重庆国泰艺术中心空间交错桁架节点足尺拉剪试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随空间钢结构的广泛运用,由其发展而来的空间交错桁架结构体系日趋登上“建筑结构舞台”,成为一种新型结构体系。国内最近正在修建中的重庆国泰艺术中心便采用了此类结构,形成了独特的桁架“题凑”外形。构成空间交错桁架体系的单榀桁架在三维空间体系中彼此既不同在一个方向,也不在同一个水平面上,节点及杆件数量繁多,空间关系复杂。纵横相交各榀桁架连接节点构造特殊,节点形式复杂多变,具有空间性,且节点处荷载较大,是整个结构受力复杂而又关键的部位。有关空间交错桁架连接节点的理论和试验研究在国内外都还较少,没有相关资料可供参考,因此有必要通过试验来填补该领域研究的空白,以为今后空间交错桁架节点设计和研究提供试验依据。
     本文借助重庆国泰艺术中心的工程背景,结合其独特的桁架“题凑”结构设计,通过对空间交错桁架独有的三种特殊节点形式在拉力和剪力共同作用下进行足尺试验研究,后期采用大型有限元分析软件—ANSYS进行模拟加载计算,并对两者的数据结果作出分析对比。
     通过试验与有限元分析相结合的研究方法,本文对空间交错桁架节点做了如下部分研究工作:
     (1)通过3个特殊构造的空间交错桁架节点足尺试件的拉剪静力破坏试验,对试件整体位移、连接节点区域沿拉力和剪力方向的相对变形、节点区域应力进行了测试,并得出了节点的薄弱位置、破坏模式和极限承载能力。着重研究了节点区域的相对变形和应力分布。最终在试验数据综合处理分析的基础上得出结论,以供今后相关节点设计和研究参考。
     (2)通过对空间交错桁架节点试件的有限元模拟,对试件节点区域的相对变形、应力分布规律和极限承载力进行对比分析。
     试验结果表明:节点区域应力分布复杂,桁架主、支管间连接焊缝破裂导致结构失效,破坏呈脆性;试件达到极限承载力时位移较小,桁架杆件间连接焊缝先于连接节点破坏,此类连接节点在静力作用下能够满足空间交错桁架杆件的传力要求。
Space staggered truss structure system, developed from Spatial Steel Structure which is applied to the industry extensively, plays a role in“architectural structure stage”as a new structural system. Chongqing GuoTai Arts Centver which is recently under construction adopted such structure, forming a unique“TiCou”shape truss。In three dimensions each truss unit that formed the space staggered truss is neither at the same direction nor in the same plane. Therefore, with a large number of nodes and members, the spatial relation is complicated. Due to complex node forms and large load bearing, the unique nodes jointing staggered truss is the important part that bears different force. There are few theories and experimental study about nodes of space staggered truss at home and abroad and even fewer relevant material for referencing, hence it is necessary to fill in the gap by experimental results in order to provide basis for further space truss designs and research.
     Along with Chongqing GuoTai Art Centre’s project, full-scale experimental studies of space staggered truss’three kinds of particular node have been performed under the combined action of tension and shear, basing upon Chongqing GuoTai Art Centre’s unique“TiCou”truss design. In the later stage, the large-scale finite element analysis software---ANSYS has been employed to simulate loading calculation and data collected have been analyzed and contrasted.
     In the thesis, the following studies on space staggered truss node have been carried out by means of experiment and finite element analysis:
     (1) The absolute horizontal displacementof the specimen, relative deformation of node region along the direction of tension and shear, stress of the node region have been obtained from the tension and shear static force destruction test of three distinctive full-scale space staggered truss nodes specimens. In addtion, the weak location of nodes, failure mode and ultimate bearing capacity have been tested. The relative deformation and stress distribution have become the focus. The conclusions draw upon the final data analysis could provide reference for future node designs and research.
     (2) Based on finite element simulation, comparison has been made with data collected from relative deformation of specimen’s node region, law of stress distribution and ultimate bearing capacity.
