低压条件下气体射流的燃烧特性与火焰形态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类在高原、高空环境活动的增多,低压下火灾为人类带来了新的问题和挑战。发展高原和高空环境下火灾的防治技术显得越来越重要,因此研究低压下火灾燃烧特性具有重要的现实意义。根据前人的研究发现,对于火灾燃烧条件来说,低气压环境区别于正常大气环境的最大不同就是空气密度和氧气分压的减小。不同压力下空气密度和氧气分压的改变,分别直接导致了浮力作用和碳黑产生量的不同。浮力和火焰抖动、火焰形态等息息相关,一般用弗劳德数表征浮力对火焰作用的大小。而碳黑与燃烧效率、火焰形态、产烟倾向等有关。因此自然地确定浮力和碳黑作为研究低压对火灾燃烧作用的途径,并选取在不同压力下有着相等质量损失速率的气体燃料作为研究对象。
     低气压环境的实现主要有高海拔现场自然环境和低压舱人工模拟环境两种方式。现场自然环境实验虽然花费大开展难,但是它适合开展大尺度的火灾燃烧实验,特别适合用来发现不同气压下火灾宏观现象的不同,因此在拉萨和合肥两地分别搭建了小型锥形量热仪进行实验,主要用气体分析仪测量排烟管道内的燃烧产物、热电偶树测量火焰羽流温度、辐射计测量火焰对周围的辐射热流、光学烟密度计测量烟气的消光系数,并使用简化的化学量热法计算热释放速率。在揭示不同海拔高度火灾宏观现象的基础上,在低压舱内开展多级低压条件下适于研究燃烧机理的多种实验。实验中,主要采用不加装滤光片的相机测量发光火焰形状、加装CH滤光片的相机尝试获取化学当量比火焰形状,采用高速相机和快速傅里叶变换先后拍摄火焰抖动过程和计算火焰抖动频率。
     在拉萨和合肥两个海拔高度上,通过锥形量热仪测量甲烷、乙炔和丙烷的热释放速率和辐射热流等参数,进一步揭示和明确了低气压对燃烧效率和辐射分数等主要参数的影响。通过总结不同含碳量燃料的类似结果,可以表明:低压下火焰的热释放速率和燃烧效率更高;低压下火焰总羽流温度更高;低压下火焰辐射热流和辐射分数更小;低压下火焰产生烟气的透射率更大,说明低压下火焰的产烟率更小
     在低压舱内通过实验研究了多个等级低压下甲烷、乙烯和丙烷扩散火焰抖动行为,主要是研究火焰抖动频率和压力之间的关系以及出口速度对抖动频率的影响。主要发现总结如下:层流扩散火焰抖动行为可以分为顶部抖动、间歇抖动、和连续抖动3个区域,连续抖动发生在较大燃料流量或较大压力下;抖动频率对燃料流量和类型不敏感,随流量的增加只略微增加,相同实验压力下3种燃料火焰的抖动频率几乎相等;抖动频率随压力升高而增大,实验压力范围内从8Hz增加到12Hz,测量的抖动频率随压力增加的0.27次幂而增大;另外,在一些条件下观察到了丙烷火焰存在多重频率现象。
     在低压舱内测量了0.03到O.1MPa压力范围内,不发烟甲烷、乙烯和丙烷稳定火焰的发光形状,经过对高度和宽度使用无量纲数缩放分析,得到了如下结论:Reynolds数线性缩放模型对烃类燃料基本适用,在不同的Re数下浮力和碳黑的共同作用使得线性关系的斜率发生了轻微变化;在最大的Fr数或最低压力下,浮力对火焰高度的影响不重要,相反,在最小Fr数区域,浮力对火焰高度作用占主导地位;在对火焰宽度进行Froude数缩放时,发现归一化火焰宽度和Froude数存在着很好的线性关系。
     在低压舱测量了多级压力下,不发烟甲烷、乙烯和丙烷稳定火焰的发光形状,特别为甲烷火焰进行了0.2个大气压的实验,发光火焰高度和宽度随压力的变化规律总结如下:第一种情形,对于较大燃料流量和较高压力范围条件,火焰高度呈现“先增后减”趋势;第二种情形,在较小流量和较低压力范围内,可总结出“先减后增”趋势。第三种情形,在合适的燃料流量和压力范围下,火焰高度会呈现“先减后增再减”趋势。
     在低压舱内进行了乙炔层流射流扩散火焰烟点实验,实验压力范围为0.03~0.1MPa。利用建立的反应射流中心线速度变化模型对实验结果进行深入分析,发现烟点火焰高度、燃料质量流量、存留时间和压力之间存在如下关系:低压下乙炔烟点火焰高度随压力升高而减小,这个变化趋势与高压下乙烯和甲烷火焰的变化规律相同;烟点燃料质量流量随压力的幂指数变化,幂指数为负值,与先前多数实验结果一致;在一个很大的压力范围(0.03MPa到1.6MPa)内,烟点火焰存留时间随压力升高而减小。
Fires at subatmospheric pressures bring mankind new problems and challenges with more activities in plateau and sky. The fire prevention technology at high altitudes is becoming increasingly important, therefore, studying fire burning characteristics under low pressures is of important practical significance. According to previous studies, the condition of the low pressure environment distinguishing normal atmospheric environment is the reduction of air density and partial pressure of oxygen. Buoyancy effect and soot production are largely influenced by air density and partial pressure of oxygen respectively. Buoyancy is closely related with flame flickering and flame morphology and Froude number is generally used to characterize the role of buoyancy, while soot relates to combustion efficiency, flame shape, and smoky tendency. Therefore, buoyancy and soot were chosen as the paths when studying effects of subatmospheric pressure on combustion. Besides, gaseous fuels were selected as research objects since their mass loss rates are equal under different pressures.
