砧木对嫁接西瓜生长发育及果实品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验采用上海地区西瓜的主栽品种早佳(8424),采用单叶切接和插接两种方法,以早佳自根苗为对照,设置5个嫁接组合:将军(葫芦)、华砧二号(葫芦)、超丰F1(葫芦)、抗砧二号(南瓜)、西域砧(野生西瓜),研究了在温室无土栽培条件下,不同砧木对嫁接西瓜生长发育及果实品质形成的影响。结论如下:
     1 砧木对嫁接西瓜生长发育的影响
     1.1 不同砧木对早佳(8424)的嫁接亲和性不同。单叶切接、插接的嫁接方法对西瓜嫁接成活率无显著影响,而砧木的基因型对嫁接成活率影响显著。超丰F1、华砧二号与早佳西瓜嫁接亲和性好,嫁接成活率高。各种嫁接组合植株长势优于自根苗。
     1.2 砧木对嫁接西瓜光合作用影响显著,不同砧木的嫁接西瓜叶片中的叶绿素含量无显著差异,嫁接西瓜叶片中的叶绿素含量高于自根苗;嫁接苗的光合速率高于自根苗。
     1.3 砧木对嫁接西瓜养分吸收特性的影响:嫁接苗的根系总吸收面积、根系活跃吸收面积均高于自根苗,不同砧木的嫁接苗之也达到了显著差异;早佳/抗砧二号嫁接组合的根系体积、根系活力明显优于其它组合和自根苗。不同砧木的嫁接苗对养分的吸收不同,抗砧二号为砧木的嫁接组合吸收K离子最多,为1020.90ppm,早佳/西域砧组合吸收Na~+较多,为48.13ppm,早佳/将军和早佳/超丰F1吸收磷较多;嫁接苗的伤流量均显著高于自根苗。
     1.4 嫁接能显著提高西瓜果实产量。西瓜的平均单果重无显著差异;早佳/抗砧二号西瓜小区产量及亩产量最高:为86.866kg,2897.0kg,差异显著。这与各嫁接组合的植株长势及根系吸收能力是一致的。
     2 砧木对嫁接西瓜果实发育及品质形成的影响
     2.1 不同砧木的嫁接西瓜果实发育过程中,糖含量变化规律基本一致。在西瓜果实发育早期,几乎没有蔗糖的积累,果糖和葡萄糖的含量相对较高,随着果实的发育,蔗糖和果糖含量增加显著,成为主要的可溶性糖。发育后期是蔗糖的主要积累期。早佳/抗砧二号西瓜的含糖量相对较低,为58.133mg/g。不同砧木嫁接组合中蔗糖含量差异较大,早佳/西域砧及早佳自根苗西瓜中蔗糖含量较高,早佳/将军及早佳/西域砧的西瓜中果糖含量较高,为32.62mg/g、21.64mg/g;早佳/将军西瓜中葡萄糖含量较高,为5.76mg/g。
     2.2 不同砧木的嫁接西瓜果实发育过程中有机酸含量的变化规律不同。早佳/抗砧二号西瓜有机酸含量在果实发育后期增加显著,到果实成熟时达到最高;而其它砧木的嫁接西瓜则是在果实发育后期有机酸含量急剧下降,至采收时降至最低。不同砧木之间相比较,有机酸含量
    
    吉林农业大学硕士学位论文
    砧木对嫁接西瓜生长发育及果实品质的影响
    从高到低依次为:抗砧二号、西域砧、将军、华砧二号、超丰F1、早佳自根苗。
    2.3不同砧木嫁接西瓜果实发育过程中维生素C、胡萝卜素含量的变化基本一致,均在发育初
    期较高,果实膨大期含量急剧下降;不同砧木的嫁接西瓜变化幅度不同,早佳/将军西瓜变化
    幅度较大,随着果实发育,含量逐渐增加;果实发育后期各嫁接组合的维生素C、胡萝卜素
    含量变化不显著。以杭砧二号为砧木的嫁接西瓜果实中维生素C含量最高,为0.656似
    g·1 00FW一,。
    2 .4各嫁接组合果实发育中游离氨基酸含量的变化趋势一致,随着果实发育进程的逐渐增加,
    各砧木对嫁接西瓜中游离氨基酸含量的增加幅度不同,早佳/超丰F1及早佳/将军西瓜中游离
    氨基酸含量较高,分别为5 .385mg/g,4.853mg/g;而早佳/杭砧二号组合果实中游离氨基
    酸的含量较低,为3.52mg/g。
    2 .5不同砧木嫁接西瓜果实中可溶性蛋白含量的增加幅度不同,早佳/超丰F1及早佳/将军西
    瓜中可溶性蛋白含量较高,早佳/抗砧二号西瓜中可溶性蛋白的含量较低。SDS一聚丙烯酞胺
    凝胶电泳也显示,早佳/杭砧二号西瓜中可溶性蛋白种类少,含量较低,比自根苗西瓜少四条
    谱带,分子量分别为24.6 kD,28.51 kD,35.93 kD,39.s4k。。
    2.6砧木对嫁接西瓜果实中的硝酸盐含量并无显著影响,在果实发育初期稍酸盐含量较高,
    随着果实逐渐发育,硝酸盐含量逐渐降低,达到国家绿色食品标准。
    2.7砧木对西瓜果实感官品质的影响:早佳/西域砧西瓜与自根苗西瓜感官品质相似,早佳/
    将军及早佳/超丰F1西瓜感官品质优于自根苗西瓜;而以杭砧二号为砧木的嫁接西瓜果实中
    却略带异味。
     综合分析表明,砧木强大的吸收能力,促进了嫁接西瓜的生长发育,提高了产量。不同
    砧木对西瓜果实品质形成有较大影响。以杭砧二号(南瓜)为砧木的嫁接西瓜,糖度降低,有
    机酸含量增加,风味受到影响;将军(葫芦)及超丰F1(葫芦)为砧木对早佳西瓜品质影响
    不大,是早佳西瓜的理想砧木。
