复杂轻金属氢化物的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的日益枯竭和其大规模使用对环境污染的加重,人类开始寻找可替代的新型能源。氢被认为是化石能源最佳替代物。大规模使用氢气的最大挑战来自于缺乏商业上可行的氢储存技术。高压气态储氢和液态储氢难以满足未来的氢储存要求。在适当温度和压力下,一些金属或合金和氢气结合形成氢化物,这种固态储氢方式具有比气态和液态更好的安全性和发展潜力。近来,人们做了大量研究来改善金属氢化物的储氢性能。
     实际的储氢材料不仅要具有良好的热力学属性,还必须有足够快的吸放氢动力学。本论文只研究材料是否具有令人满意的可逆吸放氢反应热力学属性。因为理论上来说,通过添加催化剂或控制反应物颗粒的大小,金属氢化物的反应动力学可以得到显著地改善。本文运用第一性原理计算研究了复杂轻金属氢化物的氢储存能力、晶体和电子结构及其热力学属性。论文主要包括以下内容:
     1.使用基于广义梯度近似的密度泛函理论研究了Li_xNa_(1-x)MgH_3 (x = 0, 0.25, 0.5, 0.75)的热力学属性和电子结构。计算得到的内聚能表明,随着Li在Li_xNa_(1-x)MgH_3中含量的增加,氢化物的稳定性增强。研究了氢化物Li_xNa_(1-x)MgH_3沿四条可能的放氢反应路径的反应焓,结果显示随着Li含量从0增加到0.75,其中两条反应路径的反应焓几乎呈线性地降低。计算结果表明Li替代NaMgH3中的部分Na改善了其储氢性能,有利于其实际应用。
     2.由于具有很高的储氢质量密度,金属硼氢化物作为一种潜在的先进储氢材料而引起了广大科研工作者的兴趣。在本论文中,基于第一性原理计算研究了实验上最新合成的双阳离子碱金属硼氢化物LiK(BH_4)_2。结果表明LiK(BH_4)_2是宽带隙绝缘体,带隙为6.08 eV。金属阳离子和阴离子团(BH_4)~-具有离子相互作用,四面体(BH_4)~-中B-H键之间具有共价相互作用。计算结果表明LiK(BH_4)_2的分解温度位于LiBH_4和KBH_4的分解温度之间。因此,通过双或多阳离子复合能有效地调控金属硼氢化物的热力学稳定性,从而改善其放氢温度。
     3.基于第一性原理计算,研究了面心立方镁–过渡金属氢化物Mg_7TMH_(16) (TM = Sc, Ti, V, Y, Zr, Nb)的能量和电子属性。内聚能计算用来分析氢化物的稳定性,得到氢化物的形成焓用来分析其可能的形成反应路径。计算得到的放氢反应焓表明Mg_7TMH_(16)具有比MgH_2更低的分解温度。电子态密度显示Mg_7TMH_(16)表现出金属性。研究了氢化物Mg_7TMH_(16)的成键属性,表明Mg-H和Mg-TM原子间的相互作用呈明显的离子性,而TM-H原子间具有强的共价相互作用。
Growing concern about the future nonavailability and environmental pollution of fossil energy has led to the search of alternative fuels. Hydrogen is one possible energy carrier that could one day replace fossil fuels. One of the most daunting challenges for widespread use of H2 as a fuel is the absence of a commercially viable H2 storage technology. The relatively advanced storage methods such as high-pressure gas or liquid cannot fulfill future storage goals. Hydrogen forms metal hydrides with some metals and alloys leading to solid-state storage under moderate temperature and pressure, which has the important safety advantage over the gas and liquid storage methods. Intensive research has been done on metal hydrides recently for improvement of hydrogenation properties.
     Practical hydrogen storage materials must not only exhibit favorable thermodynamic properties but also have sufficiently rapid hydrogenation/dehydrogenation kinetics. The work presented in this paper is limited to identifying materials for reversible H2 storage with acceptable reaction thermodynamics. Our focus on thermodynamics is motivated by the observation that the reaction kinetics of light metal hydrides can, at least in principle, be significantly accelerated by using catalysts or by controlling the particle size of reactants. The present dissertation has investigated hydrogen-storage capacity, crystal and electronic structure, and thermodynamic properties of complex light metal hydrides. The main contents of this dissertation are as following:
     1. The thermodynamic and electronic properties of Li_xNa_(1-x)MgH_3 (x = 0, 0.25, 0.5 and 0.75) have been investigated using the density functional theory within the generalized-gradient approximation. The obtained cohesive energies indicate that the stability of crystal increases with increasing Li element in Li_xNa_(1-x)MgH_3. The reaction enthalpies for Li_xNa_(1-x)MgH_3 phases have been investigated along four possible dehydrogenation reaction pathways, and the enthalpy change of two pathways is found to be nearly linearly reduced with increasing the Li substitution level from x=0 to x = 0.75. The obtained calculation results suggest that Li substitution in NaMgH3 may result in a favorable modification for onboard hydrogen storage application.