     Natural environment at high altitude and artificial environment in hypobaric chamber are the two main methods to achieve subatmospheric pressures. Natural environment are suitable for conducting large scale fire experiments although it is expensive and difficult. Comparative experiments were implemented in each cone calorimeter in Lhasa and Hefei. Gas analyzer, thermocouple tree, radiometer, and kapnometer were employed to measure combustion products, fire plume temperature, radiation flux, and extinction coefficient respectively. A simplified thermochemistry based on the measured concentrations of O2and CO2was used when calculating heat release rates. In view of distinct macroscopical phenomena at two different altitudes, we continued experiments in a hypobaric chamber for studying combustion mechanism under multilevel low pressures. A combined normal video and the CH filtering technique was employed in the flame image recording to facilitate determining the flame shape and smoke point. The flame images of flickering flames were recorded by a480fps high-speed camera, and Fast Fourier Transform were carried out to measure flickering frequency.
     Fire behaviors such as heat release rate and radiation flux of three gaseous hydrocarbon fuels were experimentally measured in each cone calorimeter at two different altitudes in Lhasa and Hefei. The effects of subatmospheric pressure on combustion efficiency and radiation fraction were further revealed when summarizing results of methane, acetylene, and propane fires. The heat release rates, fire plume temperatures, and smoke transmittances at the lower pressure are higher while the radiation fluxes are lower. Hence, the combustion efficiencies at the lower pressure are higher and the radiation fractions and smoke production rates are lower.
     The flickering behavior was studied for methane, ethylene, and propane flames at eight subatmospheric pressure levels. The relationship between flickering frequency and pressure and the influence of exit velocity on frequency were highlighted. Generally, the flickering behaviors were observed falling into three regimes, i.e. tip flickering, intermittent flickering, and continuous flickering. The continuous flickering appears when the fuel flow rate or pressure is increased above a particular value. The flickering frequency is found insensitive to fuel type or flow rate. The observed frequencies generally vary from about8Hz at0.3atm to12Hz at1.0atm. The logarithmic relationship between the measured frequency and pressure is close to the previous theoretical analysis. In addition, an important phenomenon of multiple frequencies was observed in the tests.
     The luminous shapes were presented to examine the scaling of flame heights and widths of laminar stable flames burning methane, ethylene, and propane in a subatmospheric pressure chamber. The linear Reynolds scaling was generally suitable for hydrocarbon fuels although slopes were changing under the combined action of buoyant and soot. The buoyant was unimportant in determining flame height when under the largest Fr or at0.3atm. Oppositely, at the smallest Fr, buoyancy dominant tendency was reached. In Froude scaling of width, the unchanged slopes between normalized flame width and Fr indicated a good linearity relationship.