The effects of different rootstocks on growth, development and fruit quality formation of grafted watermelon in soilless medium culture have been studied in this paper. The mainly planted watermelon variety Zaojia (CK) in Shanghai and two grafting methods have been used in the experiments. Five grafting treatments were selected as Zaojia/Jiangjun, Zaojia/Huazhen-2, Zaojia/ChaofengF1, Zaojia/Kangzhen-2 and Zaojia/Xiyu compared with the Zaojia(CK). The results were as follows:
    1. Effect of rootstocks on growth and development of grafted watermelon
    1.1 Different grafting treatments had different grafting compatibility. The survival rate of grafting watermelon had no significant difference in two grafting methods, but was significantly influenced by genotypes of rootstocks. Zaojia/ChaofengFl and Zaojia/Huazhen-2 had better grafting compatibility, and their survival rates were also higher than that of others. All grafting treatments grew better than Zaojia.
    1.2 Different rootstock species had significant effects on photosynthesis of grafted watermelon plants. Chlorophyll contents of the grafted watermelon leaves among different rootstocks had no significant difference. Chlorophyll contents and photosynthesis of grafted watermelon are higher than Zaojia.
    1.3 Effect of rootstocks on nutrient absorbability of grafted watermelon had been tested in this program. The total root absorbing area and active absorbing area of grafted watermelon roots were higher than that of Zaojia, and it was also significant difference among different treatments. The root volume and root vigure of Zaojia/Kangzhen-2 were obviously superior than that of other treatments and Zaojia. Grafted with different rootstocks, the seedlings absorption were also different. Zaojia/Kangzhen-2 had more absorption of K+, 1020.90ppm ;Zaojia/Xiyu had more absorption of Na+,48.13ppm; while Zaojia/Jiangjun and Zaojia/ChaofengF1 had more absorption of phosphorus. The bleeding sap quantities of grafted treatments were obviously higher than that of Zaojia.
    1.4 Watermelon yields were obviously enhanced by grafting. Zaojia/Kangzhen-2 produced the highest yield. Watermelon yields of all grafting treatments were higher than Zaojia except for Zaojia/Huazhen-2. And this consisted with the growth and root absorbency of grafting treatments.
