22(9):173-184.
    [56]Chan and W.W.L.:The ultimate strength and deformation of plastic hinges in reinforce framework[J]. Magazine of Concrete Research,1975,7(11):121-132.
    [57]M.Muzhir, S.M.A.Kazimi and M.M.A.Khan:Experimental investigation into the deformation potentialities confined concrete in the plastic zone[J], India Concrete Journal, 1982,1:21-28.
    [58]Shamin A.Sheikh, S.M.Uzumevi. Analytical model for confined concrete and in tied columns[J]. Journal of the Structural Division, ASCE,1983,12(12):2703-2712.
    [59]Mohamed A.H.Abdel-Halin and Taher M.Abu-Lebdeh:Analytical study for concrete confinement in tied columns[J]. Journal of the Structural Engineering,1989,12(11): 2810-2828.
    [60]翁义军,沉聚敏.钢筋混凝土框架柱的轴压比限值和箍筋的效应[M].清华大学抗震抗爆工程研究室。1984.
    [61]钱国芳,童岳生,等.配置不同形式箍筋的钢筋混凝土短柱抗震性能试验研究[J].西安建筑科技大学学报(自然科学版),1991(3):248-257.
    [62]Sheik, S. and Toklucu, M., Reinforced concrete columns confined by circular spirals and hoops[J]. ACI Structural Journal,1993,90(5):542-553.
    [63]Saatcioglu, M. and Razvi, S., Strength and ductility of confined concrete[J]. J. Struct. Eng., ASCE,1992,118(25):1590-1607.
    [64]Chen, B. and Mau, S., Numerical simulation of behavior of spirally reinforced columns [J]. J. Struct. Eng., ASCE,1990,116(10):2842-2860.
    [65]Buckingham, G, McLean, D. and Nelson, C., Tests of concrete bridge columns with interlocking spiral reinforcement[J]. Transportation Research Record No.1393:133-145.
    [66]马宏伟,姜维山,于庆荣,等.连接钢筋传力的组合梁及连续复合螺旋箍混凝土柱节点的研究[J].东南大学学报(自然科学版),2002(5):741-745.
    [67]贺霞.高强螺旋箍筋约束高强混凝土力学性能的试验研究[D].西安:西安建筑科技大学,2008.
    [68]Baris Binici. An analytical model for stress-strain behavior of confined concrete[J]. Engineering Structures 27 (2005) 1040-1051.
    [69]蔡健,杨明,吕永森.钢筋混凝土圆柱中圆形螺旋箍筋的受力机理[J].华南理工大学学报(自然科学版),1996(9):59-63.
    [70]宋金声,周小真.用复合矩形螺旋箍增强柱抗震性能的试验研究[J].西安建筑科技大学学报(自然科学版),1986(2):23-46.
    [71]郭忠贤,刘志鸿,车晓.低周反复水平荷载作用下柱配有方形螺旋箍筋的钢筋混凝土单元框架抗震性能试验研究[J].建筑结构学报,2001(1):8-14.
    [72]李玉麟.矩形螺旋箍约束混凝土受压柱基本性能的实验研究[D].西安:西安冶金建筑学院硕士学位论文,1990.
    [73]Masataka Shibata, Atushi Nakazawa, Juro Mihara. Development of a speeially designed high-strength transverse reinforcement for square concrete columns [C]. Proceeedings of the tenth world conference on earthquak engineering, Madrid. Spain, Balema.Rotterdam, 1992:3065-3070.
    [74]Tanaka H, Park R. Seismic design and behavior of reinforced concrete columns with interlocking spirals[J]. ACI Struct J,1993;90(2):192-203.
    [75]Jin-keun kim, chan-kyu park. The behaviour of concrete columns with interlocking spirals[J]. Engineering Structures,1999,21:945-953.
    [76]AASHTO. LRFD Bridge design specifications[M]. Washington, D.C.:American Association of State Highway and Transportation Officials,1994.
    [77]CALTRANS. Structures seismic design references, bridge design specifications[M]. California:State of California, Department of Transportation, Division of Structures,1994.
    [78]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [79]尹衍樑.矩形混凝土柱新的约束型式之研发(Ⅱ)外方内圆、组合螺箍及其衍生型式[J].土木工程学报,2004(10):,1-12.
    [80]尹衍樑,翁正强,王瑞祯,梁景裕.预铸复合螺箍SRC柱之轴压行为研究[J].中国工程科学,2006(12):16-30.
    [81]翁正强,尹衍梁,王瑞祯,梁景裕.预铸五螺箍矩形SRC柱之轴压与反复载重抗震试验[J].建筑钢结构进展,2007(6):12-19.
    [82]Yin, Samuel. Helical rebar structure[P].2003,5:US 6860077 B2.
    [83]Shuguang Hu, Jing Wu, Wen Yang, Linnu Lu and Yongjia He. Relationship between autogenous deformation and internal relative humidity of high-strength expansive concrete[J]. Journal of Wuhan University of Technology--Materials Science Edition.2010, 25(3):504-508.