     The conclusion verifies that stress distribution around node region is complex; the rapture of weld seam connecting main tube and branch tube could cause structure failure and brittle fracture; small displacement of the specimen at its ultimate bearing capacity and the rapture of weld seam linking truss members before the break of nodes indicate that this kind of nodes could mthe force transfering of space staggered truss under static force.
引文
[1]王万祯,张振涛等. T型钢桁架节点研究[J].西安建筑科技大学学报,2000(4).
    [2]白国良,岳建广等. H型钢空间钢桁架节点抗震性能试验研究[J].建筑结构,2006, Vol.36.
    [3]童乐为,王新毅等.国家体育场焊接方管桁架双弦杆KK型节点试验研究[J].建筑结构学报,2007(2).
    [4]殷爱国,李兆霞.钢桁架模型试验研究的分析与设计[J].盐城工学院学报(自然科学版),2005, Vol. 18(3).
    [5]陈以一,陈扬骥,詹琛等.圆钢管空间相贯节点的实验研究[J].土木工程学报,2003,36(8):24—30.
    [6] [6]舒宣武,朱庆科.空间KK型钢管相贯节点极限承载力有限元分析[J].华南理工大学学报,2002,30(10):102—106.
    [7]陈誉,陈以一,黄永强.矩形钢管桁架节点局部传力模拟的试验研究和有限元分析[J].工业建筑, 2005, 35(11):10-13.
    [8]陈以一,王伟,赵宪忠等.圆钢管相贯节点抗弯刚度和承载力实验[J].建筑结构学报, 2001, 22(6):25-30.
    [9]沈祖炎,陈扬骥,陈以一,等.上海市八万人体育场屋盖的整体模型和节点试验研究[J].建筑结构学报, 1998, 19(1):2-10.
    [10]陈国栋,蔡健.节点弯距在矩形钢管桁架中的影响分析[J].科学技术与工程, 2008, 8(3):819-823.
    [11]沈祖炎,罗永峰,陈扬骥.矩形钢管屋架的实验研究[J].钢结构, 1995, 10(27):58-61.
    [12]赵鹏飞,赵志雄,钱基宏,等.复合受力状态下矩形钢管相贯节点的试验研究[J].建筑结构学报, 2005, 26(6):71-85.
    [13]罗尧治,张冰,季伟捷等.双锥型变截面矩形钢管的试验研究及承载力分析[J].土木工程学报, 2006, 39(9):8-16.
    [14]重庆大学土木工程学院.重庆国泰艺术中心题凑关键节点试验报告[R].2009.
    [15]范重,彭翼等.国家体育场焊接方管桁架单K节点设计研究[J].建筑结构,2006(5).
    [16]王世平.某体育馆方钢管桁架节点的试验研究[J].低温建筑技术,2006(4).
    [17]魏明钟.钢结构[M].武汉工业大学出版社,2000,8.
    [18]陈绍蕃,顾强.钢结构[M].中国建筑工业出版社,2003,2.
    [19]中华人民共和国国家标准.钢结构设计规范GB50017-2003[M].中国计划出版社,2003.
    [20]中华人民共和国国家标准.金属材料-温室拉伸试验方法GB/T228-2002[M].中国标准出版社,2003.
    [21]李启才,何若全,顾强,申林.交错桁架体系中桁架与柱的连接节点设计方法研究[J].建筑钢结构进展,2008, 8,Vol.10(4).
    [22]唐红,申涛,严洁猗.钢管桁架结构相贯节点设计分析和实验研究[J].石油化工建设, 2005, 12,Vol.27(36).
    [23]丁芸孙.圆管结构相贯节点几个问题的探讨[J].空间结构,2008,8(2).
    [24]江见鲸等编著.有限元法及其应用[M].机械工业出版社.2006.
    [25]王新敏.ANSYS工程结构数值分析[M].人民交通出版社,2007,10.
    [26]尚晓江,邱峰,赵海峰等编著.ANSYS结构有限元高级分析方法与范例应用(第二版)[M].中国水利水电出版社,2008,5.