     2. Metal borohydrides have been attracting great interest as potential candidates of advanced hydrogen storage materials because of their high gravimetric hydrogen densities. In the present study, first-principles calculations have been performed for the newly reported dual-cation alkali metal borohydride LiK(BH_4)_2. LiK(BH_4)_2 is an insulating material having a DFT-calculated wide band gap of 6.08 eV. Analysis of the electronic structure shows an ionic interaction between metal cations and (BH4)~-, and the covalent B–H interaction within the (BH4)~- tetrahedron. The decomposition temperature of LiK(BH_4)_2 lies between those of LiBH4 and KBH4, which suggests that the hydrogen decomposition temperature of metal borohydrides can be precisely adjusted by the appropriate combination of cations.
     3. First-principles calculations have been performed on the face-centered cubic (FCC) magnesium-transition metal hydrides Mg_7TMH_(16) (TM = Sc, Ti, V, Y, Zr, Nb). The cohesive energies are calculated to analyze the stability, and the obtained enthalpies of formation for hydrides Mg_7TMH_(16) have been used to investigate the possible pathways of formation reaction. The calculated enthalpy changes show that the decomposition temperatures of Mg_7TMH_(16) are lower than that of MgH_2. The electronic densities of states reveal that all the hydrides studied here exhibit metallic characteristics. The bonding nature of Mg_7TMH_(16) is investigated, showing stronger covalent bonding between TM and H than between Mg and H.
引文
[1] Satyapal S, Petrovic J, Read C, et al. The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements[J]. Catal. Today, 2007, 120 (3-4): 246-256.
    [2]谢衍生,孙岳明,傅岩,等.储氢材料的发展概况[J].材料导报, 2004, 18 (005): 76-78.
    [3]尚福亮,杨海涛,韩海涛.金属储氢材料研究概况[J].稀有金属快报, 2006, 25 (002): 11-16.
    [4] Fujii H, Ichikawa T. Recent development on hydrogen storage materials composed of light elements[J]. Physica B, 2006, 383 (1): 45-48.
    [5]胡子龙,储氢材料[M].化学工业出版社. 2002: 9-13.
    [6] Johnston B, Mayo M C, Khare A. Hydrogen: the energy source for the 21st century[J]. Technovation, 2005, 25 (6): 569-585.
    [7] Satyapal S, Read C, Ordaz G, et al. DOE Hydrogen Program Annual Merit Review Proceedings (2006). http://www.hydrogen.energy.gov/annual_review06_plenary.html.
    [8]李玲,向航,功能材料与纳米技术[M].化学工业出版社. 2002: 173-178.
    [9]胡子龙,储氢材料[M].化学工业出版社. 2002: 1-5.
    [10] Beck R L, Intermetallic Compounds. Westbrook J H, Ed. Wilry: New York, 1967.
    [11] Pebler A, Gulbransen E A. Equilibrium Studies on the Systems ZrCr2-H2, ZrV2-H2 and ZrMo2-H2 Between 0oC and 900oC[J]. Trans. Metall. Soc. AIME, 1967, 239: 1593-1967.
    [12] Reilly J J, Wiswall R H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4[J]. Inorg. Chem., 1968, 7 (11): 2254-2256.
    [13] Vucht V, Kuijpers F A, Bruning H C A M. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds[J]. Philips Research Reports, 1970, 25 (2): 133-146.
    [14] Reilly J J, Wiswall R H. Formation and properties of FeTi hydride[J]. Inorg. Chem., 1974, 13: 218.
    [15] Renaudin G, Gomes S, Hagemann H, et al. Structural and spectroscopic studies on the alkali borohydrides MBH4 (M= Na, K, Rb, Cs)[J]. J. Alloys Compd., 2004, 375 (1-2): 98-106.
    [16] Li H, Orimo S, Nakamori Y, et al. Materials designing of metal borohydrides: Viewpoints from thermodynamical stabilities[J]. J. Alloys Compd., 2007, 446: 315-318.
    [17] Lovvik O, Molin P In First-principles study of alkaline-earth alanates, American Institute of Physics, 2 Huntington Quadrangle, Suite 1 NO 1, Melville, NY, 11747-4502, USA: 2006; pp 85-90.
    [18] Lovvik O M, Swang O, Opalka S M. Modeling alkali alanates for hydrogen storage by density-functional band-structure calculations[J]. J. Mater. Res., 2005, 20 (12): 3199-3213.
    [19] Fossdal A, Brinks H W, Fichtner M, et al. Thermal decomposition of Mg(AlH4)2 studied by in situ synchrotron X-ray diffraction[J]. J. Alloys Compd., 2005, 404: 752-756.
    [20] Grotjahn D B, Sheridan P M, Jihad I A, et al. First synthesis and structural determination of a monomeric, unsolvated lithium amide, LiNH2[J]. J. Am. Chem. Soc., 2001, 123 (23): 5489-5494.
    [21] Gross K J, Thomas G J, Jensen C M. Catalyzed alanates for hydrogen storage[J]. J. Alloys Compd., 2002, 330: 683-690.