    2. Effect of rootstocks on fruit development and quality formation of grafted watermelon
    
    
    
    2.1 Sugar contents of different treatments had the same changes during fruit development. Sucrose and fructose were the main soluble sugar of watermelon fruit. In the forepart of fruit development, there was almost no accumulation of sucrose, but fructose and glucose contents were higher. Along with the developing of fruit, the main soluble sugar such as sucrose and fructose contents increased significantly. Sucrose mainly accumulated in the anaphase of fruit development and had higher contents in the fruits of Zaojiao/ Kangzhen-2 ,58.133mg/g. Total sugar contents of Zaojiao/ Xiyu and Zaojia were lower than others. Higher fructose contents was in Zaojia/Xiyu and Zaojia/Jiangjun, 32.62 mg/g 21.64 mg/g; while higher glucose contents was in Zaojia/Jiangjun, 5.76 mg/g.
    2.2 Changes of organic acid in different combinations are different during fruit development. Organic acid content in Zaojia/Kangzhen-2 increased obviously during fruit developing anaphase, and reached the highest when fruits matured, but others decreased rapidly. The highest content of organic acid was measured in Zaojia/Kangzhen-2, and it took turns of Zaojia/Xiyu, Zaojia/Jiangjun, Zaojia/Huazhen-2, Zaojia/ChaofengF1 and Zaojia.
    2.3 Changes of vitamin C and carotenoid of different treatments were consistent during fruit development, and the contents of them are higher in developing forepart and decreased rapidly during fruits swell. Changes of different rootstocks were different. Zaojia/Jiangjun changed greatly, and during the developing of fruit, the content increased gradually. Vitamin C and carotenoid contents had no significant difference in anaphase.
引文
[1] 范红伟,黄丹枫主编.西瓜、甜瓜安全生产实用技术.上海,上海科学技术出版社,2004,22.
    [2] 中国西瓜甜瓜.中国农业科学院郑州果树研究所等主编[M].北京:中国农业出版社,2000,6.
    [3] 蒋有条.瓜类嫁接栽培.北京:金盾出版社,2000,4.
    [4] 吴安华,陈思.西瓜嫁接防枯萎病的嫁接技术.江西植保,2000(4):120~125.
    [5] 郑群,宋维慧.国内外蔬菜嫁接技术研究进展.长江蔬菜,2000,8(上):1~6,9(下):1~8.
    [6] 张纯胄,陈永兵,胡丽秋,等.西瓜嫁接防治枯萎病的砧木筛选[J].上海农业科技,2001(1):62~63.
    [7] 蒋有条.我国瓜类嫁接栽培进展及展望.中国蔬菜,1998,6:1~3.
    [8] 郭超.西瓜嫁接栽培的防病增产效果.中国蔬菜,1995,6:25~27.
    [9] 郭传友,黄坚钦,方炎明.植物嫁接机理研究综述.江西农业大学学报,2004,26(1):144~148.
    [10] 高桥和彦,西太道/姚方杰,李国花(译).保护地蔬菜生理障碍与病害诊断原色图谱[M].吉林科学技术出版社,2000,65.
    [11] 钱伟.西瓜甜瓜嫁接亲和生理的研究.浙江农业大学研究生论文,1994.
    [12] 村松安南(李夷波译).日本果菜类蔬菜的嫁接问题及其最近的技术动向.国外农业科技,1982,7:24.
    [13] 郁继华,秦舒浩.黄瓜品种间嫁接苗和自根苗光合特性研究[J].兰州大学学报(自然科学版),2001,37(6):63~68.
    [14] 马德华,庞金安,霍振荣,等.环境因素对黄瓜幼苗光合特性的影响[J].华北农学报,1997,12(4):97~100.
    [15] 孙艳,黄炜.两个黄瓜品种嫁接苗光合特性及养分吸收特性的研究[J].园艺学报,2002,29(2):179~180.
    [16] Champingny ML.Integration of photosynthetic carbon and nitrogen metabolism in higher plants.Photosyn Res, 1995,46:117-127.