    [84]Kong Lo-Shu. Lightweight Concrete Use in China[J]. Building Research & Practice,1982, 10(4):244-251.
    [85]K. Melby, E. A. Jordet and C. Hansvold. Long-span bridges in Norway constructed in high-strength LWA concrete [J]. Engineering Structures,1996,18(11):845-849.
    [86]Min-Hong Zhang, Odd E. Gjorv. Penetration of cement paste into lightweight aggregate[J]. Cement and Concrete Research,1992(22):47-55.
    [87]Whitney, C.S. Plastic Theory of Reinforced Concrete Design[J]. ASCE,1940,12.
    [88]Wang P T, Shah S P, Naaman A E. Stress-strain curves of normal and lightweight concrete in compression[J]. ACI Journal,1978,75(11):603-611.
    [89]Almusallam T H, Alsayed S H. Stress-strain relationship of normal, hight-strength and lightweight concrete[J]. Magazine of concrete research,1995,47(170):39-44.
    [90]Min Hong Zhang, Odd E. Gjvorv. Mechanical properties of high-strength lightweight concrete[J]. ACI Materials Journal,1991,88 (3):240-247.
    [91]袁万城,范立础.高强混凝土结构的延性抗震设计[J].同济大学学报(自然科学版),1994(4):445-450.
    [92]徐有邻.我国混凝土结构用钢筋的现状及发展[J].土木工程学报,1999(5):3-9.
    [93]Tzaawa E. Autogenous Shrinkage of Cement Paste Caused by Hydration[J]. Cement and Concrete,1994,556:35-44.
    [94]蒋正武,孙振平,王新友,等.国外混凝土自收缩研究进展评述[J].混凝土,2001(4):30-34.
    [95]JIANG Zheng-wu SUN Zhen-ping WANG Pei-ming. Self-desiccation Effect of High Performance Concrete[J]. Journal of Wuhan university of technology (material science), 2004(4):40-44.
    [96]O. Mejlhede Jensen. Thermodynamic limitation of self-desiccation[J]. Cement and Concrete Research,1995,25(1):157-164.
    [97]蒋正武,孙振平,王培铭.水泥浆体中自身相对湿度变化与自收缩的研究[J].建筑材料学报,2003(4):345-349.
    [98]蒋正武,孙振平,王培铭.高性能混凝土自身相对湿度变化的研究[J].硅酸盐学报,2003(8):770-773、779.
    [99]胡曙光,王发洲,丁庆军,彭波.轻集料的吸水率与预处理时间对混凝土工作性的影响[J].华中科技大学学报(城市科学版),2002(2):1-4.
    [100]Y.Lo, X.F. Gao, A.P.Jeary. Microstructure of pre-wetted aggregate on lightweight concrete[J]. Building and Environment 1999(34):759-764.
    [101]刘秉京.混凝土技术[M],北京:人民交通出版社,1998:13.
    [102]Arnon Bentura, Shin-ichi Igarashib, Konstantin Kovler. Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates[J]. Cement and Concrete Research,31(2001),1587-1591.
    [103]DING Qingjun, TIAN Yaogang, WANG Fazhou, ZHANG Feng, HU Shuguang. Autogenous Shrinkage of High Strength Lightweight Aggregate Concrete[J]. Journal of Wuhan University of technology (material science).2005(4):123-125.
    [104]Demirboga., R., Kurt,M.,Gul,R., Aydyn, A.C., The effects of silica fume and fly ash on the freeze-thaw resistance of low density concrete[C]. The 2nd international symposium on light weight aggregate concrete:492-501.
    [105]Min-Hong Zhang, Odd E.Gjorv. Microstfucture of the interfacial zone between lightweight aggregate and cement paste[J]. Cement and Concrete Research,1990(20): 610-618.
    [106]李晓东.水泥和硅灰增强轻集料的研究[D].武汉:武汉理工大学,2002.
    [107]Ertekin Oztekin, Selim Pul, Metin Husem. Determination of rectangular stress block parameters for high performance concrete[J]. Engineering Structures. Volume 25, Issue 3, February 2003:371-376.
    [108]P. T. Wang, S. P. Shah, A. E. Naaman. Stress-Strain Curves of Normal and Lightweight Concrete in Compression[J]. Journal Proceedings,1978(11):603-611.
    [109]Seong-Tae Yi, Min-Su Kim, Jin-Keun Kim, Jang-Ho Jay Kim. Effect of specimen size on flexural compressive strength of reinforced concrete members [J]. Cement and Concrete Composites,2007,29(3):230-240.
    [110]过镇海.混凝土的强度和本构关系——原理与应用[M].北京:中国建筑工业出版社,2004.
    [111]杨政.混凝土力学与构件设计原理[M].西安:西安交通大学出版社,2010.
    [112]叶列平,孙海林,陆新征,等.高强轻骨料混凝土结构——性能、分析与计算[M].北京:科学出版社,2009:14-15.