    [22] Sandrock G, Gross K, Thomas G. Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates[J]. J. Alloys Compd., 2002, 339 (1-2): 299-308.
    [23] Bogdanovic B, Schwickardi M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials[J]. J. Alloys Compd., 1997, 253: 1-9.
    [24] Bogdanovic B, Sandrock G. Catalyzed complex metal hydrides[J]. MRS Bull., 2002, 27 (9): 712-716.
    [25] Bogdanovic B, Felderhoff M, Kaskel S. Improved hydrogen storage properties of Ti-doped sodium alanate using titanium nanoparticles as doping agents[J]. Adv. Mater., 2003, 15 (12): 1012-1015.
    [26] Fichtner M, Fuhr O, Kircher O, et al. Small Ti clusters for catalysis of hydrogen exchange in NaAlH4[J]. Nanotechnology, 2003, 14 (7): 778-785.
    [27] Bellosta von Colbe J M, Bogdanovic B, Felderhoff M, et al. Recording of hydrogen evolution-a way for controlling the doping process of sodium alanate by ball milling[J]. J. Alloys Compd., 2004, 370 (1-2): 104-109.
    [28] Züttel A, Wenger P, Rentsch S, et al. LiBH4 a new hydrogen storage material[J]. J. Power Sources, 2003, 118 (1-2): 1-7.
    [29] Vajo J J, Mertens F, Ahn C C, et al. Altering Hydrogen Storage Properties by Hydride Destabilization through Alloy Formation: LiH and MgH2 Destabilized with Si[J]. J. Phys. Chem. B, 2004, 108 (37): 13977-13983.
    [30] Vajo J J, Skeith S L, Mertens F. Reversible Storage of Hydrogen in Destabilized LiBH4[J]. J. Phys. Chem. B, 2005, 109 (9): 3719-3722.
    [31] Nakamori Y, Ninomiya A, Kitahara G, et al. Dehydriding reactions of mixed complex hydrides[J]. J. Power Sources, 2006, 155 (2): 447-455.
    [32] Chen P, Xiong Z, Luo J, et al. Interaction of hydrogen with metal nitrides and imides[J]. Nature, 2002, 420 (6913): 302-304.
    [33] Hu Y H, Ruckenstein E. Highly Effective Li2O/Li3N with Ultrafast Kinetics for H2 Storage[J]. Ind. Eng. Chem. Res, 2004, 43 (10): 2464-2467.
    [34] Hu Y H, Yu N Y, Ruckenstein E. Effect of the Heat Pretreatment of Li3N on Its H2 Storage Performance[J]. Ind. Eng. Chem. Res, 2004, 43 (15): 4174-4177.
    [35] Lu J, Fang Z Z, Sohn H Y. A New Li-Al-N-H System for Reversible Hydrogen Storage[J]. J. Phys. Chem. B, 2006, 110 (29): 14236-14239.
    [36] Kojima Y, Kawai Y. IR characterizations of lithium imide and amide[J]. J. Alloys Compd., 2005, 395 (1-2): 236-239.
    [37] Nakamori Y, Orimo S. Destabilization of Li-based complex hydrides[J]. J. Alloys Compd., 2004, 370 (1-2): 271-275.
    [38] Aoki M, Miwa K, Noritake T, et al. Destabilization of LiBH4 by mixing with LiNH2[J]. Appl. Phys. A, 2005, 80 (7): 1409-1412.
    [39] Nakamori Y, Kitahara G, Miwa K, et al. Reversible hydrogen-storage functions for mixtures of Li3N and Mg3N2[J]. Appl. Phys. A, 2005, 80 (1): 1-3.
    [40] Noritake T, Nozaki H, Aoki M, et al. Crystal structure and charge density analysis of Li2NH by synchrotron X-ray diffraction[J]. J. Alloys Compd., 2005, 393 (1-2): 264-268.
    [41] Pinkerton F. Decomposition kinetics of lithium amide for hydrogen storage materials[J]. J. Alloys Compd., 2005, 400 (1-2): 76-82.
    [42] Nakamori Y, Orimo S. Li-N based hydrogen storage materials[J]. Mater. Sci. Eng. B, 2004, 108 (1): 48-50.
    [43] Isobe S, Ichikawa T, Hanada N, et al. Effect of Ti catalyst with different chemical form on Li-N-H hydrogen storage properties[J]. J. Alloys Compd., 2005, 404: 439-442.
    [44] Ichikawa T, Hanada N, Isobe S, et al. Hydrogen storage properties in Ti catalyzed Li-N-H system[J]. J. Alloys Compd., 2005, 404: 435-438.
    [45] Hino S, Ichikawa T, Ogita N, et al. Quantitative estimation of NH3 partial pressure in H2 desorbed from the Li-N-H system by Raman spectroscopy[J]. Chem. Commun., 2005, 2005 (24): 3038-3040.
    [46] Matsumoto M, Haga T, Kawai Y, et al. Hydrogen desorption reactions of Li-N-H hydrogen storage system: Estimation of activation free energy[J]. J. Alloys Compd., 2007, 439 (1-2): 358-362.