    [27]包陈,王呼佳主编. ANSYS工程分析分析进阶实例[M].人民交通出版社,2006.
    [28] Dai Guoxin, Li,Wanwei.Experimental study on cast steel joint of large span steel truss of Jiangbei International Airport in Chongqing[J]. Jianzhu Jiegou Xuebao/Journal of Building Structures,August 2005.
    [29] Sing-Ping Chiew,Chee-Kiong Soh,Nai-Wen Wu. Experimental and Nume-rical Stress Analyses of Tubular XT-Joint. J. Struct[J]. Engrg., ASCE,1999,125(11:1239一1248).
    [30] Sutter,Thomas R,Wu,k.Chauncey,Structural characterization of an articulated-truss joint, Proceedings of the 3rd International Conference on Engineering[J]. Construction, and Operations in Space III, May 31-Jun 4 1992.
    [31] Jin-Woo Kim, Jong-Ju Kim and Hae Jun Rhew, Analysis and experiment for the formation and ultimate load testing of a hypar space truss. Journal of Constructional Steel Research[J]. Volume 62, Issues 1-2, January-February 2006, Pages 189-193.
    [32] Makino Y,Experimental Study on Ultimate Capacity and Deformation for Tubular Joints[J]. Doctoral dissertation,Osaka University,1984:22-27.
    [33] Paul J.C,Ultimate Resistance of Unstiffened Multiplanar Tubular TT and KK Joints[J]. J. Struct. Engrg,ASCE,1994,120(10):2853-2870.
    [34] Pedreschi R F, Sinha B P. An experimental study of cold formed steel trusses using mechanical clinching[J]. Construction and Building Materials, 2008, 22(5), 921-931.
    [35] Schumacher Ann, Nussbaumer Alain. Experimental study on the fatigue behaviour of welded tubular K-joints for bridges[J]. Engineering Structures, 2006, 28(5):745-755.
    [36] Caglayan O, Yuksel E. Experimental and finite element investigations on the collapse of a Mero space truss roof structure - A case study[J]. Engineering Failure Analysis, 2008, 15(5):458-470.
    [37] Hyoung M Kim, Theodore J Bartkowicz. Experimental study for damage detection using a hexagonal truss[J]. Computers and Structures, 2001, 79(2):173-182.
    [38] K.Yamamoto, N.Akiyama, T.Okumura. Buckling strengths of gusseted truss joints[J]. Journal of structural Eingineering,ASCE,1988,114(3):575-590.
    [39] Y.Kurobane, Y.Maknio, K.Ochi. Ultimate resistance of unstiffened tubular joints[J].Structural Engineering, ASCE, 1984,110(2):385-400.
    [40] Yura.J.A, Howell.L.E. and Frank. K.H. Ultimate Load Tests on Tubular Connections[C]. Civil Engineering Conference.1992.
    [41] Sing-Ping Chiew, Soh Chee-Kiong, Wu Nai-Wen. Experimental and Nume-rical SCF Studies of Multiplanar Tubular XX-Joint[J]. ASCE, 2000, 126(11):1331-1338.
    [42]李光照.钢桁架节点板弹塑性工作过程及破坏机理试验研究[J].建筑结构学报,1987,(2):10-22.
    [43]完海鹰,王梅.焊接管结构静、动力承载力设计与研究[A].西安:管结构会议论文集,2001.
    [44]武振宇.直接焊接钢管节点静力工作性能的研究[D].博士学位论文,哈尔滨:哈尔滨建筑大学,1997.
    [45]王伟,陈以一.钢管节点性能化设计的研究现状与关键问题[J].土木工程学报,2007,40(11):1-8.
    [46]陈以一,陈扬骥等.圆钢管空间节点的实验研究[J].土木工程学报,2003,36(8):24-30.
    [47]陈以一,王伟等.圆钢管相贯节点抗弯刚度和承载力实验[J].建筑结构学报,2001,22(6):25-30.
    [48]李明浩.钢管塔插板节点与相贯线节点及试验设备的研究[D].博士学位论文,上海:同济大学建筑工程系,2003.