    [113]孔丽娟,葛勇,袁杰,张宝生.混合骨料混凝土应力-应变全曲线的研究[J].武汉理工大学学报,2007(7):18-21.
    [114]严安,吴科如,张东,姚武.高强混凝土的脆性与断裂面特征的关系[J].同济大学学报(自然科学版),2002(1):66-70.
    [115]R.V. Balendran, F.P. Zhou, A. Nadeem, A.Y.T. Leung. Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete[J], Building and Environment.2002,37(12):1361-1367.
    [116]T. Merikallio, R. Mannonen, V. Penttala. Drying of lightweight concrete produced from crushed expanded clay aggregate[J]. Cement and Concrete Research.1996,26(9): 1423-1433.
    [117]Floyd O. Slate, Arthur H. Nilson, Salvador Martinez. Mechanical properties of high strength lightweight concrete[J]. Journal Proceedings,1986,83(4):606-613.
    [118]徐世娘,赵国藩.混凝土断裂力学研究[M].大连:大连理工大学出版社,1991
    [119]严安,吴科如,姚武,张东.混凝土的断裂能随断裂路径的变化规律[J].水利学报,2002(1):76-80.
    [120]谢和平.岩石、混凝土损伤力学[M].北京:中国矿业大学出版社,1999.
    [121]祁景玉,肖淑敏,高燕萍,巴恒静.混合型粗集料轻混凝土的微观结构(Ⅰ)[J].同济大学学报(自然科学版),2001(8):946-953.
    [122]祁景玉,高燕萍,邙静哲,巴恒静.混合型粗集料轻混凝土的微观结构(Ⅱ)[J].同济大学学报(自然科学版),2001(10):1185-1190.
    [123]过镇海.混凝土的强度和变形(试验基础和本构关系)[M].北京:清华大学出版社,1997.
    [124]过镇海,张秀琴,张达成,王如琦.混凝土应力-应变全曲线的试验研究[J].建筑结构学报,1982(1):1-12.
    [125]混凝土结构设计规范GB50010-2002[S].中国建筑工业出版社,2002.
    [126]Hognestad E, et al. Concrete stress distribution in ultimate strength design[J]. Journal of ACI,1995,27(4).
    [127]建筑抗震设计规范GB50011-2001[S].北京:中国铁道出版社.
    [128]姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社,1996.
    [129]丁大钧.钢筋混凝土构件抗裂度、裂缝和刚度[M].南京:南京工学院出版社,1986.
    [130]叶献国,王海波,孙利民,等.钢筋混凝土桥墩抗震耗能能力的试验研究[J].合肥工业大学学报(自然科学版),2005(9):1171-1177.
    [131]Shamim A. Sheikh, Shafik S. Khoury. Confined concrete columns with stubs [J]. ACI Structural Journal,1993,90(4):414-431.
    [132]朱伯龙.结构抗震试验[M].北京:地震出版社,1989.
    [133]姚晨纲,刘祖华.建筑结构试验[M].上海:同济大学出版社,1996.
    [134]XIAO Jian-zhuang, SUN Yue-dong, H.Falkner. Seismic performance of frame structures with recycled aggregate concrete[J]. Engineering Structures,2006,28(1):1-8.
    [135]梁启智.高层建筑结构分析与设计[M].南京:华南理工大学出版社,1992.
    [136]刘志峰,孙学先,杨霞林.考虑地基变形影响的高墩柱抗推刚度的解析方法[J].水利与建筑工程学报,2007(4):63-66.
    [137]Dudley Charles Kent, Robert Park. Flexural Members with Confined Concrete. Journal of the Structural Division,1971,97(7):1969-1990.
    [138]Robert Park, M. J. Negel Priestley, Wayne D. Gill. Ductility of Square-confined concrete columns. Journal of the Structural Division,1982,108(4):929-950
    [139]Yook-Kong Yong, Malakah G. Nour, Edward G. Nawy. Behavior of Laterally Confined High-Strength Concrete Under Axial Loading[J]. Journal of Structural Engineering,1988, 114(2):332-351.
    [140]J. B. Mander, M. J. N. Priestley, R. Park. Theoretical Stress-Strain Model for Confined Concrete[J]. Journal of Structural Engineering,1988,114(8):1804-1826.
    [141]A. Van Gysel, L. Taerwe. Analytical formulation of the complete stress-strain curve for high strength concrete[J]. Materials and Structures,1996,29(9):529-533.
    [142]赵国藩.高等钢筋混凝土结构学[M].北京:中国电力出版社,1999.45-46.
    [143]铁路桥涵钢筋混凝土和预应力混凝土结构设计规范TB10002.3-2005[S].北京:中国铁道出版社.
    [144]Kaustubh DASGUPTA, C.V.R. MURTY. Dependence of ductility and energy, dissipation on limiting strain states in seismic design of RC columns[C].13th world conference on earthquake engineering, Vancouver, B.C., Canada,2004,8