    [47] Markmaitree T, Ren R, Shaw L L. Enhancement of Lithium Amide to Lithium Imide Transition via Mechanical Activation[J]. J. Phys. Chem. B, 2006, 110 (41): 20710-20718.
    [48] Shaw L, Ren R, Markmaitree T, et al. Effects of mechanical activation on dehydrogenation of the lithium amide and lithium hydride system[J]. J. Alloys Compd., 2008, 448 (1-2): 263-271.
    [49] Hu Y H, Ruckenstein E. H2 Storage in Li3N. Temperature-Programmed Hydrogenation and Dehydrogenation[J]. Ind. Eng. Chem. Res, 2003, 42 (21): 5135-5139.
    [50] Hu Y H, Ruckenstein E. Ultrafast Reaction Between LiH and NH3 During H2 Storage in Li3N[J]. J. Phys. Chem. A, 2003, 107 (46): 9737-9739.
    [51] Ichikawa T, Isobe S, Hanada N, et al. Lithium nitride for reversible hydrogen storage[J]. J. Alloys Compd., 2004, 365 (1-2): 271-276.
    [52] Ichikawa T, Hanada N, Isobe S, et al. Mechanism of Novel Reaction from LiNH2 and LiH to Li2NH and H2 as a Promising Hydrogen Storage System[J]. J. Phys. Chem. B, 2004, 108 (23): 7887-7892.
    [53] Meisner G, Pinkerton F, Meyer M, et al. Study of the lithium–nitrogen–hydrogen system[J]. J. Alloys Compd., 2005, 404: 24-26.
    [54] Isobe S, Ichikawa T, Kojima Y, et al. Characterization of titanium based catalysts in the Li-N-H hydrogen storage system by X-ray absorption spectroscopy[J]. J. Alloys Compd., 2007, 446: 360-362.
    [55] Engback J, Nielsen G, Nielsen J H, et al. Decomposition of lithium amide and imide films on nickel[J]. Surf. Sci., 2007, 601 (3): 830-836.
    [56] Hu Y H, Ruckenstein E. Hydrogen storage of Li2NH prepared by reacting Li with NH3[J]. Ind. Eng. Chem. Res, 2006, 45 (1): 182-186.
    [57] David W I F, Jones M O, Gregory D H, et al. A Mechanism for Nonstoichiometry in the Lithium Amide/Lithium Imide Hydrogen Storage Reaction[J]. J. Am. Chem. Soc., 2007, 129 (6): 1594-1601.
    [58] Hino S, Ichikawa T, Tokoyoda K, et al. Quantity of NH3 desorption from the Li-N-H hydrogen storage system examined by Fourier transform infrared spectroscopy[J]. J. Alloys Compd., 2007, 446: 342-344.
    [59] Zhang C, Alavi A. A First-Principles Investigation of LiNH2 as a Hydrogen-Storage Material: Effects of Substitutions of K and Mg for Li[J]. J. Phys. Chem. B, 2006, 110 (14): 7139-7143.
    [60] Miwa K, Ohba N, Towata S, et al. First-principles study on lithium amide for hydrogen storage[J]. Phys. Rev. B, 2005, 71: 195109.
    [61] Magyari-K?pe B, Ozolin? V, Wolverton C. Theoretical prediction of low-energy crystal structures and hydrogen storage energetics in Li2NH[J]. Phys. Rev. B, 2006, 73 (22): 220101-4.
    [62] Balogh M P, Jones C Y, Herbst J F, et al. Crystal structures and phase transformation of deuterated lithium imide, Li2ND[J]. J. Alloys Compd., 2006, 420 (1-2): 326-336.
    [63] Zhang C, Dyer M, Alavi A. Quantum Delocalization of Hydrogen in the Li2NH Crystal[J]. J. Phys. Chem. B, 2005, 109 (47): 22089-22091.
    [64] Gupta M, Gupta R P. First principles study of the destabilization of Li amide–imide reaction for hydrogen storage[J]. J. Alloys Compd., 2007, 446: 319-322.
    [65] Mueller T, Ceder G. Effective interactions between the N-H bond orientations in lithium imide and a proposed ground-state structure[J]. Phys. Rev. B, 2006, 74 (13): 134104-7.
    [66] Song Y, Guo Z X. Electronic structure, stability and bonding of the Li-N-H hydrogen storage system[J]. Phys. Rev. B, 2006, 74 (19): 195120-7.
    [67] Nakamori Y, Kitahara G, Orimo S. Synthesis and dehydriding studies of Mg-N-H systems[J]. J. Power Sources, 2004, 138 (1-2): 309-312.
    [68] Xiong Z, Wu G, Hu J, et al. Investigation on chemical reaction between LiAlH4 and LiNH2[J]. J. Power Sources, 2006, 159 (1): 167-170.
    [69] Hu J, Xiong Z, Wu G, et al. Effects of ball-milling conditions on dehydrogenation of Mg(NH2)2–MgH2[J]. J. Power Sources, 2006, 159 (1): 120-125.