    [17] Masaharu Masuda, Kiyoshi Gomi. Mineral abosorption and oxygen consumption in grafted and non —grafted cucum—bers.J.Japn.Soc.Hort.Sci, 1984,52 (4):414—419.
    [18] AralK. Physiogcal and ecological responses in some kinds of grafted plants, Symp Autumn Meet.J Japn Soc Hort Sci,1980,67~73.
    [19] Walton E F, DeJong T M. Growth and compositional changes in kivifruit berries from three Californan locations. Ann Bot, 1990,66:285~298.
    [20] Shoji Tachibana.Effect of root temperture on the concentration and fatty acid composition of phospholipids in cucumber and figleaf gourd roots. J Japn Soc Hort Sci. 1987,56 (2): 180~186.
    [21] 稻田典司.植物营养生理.化学生物,1997,17(4):213~219.
    [22] 王玉彦.不同砧木对嫁接黄瓜生理影响的研究[J].中国蔬菜,1995,2:12~14.
    
    
    [23] 室园正敏.急性萎症症发生要因.农业园艺,1984,59(7):923~928.
    [24] 吕英民,张大鹏.果实发育过程中糖的积累[J].植物生理学通讯,2000,36(3):258~265
    [25] Wang F, Smith A G,B, Stutte G W. Partitioning of C-glucose into sorbitol and other carohgdrates in apple water stress. Aust J Plant, 1996,23:245~251.
    [26] 陈俊伟,张良诚,张上隆,等.果实中的糖分积累机理[J].植物生理学通讯,2000,36(6)497~505.
    [27] Ho L C,Hewitt J D.Fruit development.In:Atherton J C,Rudich J (eds). Tomato Crop:Scientifuc Basis for Improvement.London:Chapman and Hall, 1986,202~226.
    [28] Ruan Y L,Patrick JW. The cellular pathway of postphloem sugar transport in developing tomato fruit.Planta, 1995,196:434~444.
    [29] Ofosu-Anim J.Kanayama Y, Yamaki S.Sugar uptake into strawberry fruit is syimulated by abscisic acid and indoleacetic acid.Physiol. Plant. 1996,97:169~174.
    [30] 刘明锵,何铁柱.不同砧木嫁接西瓜果重、可溶性固形物含量、产籽量及相关的影响[J].中国西瓜甜瓜,1998,(1):15~17.
    [31] 陶勤南,方萍.氮磷钾肥对西瓜产量与优质风味成分的影响[J].中国西瓜甜瓜,1990,1:22~26.
    [32] 刘强,荣湘民,朱红梅,等.不同水稻品种在不同栽培条件下氮代谢的差异[J].湖南农业大学学报(自然科学版),2001,27(6):415~420.
    [33] 刘慧英,嫁接影响西瓜果实品质和幼苗耐冷性的生理机制研究.浙江大学博士学位论文,2003.
    [34] 关佩聪,陈玉娣.氮素营养与花椰菜代谢和产量的初步研究[J].华南农业大学学报,15(1)94:85~90.
    [35] 邱孝煊,任祖淦,王坤泉,等.蔬菜硝酸盐累积及其防治的探讨.福建农业科技,1998(增刊):69~71.
    [36] 方益华.高硼胁迫对油菜氮素代谢的影响[J].中国油料作物学报 2000,(3):54~56.
    [37] 鲁运江.氮肥不同用量对西瓜产量和品质的影响[J].土壤肥料,1997,(4):48.
    [38] 黄庆.不同氮素水对厚皮甜瓜品质和产量的影响[J].广东农业科学,2000,(3):34~35.
    [39] 任祖淦.氮肥施用与蔬菜硝酸盐积累的相关研究.生态学报,1998,(5):523~528.
    [40] 黄明勤.硝酸还原酶活力与作物耐肥性的研究(Ⅳ).玉米幼苗硝酸还原酶活力与品种耐肥性的关系.作物学报,1987,13(1):19-22.