    [70] Hu J, Wu G, Liu Y, et al. Hydrogen Release from Mg(NH2)2–MgH2 through Mechanochemical Reaction[J]. J. Phys. Chem. B, 2006, 110 (30): 14688-14692.
    [71] Leng H, Ichikawa T, Hino S, et al. Synthesis and decomposition reactions of metal amides in metal-N-H hydrogen storage system[J]. J. Power Sources, 2006, 156 (2): 166-170.
    [72] Kojima Y, Kawai Y, Ohba N. Hydrogen storage of metal nitrides by a mechanochemical reaction[J]. J. Power Sources, 2006, 159 (1): 81-87.
    [73] Luo W, Sickafoose S. Thermodynamic and structural characterization of the Mg-Li-N-H hydrogen storage system[J]. J. Alloys Compd., 2006, 407 (1-2): 274-281.
    [74] Xiong Z, Hu J, Wu G, et al. Thermodynamic and kinetic investigations of the hydrogen storage in the Li-Mg-N-H system[J]. J. Alloys Compd., 2005, 398 (1-2): 235-239.
    [75] Yang J, Sudik A, Wolverton C. Activation of hydrogen storage materials in the Li-Mg-N-H system: Effect on storage properties[J]. J. Alloys Compd., 2007, 430 (1-2): 334-338.
    [76] Luo W, Stewart K. Characterization of NH3 formation in desorption of Li-Mg-N-H storage system[J]. J. Alloys Compd., 2007, 440 (1-2): 357-361.
    [77] Chen P, Xiong Z, Yang L, et al. Mechanistic Investigations on the Heterogeneous Solid-State Reaction of Magnesium Amides and Lithium Hydrides[J]. J. Phys. Chem. B, 2006, 110 (29): 14221-14225.
    [78] Janot R, Eymery J B, Tarascon J M. Investigation of the processes for reversible hydrogen storage in the Li-Mg-N-H system[J]. J. Power Sources, 2007, 164 (2): 496-502.
    [79] Rijssenbeek J, Gao Y, Hanson J, et al. Crystal structure determination and reaction pathway of amide–hydride mixtures[J]. J. Alloys Compd., 2008, 454 (1-2): 233-244.
    [80] Lohstroh W, Fichtner M. Reaction steps in the Li-Mg-N-H hydrogen storage system[J]. J. Alloys Compd., 2007, 446-447: 332-335.
    [81] Luo W, Wang J, Stewart K, et al. Li-Mg-N-H: Recent investigations and development[J]. J. Alloys Compd., 2007, 446-447: 336-341.
    [82] Tokoyoda K, Hino S, Ichikawa T, et al. Hydrogen desorption/absorption properties of Li-Ca-N-H system[J]. J. Alloys Compd., 2007, 439 (1-2): 337-341.
    [83] Z. Xiong G W, J. Hu, P. Chen,. Ternary Imides for Hydrogen Storage[J]. Adv. Mater., 2004, 16 (17): 1522-1525.
    [84] Pinkerton F E, Meisner G P, Meyer M S, et al. Hydrogen Desorption Exceeding Ten Weight Percent from the New Quaternary Hydride Li3BN2H8[J]. J. Phys. Chem. B, 2005, 109 (1): 6-8.
    [85] Pinkerton F, Meyer M, Meisner G, et al. Improved Hydrogen Release from LiB0.33N0.67H2.67 with Noble Metal Additions[J]. J. Phys. Chem. B, 2006, 110 (15): 7967-7974.
    [86] Meisner G P, Scullin M L, Balogh M P, et al. Hydrogen Release from Mixtures of Lithium Borohydride and Lithium Amide: A Phase Diagram Study[J]. J. Phys. Chem. B, 2006, 110 (9): 4186-4192.
    [87] Kojima Y, Matsumoto M, Kawai Y, et al. Hydrogen Absorption and Desorption by the Li-Al-N-H System[J]. J. Phys. Chem. B, 2006, 110 (19): 9632-9636.
    [88] Janot R, Eymery J-B, Tarascon J-M. Decomposition of LiAl(NH2)4 and Reaction with LiH for a Possible Reversible Hydrogen Storage[J]. J. Phys. Chem. C, 2007, 111 (5): 2335-2340.
    [89] Xiong Z, Hu J, Wu G, et al. Hydrogen absorption and desorption in Mg-Na-N-H system[J]. J. Alloys Compd., 2005, 395 (1-2): 209-212.
    [90] Xiong Z, Wu G, Hu J, et al. Ca-Na-N-H system for reversible hydrogen storage[J]. J. Alloys Compd., 2007, 441 (1-2): 152-156.
    [91] Liu Y, Hu J, Xiong Z, et al. Investigations on hydrogen desorption from the mixture of Mg(NH2)2 and CaH2[J]. J. Alloys Compd., 2007, 432 (1-2): 298-302.