    [41] 胡定金,Vlassak K.不同光强下硝酸根离子停供对蔬菜硝酸盐含量的影响[J].土壤肥料,1993(4):27~30.
    [42] 张夫道.氮素营养研究中几个热点问题.植物营养与肥料学报,1998,(4):331~338.
    [43] 刑雪荣.有机酸对蔬菜硝酸还原酶亚硝酸还原酶活性的影响[J].植物学通报,1995(12):156~162.
    [44] 吴吉仁.NFT栽培下不同营养液对提高蔬菜营养的作用[J].上海师范大学学报(自然科学版)1996,12
    
    (4):59~64.
    [45] 王永章,张大鹏.‘红富士’苹果果实蔗糖代谢与酸性转化酶和蔗糖合成酶的关系研究[J].园艺学报,2001,28(3):259~261.
    [46] 关军峰主编.果实品质研究[M].河北科学技术出版社,2000.
    [47] 胡繁荣.不同砧木对西瓜嫁接的影响[J].浙江农业科学,2000(3):46~49.
    [48] 范红.对上海地区优质西瓜甜瓜安全卫生标准化生产之我见.中国西瓜甜瓜,2002,(2):51-53.
    [49] 中国土壤学会农业化学专业委员会.土壤农化常规分析方法[M].北京:科学出版社.1983,338~343.
    [50] 黄丹枫,牛庆良,程浩.无土栽培甜瓜果实发育生理与品质分析[J].上海农业学报,1998,14(3):51~55.
    [51] 俞正旺.西瓜营养与施肥[J].北方园艺,1994,4:21~23.
    [52] 袁家富.不同有机肥比例对西瓜品质的影响[J].中国西瓜甜瓜,1995(4):11~12.
    [53] 林多,黄丹枫.栽培基质甜瓜矿物质营养吸收规律的研究[J].植物营养与肥料学报,2003,9(1):112~116.
    [54] 白宝璋,王景安,孙玉霞,等.植物生理学测试技术[M].北京:中国科学技术出版社,1986.
    [55] 高俊凤,植物生理学试验技术[M].西安,世界图书出版公司,2000,137~138.顿宝祥.大棚效果嫁接育苗技术及适宜砧木选择研究[J].中国蔬菜,1990,3:11~13.
    [56] 周欣,王庆彪,刘锡钧,等.气相色谱法检测葡萄糖、麦芽糖、果糖和蔗糖[J].海峡药学,2001,13(4):48~49.
    [57] 黄文风,宋铁英.枇杷组织中糖的气相色谱测定[J].福建省农科院学报,1994,9(1):14~17.
    [58] 徐桂云,陈汝贤,常理文.用毛细管气相色谱法测定多糖中单糖的组成[J].分析测试学报,2000,19(3):71~73.
    [59] 汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000,77~108.
    [60] Traka M E, Koutsika S M, Poitsa T. Response of squash (Cucurbita spp.) as rootstock for melon(Cucumis melon). Scientia Horticultutae. 2000,83: 353~362.
    [61] 邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1987.
    [62] 徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,1996,197~199.
    [63] 徐敬华.嫁接西瓜枯萎病抗性的生理机制研究.上海交通大学硕士毕业论文,2004.3.
    [64] 陈克农,张鹏.吊蔓栽培对大棚西瓜生长发育及产量品质影响[J].北方园艺,1998,4:15.
    [65] 林克惠,Don Lytton,毛昆明,等.不同施钾量对冬小麦几个光合特性和产量的影响[J].云南农业大学学报,1994,9(3):129~135.
    [66] 刘克礼,盛晋华.春玉米叶片叶绿素含量与光合速率的研究[J].内蒙古农牧学院学报,1998,19(2):48~51.
    
    
    [67] 陈桂林.低温胁迫对西葫芦嫁接苗光合特性的影响[J].上海农业学报,2000,1:42~45.63曾希柏,谢德体,青长乐,等.氮肥用量对莴笋光合特性影响的研究[J].植物营养与肥料学报,1997,3(4):324~327.
    [68] 许大全.光合作用“午睡”现象的生态、生理与生化[J].植物生理学通讯,1990,(6):5~10.