    [92] Hu J, Xiong Z, Wu G, et al. Hydrogen releasing reaction between Mg(NH2)2 and CaH2[J]. J. Power Sources, 2006, 159 (1): 116-119.
    [93] Liu Y, Xiong Z, Hu J, et al. Hydrogen absorption/desorption behaviors over a quaternary Mg-Ca-Li-N-H system[J]. J. Power Sources, 2006, 159 (1): 135-138.
    [94] Hu Y H, Ruckenstein E. Ultrafast Reaction between Li3N and LiNH2 To Prepare the Effective Hydrogen Storage Material Li2NH[J]. Ind. Eng. Chem. Res, 2006, 45 (14): 4993-4998.
    [95] Thomas L H. The calculation of atomic fields[J]. Proc. Cambridge Philos. Soc, 1927, 23: 542-547.
    [96] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev, 1965, 140 (4A): A1133-A1138.
    [97] Slater J. A simplification of the Hartree-Fock method[J]. Phys. Rev., 1951, 81 (3): 385-390.
    [98] Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[J]. Phys. Rev. Lett., 1980, 45 (7): 566-569.
    [99] Perdew J, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Phys. Rev. B, 1981, 23 (10): 5048-5079.
    [100] Slater J C, Koster G F. Simplified LCAO Method for the Periodic Potential Problem[J]. Phys. Rev., 1954, 94 (6): 1498-1524.
    [101] Herring C, Hill A G. The Theoretical Constitution of Metallic Beryllium[J]. Phys.Rev., 1940, 58 (2): 132-162.
    [102] Ihm J, Zunger A, Cohen M L. Momentum-space formalism for the total energy of solids[J]. J. Phys. C, 1980, 13 (16): 3095-3095.
    [103] Payne M, Teter M, Allan D, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients[J]. Rev. Mod. Phys., 1992, 64 (4): 1045-1097.
    [104] Korringa J. On the calculation of the energy of a Bloch wave in a metal[J]. Physica, 1947, 13 (6-7): 392-400.
    [105] Kohn W, Rostoker N. Solution of the Schrodinger equation in periodic lattices with an application to metallic lithium[J]. Phys. Rev., 1954, 94 (5): 1111-1120.
    [106] Andersen O K. Linear methods in band theory[J]. Phys. Rev. B, 1975, 12 (8): 3060-3083.
    [107] Skriver H, The LMTO method: muffin-tin orbitals and electronic structure[M]. Springer-Verlag New York. 1984.
    [108] Appelbaum J A, Hamann D R. Self-Consistent Pseudopotential for Si[J]. Phys. Rev. B, 1973, 8 (4): 1777-1780.
    [109] Schlüter M, Chelikowsky J, Louie S, et al. Self-Consistent Pseudopotential Calculations on Si (111) Unreconstructed and (2×1) Reconstructed Surfaces[J]. Phys. Rev. Lett., 1975, 34 (22): 1385-1388.
    [110] Hamann D R. Generalized norm-conserving pseudopotentials[J]. Phys. Rev. B, 1989, 40 (5): 2980.
    [111] Vanderbilt D. Optimally smooth norm-conserving pseudopotentials[J]. Phys. Rev. B, 1985, 32 (12): 8412-8415.
    [112] Rappe A, Rabe K, Kaxiras E, et al. Optimized pseudopotentials[J]. Phys. Rev. B, 1990, 41 (2): 1227-1230.
    [113] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B, 1990, 41 (11): 7892-7895.
    [114] Laasonen K, Car R, Lee C, et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics[J]. Phys. Rev. B, 1991, 43 (8): 6796-6799.
    [115] Laasonen K, Pasquarello A, Car R, et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials[J]. Phys. Rev. B, 1993, 47 (16): 10142.
    [116] Lee C, Vanderbilt D, Laasonen K, et al. Ab initio studies on the structural and dynamical properties of ice[J]. Phys. Rev. B, 1993, 47 (9): 4863-4872.
    [117] Pasquarello A, Laasonen K, Car R, et al. Ab initio molecular dynamics for d-electron systems: Liquid copper at 1500 K[J]. Phys. Rev. Lett., 1992, 69 (13): 1982-1985.
    [118] Hedin L, Lundqvist B I. Explicit local exchange-correlation potentials[J]. J. Phys. C, 1971, 4 (14): 2064-2083.
    [119] Janak J F. Itinerant ferromagnetism in fcc cobalt[J]. Solid State Commun, 1978, 25 (2): 53–55.
    [120] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev. B, 1992, 45 (23): 13244-13249.
    [121] Perdew J, Chevary J, Vosko S, et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B, 1992, 46 (11): 6671-6687.
    [122] Araujo C M, Li S, Ahuja R, et al. Vacancy-mediated hydrogen desorption in NaAlH4[J]. Phys. Rev. B, 2005, 72 (16): 165101-165101.
    [123] Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300 (5622): 1127-1129.
    [124] Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414 (6861): 353-358.
    [125] Cortright R D, Davda R R, Dumesic J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water[J]. Nature, 2002, 418 (6901): 964-967.
    [126] Grochala W, Edwards P P. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen[J]. Chem. Rev., 2004, 104 (3): 1283-1316.
    [127] Smithson H, Marianetti C A, Morgan D, et al. First-principles study of the stability and electronic structure of metal hydrides[J]. Phys. Rev. B, 2002, 66 (14): 144107.
    [128] Bouamrane A, Laval J P, Soulie J P, et al. Structural characterization of NaMgH2F and NaMgH3[J]. Mater. Res. Bull., 2000, 35 (4): 545-549.
    [129] Schumacher R, Weiss A. KMgH3 single crystals by synthesis from the elements[J]. J. Less- Common Metals, 1990, 163 (1): 179-183.
    [130] Gingl F, Vogt T, Akiba E, et al. Cubic CsCaH3 and hexagonal RbMgH3: new examples of fluoride-related perovskite-type hydrides[J]. J. Alloys Compd., 1999, 282 (1-2): 125-129.
    [131] Bertheville B, Fischer P, Yvon K. High-pressure synthesis and crystal structures of new ternary caesium magnesium hydrides, CsMgH3, Cs4Mg3H10 and Cs2MgH4[J]. J. Alloys Compd., 2002, 330 (332): 152-156.
    [132] Ikeda K, Kogure Y, Nakamori Y, et al. Reversible hydriding and dehydriding reactions of perovskite-type hydride NaMgH3[J]. Scripta Mater., 2005, 53 (3): 319-322.
    [133] Ikeda K, Nakamori Y, Orimo S. Formation ability of the perovskite-type structure in LixNa1-xMgH3 (x= 0, 0.5 and 1.0)[J]. Acta Mater., 2005, 53 (12): 3453-3457.
    [134] Ikeda K, Kogure Y, Nakamori Y, et al. Formation region and hydrogen storage abilities of perovskite-type hydrides[J]. Prog. Solid State Chem., 2007, 35 (2-4): 329-337.
    [135] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996, 6 (1): 15-50.
    [136] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59 (3): 1758.
    [137] Blochl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50 (24): 17953.
    [138] Perdew J, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Phys. Rev. B, 1996, 54 (23): 16533-16539.
    [139] Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77 (18): 3865-3868.
    [140] Monkhorst H J, Pack J D. Special points in Brillouin zone integral[J]. Phys. Rev. B, 1976, 13: 5188–5192.
    [141] Vajeeston P, Ravindran P, Kjekshus A, et al. High hydrogen content complex hydrides: A density-functional study[J]. Appl. Phys. Lett., 2006, 89: 071906.
    [142] Vajeeston P, Ravindran P, Kjekshus A, et al. First-principles investigations of the MMgH3 (M= Li, Na, K, Rb, Cs) series[J]. J. Alloys Compd., 2008, 450 (1-2): 327-337.
    [143] Sahu B R. Electronic structure and bonding of ultralight LiMg[J]. Mater. Sci. Eng. B, 1997, 49 (1): 74-78.
    [144] Velikokhatnyi O I, Kumta P N. Energetics of the lithium-magnesium imide–magnesium amide and lithium hydride reaction for hydrogen storage: An ab initio study[J]. Mater. Sci. Eng. B, 2007, 140 (1-2): 114-122.
    [145] Alapati S V, Johnson J K, Sholl D S. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations[J]. J. Phys. Chem. B, 2006, 110 (17): 8769-8776.
    [146] Bowman Jr R C. Cohesive energies of the alkali hydrides and deuterides[J]. J. Phys. Chem, 1971, 75 (9): 1251-1255.
    [147] Khowash P K, Rao B K, McMullen T, et al. Electronic structure of light metal hydrides[J]. Phys. Rev. B, 1997, 55 (3): 1454-1458.
    [148] Bogdanovic B, Brand R A, Marjanovic A, et al. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials[J]. J. Alloys Compd., 2000, 302 (1-2): 36-58.
    [149] Nakamori Y, Miwa K, Ninomiya A, et al. Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments[J]. Phys. Rev. B, 2006, 74 (4): 045126-9.
    [150] Nickels E A, Jones M O, David W I F, et al. Tuning the Decomposition Temperature in Complex Hydrides: Synthesis of a Mixed Alkali Metal Borohydride13[J]. Angew. Chem. Int. Ed., 2008, 47 (15): 2817-2819.
    [151] Hector Jr L G, Herbst J F. Density functional theory for hydrogen storage materials: successes and opportunities[J]. J. Phys.: Condens. Matter, 2008, 20 (6): 064229.
    [152] Lodziana Z, Vegge T. Structural Stability of Complex Hydrides: LiBH4 Revisited[J]. Phys. Rev. Lett., 2004, 93 (14): 145501.
    [153] Souli J P, Renaudin G, Cern R, et al. Lithium boro-hydride LiBH4: I. Crystal structure[J]. J. Alloys Compd., 2002, 346 (1-2): 200-205.