    [69] 魏书銮,于继洲,宣有林,等.核桃叶片的叶绿素含量与光合速率关系的研究[J].北京农业科学.,1994,12(5):31~33.
    [70] 赵明,王美云,李少昆.玉米不同自交系叶片色素及其与光合速率关系的研究[J].中国农业大学学报,1998,3(1):83~87.
    [71] 许大全,沈允钢.光合作用的限制因子.见:余叔文,汤章城主编.植物生理与分子生物学(第二版)[M].北京:科学出版社,1999.
    [72] 许大全,李德耀,沈允刚,等.田间小麦光合作用“午休”现象的研究[J].植物生理学报,1984,10(3):269~276.
    [73] 张大鹏,黄丛林,王学臣,等.葡萄叶片净光合速率与量子效率日变化的研究及利用[J].植物学报,1995,10(1):25~33.
    [74] 沈允刚,施教耐,许大全.动态光合作用[M].科学出版社,北京,1998,141~145.
    [75] 庞金安,马德华,李淑菊.黄瓜光合作用的研究[J].天津农业科学,1997,3(4):8~10.
    [76] Peet M.M., Huber S. C. Patterson D. T. Acclimation to high CO_2 in monoecious cucumber. Ⅱ. Carbon exchange rate, enzyme activity and starch and nutrient concentrations. Plant Physiol. 1986,80(1): 63~67.
    [77] 孙艳,黄炜,田霄鸿,等.黄瓜嫁接苗生长状况、光合特性及养分吸收特性的研究[J].植物营养与肥料学报,2002,8(2):181~185.
    [78] Jia H.J., Hirano K., Okamoto G. Effects of fertilizer levels on tree growth and fruit quality of 'Hakuho' peaches (Prunus persica). J. Japan. Soc. Hort. Sci. 1999, 68(3): 487~493.
    [79] Kagohashi S., Kano H. Effects of controlling the nutrient uptake on plant growth and fruit quality of muskmelons grown in the autumn and spring. J. Japan. Soc. Hort. Sci., 1981, 50(3): 306~316.
    [80] Kano H., Kagohashi S., Kageyama M. Relationship between organ growth and nitrogen accumulation in muskmelon. J. Japan Soc. Hort Sci., 1981, 50(3): 317~325 (Written in Japanese with English summary).
    [81] Rinco-Sanchez-L, Saez-Sironi-J, Perez-Crespo-JA, et al. Growth and nutrient absorption by muskmelon crop under greenhouse conditions. 《Acta-Horticulturae》,1998, No. 458,153~159.
    [82] 齐三魁,吴大康,林德佩.中国甜瓜[M].北京:科学普及出版社,1991.
    [83] 农业部科学技术司主编.中国南方农业中的钾[M].北京:农业出版,1991.
    
    
    [84] Masaharu Masuda, Klyssht Goml.Diurnal changes of the exudate rate and the mineral concentration in xylem sap after decapitation of grafted and non—grafted cucumbers.J Japn Soc Hort Sci,1982,51 (3) :293~298.
    [85] Masaharu masuda. Minerd concentrations in xylem exudate of tomato and cucumbers plants at midday and midnight.J Japn Soc Hort Sci,1989,52 (3) 619~625.
    [86] Tachibana S. Effect of root temperature on the rate of water and nutrient ahsorption in cucumber cultivars and figleaf gourd.J Japn Soc Hort Sci,1987,55 (3):461~467.
    [87] Choi Kyongju, Chung Gapchae,Ahn Sungiu.Effect of root zone temperature on the mineral composition of xylem sap and plasma membrane K'-Mg—ATPase activity of grafted—cucumber and figleaf gourd root systems. Plant Physiology,1995,36 (4):639~643.
    [88] 邓月娥,张传来,牛立元,等.桃果实发育过程中主要营养成分的动态变化及系统分析方法研究[J].果实科学,1998,15(1):50.
    [89] 赵智慧,周俊义.果树果实内在品质形成及评价方法研究进展.河北农业大学学报,2002,25(增刊):111~114.