    [154] Vajeeston P, Ravindran P, Kjekshus A, et al. Structural stability of alkali boron tetrahydrides ABH4 (A = Li, Na, K, Rb, Cs) from first principle calculation[J]. J. Alloys Compd., 2005, 387 (1-2): 97-104.
    [155] Zeng Q, Su K, Zhang L, et al. Evaluation of the Thermodynamic Data of CHSiCl Based on Quantum Chemistry Calculations[J]. J. Phys. Chem. Ref. Data, 2006, 35 (3): 1385-1390.
    [156] Crabtree G W, Dresselhaus M S. The Hydrogen Fuel Alternative[J]. MRS Bull., 2008, 33: 421-428.
    [157] Dresselhaus M S, Thomas I L. Alternative energy technologies[J]. Nature, 2001, 414 (6861): 332-337.
    [158] Alper J. Water Splitting Goes Au Naturel[J]. Science, 2003, 299 (5613): 1686-1687.
    [159] Dehouche Z, Goyette J, Bose T K, et al. Sensitivity of Nanocrystalline MgH2–V Hydride Composite to the Carbon Monoxide during a Long-Term Cycling[J]. Nano Lett., 2001, 1 (4): 175-178.
    [160] Shang C X, Bououdina M, Song Y, et al. Mechanical alloying and electronic simulations of (MgH2+ M) systems (M= Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage[J]. Int. J. Hydrogen Energy, 2004, 29 (1): 73-80.
    [161] Charbonnier J, De Rango P, Fruchart D, et al. Hydrogenation of transition element additives (Ti, V) during ball milling of magnesium hydride[J]. J. Alloys Compd., 2004, 383 (1-2): 205-208.
    [162] Barkhordarian G, Klassen T, Bormann R. Catalytic mechanism of transition–metal compounds on Mg hydrogen sorption reaction[J]. J. Phys. Chem. B, 2006, 110 (22): 11020-11024.
    [163] Yao X, Wu C, Du A, et al. Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage[J]. J. Phys. Chem. B, 2006, 110 (24): 11697-11703.
    [164] Hanada N, Ichikawa T, Fujii H. Catalytic Effect of Nanoparticle 3d–Transition Metals on Hydrogen Storage Properties in Magnesium Hydride MgH2 Prepared by Mechanical Milling[J]. J. Phys. Chem. B, 2005, 109 (15): 7188-7194.
    [165] Liang G, Huot J, Boily S, et al. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems[J]. J. Alloys Compd., 1999, 292 (1-2): 247-252.
    [166] Liang G, Huot J, Boily S, et al. Hydrogen storage properties of the mechanically milled MgH2–V nanocomposite[J]. J. Alloys Compd., 1999, 291 (1-2): 295-299.
    [167] Oelerich W, Klassen T, Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials[J]. J. Alloys Compd., 2001, 315 (1-2): 237-242.
    [168] Barkhordarian G, Klassen T, Bormann R. Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst[J]. Scripta Mater., 2003, 49 (3): 213-217.
    [169] Song M, Mumm D, Kwon S, et al. Hydrogen-storage properties of Mg–10wt.%(Fe2O3, Ni, MnO) alloy prepared by reactive mechanical grinding[J]. J. Alloys Compd., 2006, 416 (1-2): 239-244.
    [170] Bhat V V, Rougier A, Aymard L, et al. Catalytic activity of oxides and halides on hydrogen storage of MgH2[J]. J. Power Sources, 2006, 159 (1): 107-110.
    [171] Jin S-A, Shim J-H, Cho Y W, et al. Dehydrogenation and hydrogenation characteristics of MgH2 with transition metal fluorides[J]. J. Power Sources, 2007, 172 (2): 859-862.
    [172] Kyoi D, Sato T, Roennebro E, et al. A new ternary magnesium-titanium hydride Mg7TiHx with hydrogen desorption properties better than both binary magnesium and titanium hydrides[J]. J. Alloys Compd., 2004, 372 (1-2): 213-217.
    [173] Roennebro E, Kyoi D, Kitano A, et al. Hydrogen sites analysed by X-ray synchrotron diffraction in Mg7TiH13–16 made at gigapascal high-pressures[J]. J. Alloys Compd., 2005, 404: 68-72.
    [174] Kyoi D, Kitamura N, Tanaka H, et al. Hydrogen desorption properties of FCC super-lattice hydride Mg7NbHx prepared by ultra-high pressure techniques[J]. J. Alloys Compd., 2007, 428 (1-2): 268-273.
    [175] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54 (16): 11169.
    [176] Murnaghan F D. The compressibility of media under extreme pressures[J]. Proceedings of the National Academy of Sciences, 1944, 30 (9): 244-247.
    [177] Noritake T, Aoki M, Towata S, et al. Chemical bonding of hydrogen in MgH2[J]. Appl. Phys. Lett., 2002, 81 (11): 2008.
    [178] Vajeeston P, Ravindran P, Fjellvag H. Structural Phase Stability Studies on MBeH3 (M = Li, Na, K, Rb, Cs) from Density Functional Calculations[J]. Inorg. Chem., 2008, 47 (2): 508-514.