     The luminous shapes were measured for laminar stable non-smoky flames burning methane, ethylene, and propane under ambient pressures of0.02-0.1MPa. Diverse changing trends happen under various fuel flow rates and different pressure ranges by accounting micro flames at subatmospheric pressures and results over smoke points in references. First, under conditions of relatively higher fuel flow rates and pressure ranges, flame heights follow an increasing-decreasing trend. Second, a decreasing-increasing trend can be concluded under relatively lower fuel flow rates and pressure ranges. Third, a decreasing-increasing-decreasing trend will happen under proper fuel flow rate and pressure range.
     Experimental study on smoke point of acetylene laminar jet diffusion flame was performed in a chamber with subatmospheric pressures of0.03-0.1MPa. The relationships between smoke point flame height, fuel mass flow rate, residence time and pressure are summarized as follows:The smoke point flame height was observed to vary with pressure in the same pattern as ethylene and methane flames at elevated pressures. The scaling of the smoke point fuel mass flow rate with the pressure to a power law with a negative exponent is qualitatively consistent with results found in most earlier works. The residence time at smoke point has been found to increase with decreasing pressure over a wide pressure range.
引文
国家标准局.1983.GB/T 382-1983煤油烟点测定法[S].北京:中国标准出版社.
    International Organization for Standardization.1993. ISO 9705:1993 Fire tests-Full-scale room test for surface products [S].
    American Society for Testing Material.1997. ASTM D1322-97 Standard test method for smoke point of kerosine and aviation turbine fuel [S].
    Aalburg, C., Diez, F.J., Faeth, G.M., Sunderland, P.B., Urban, D.L., Yuan, Z.-G.2005. Shapes of nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still air [J]. Combustion and Flame,142:1-16.
    Albers, B.W., Agrawal, Ajay K.1999. Schlieren Analysis of an Oscillating Gas-Jet Diffusion Flame [J]. Combustion and Flame,119:84-94.
    Allan, K.M.2007. Laminar smoke points of candle flames [D]:[Master]. Maryland:University of Maryland.
    Altenkirch, R.A., Eichhorn, R., Hsu, N.N., Brancic, A.B., Cevallos, N.E.1977. Characteristics of laminar gas jet diffusion flames under the influence of elevated gravity [J]. Proceedings of the Combustion Institute,16(1):1165-1174.
    Amell, A.A.2007. Influence of altitude on the height of blue cone in a premixed flame [J]. Applied Thermal Engineering,27(2-3):408-412.
    Amin, E.M., Yetter, R.A., Andrews, G.E., Pourkashnian, M., Williams, A.1997. A Computational Study of Pressure Effects on Pollutant Generation in Gas Turbine Combustors [J]. Journal of engineering for gas turbines and power,119(1):76-83.
    Bahadori, M.Y., Zhou, L., Stocker, D. P., Hegde, U.2001. Functional Dependence of Flame Flicker on Gravitational Level [J]. AIAA Journal,39:1404-1406.
    Baker, J., Srireddy, K., Varagani, R.2003. Buoyancy-Controlled Laminar Diffusuion Slot Flame Heights:A Comparison of Theoretical Predictions and Microgravity Results [J]. Microgravity Science and Technology,14(4):27-35.
    Becker, H.A., Liang, D.1978. Visible length of vertical free turbulent diffusion flames [J]. Combustion and Flame,32(0):115-137.
    Becker, H.A., Yamazaki, S.1978. Entrainment, momentum flux and temperature in vertical free turbulent diffusion flames [J]. Combustion and Flame,33(0):123-149.
    Beji, T.2009. Theoretical and experimental investigation on soot and radiation in fires [D]: [Ph.D.]. University of Ulster.
    Beji, T., Zhang, J.P., Yao, W., Delichatsios, M.2011. A novel soot model for fires:Validation in a laminar non-premixed flame [J]. Combustion and Flame,158(2):281-290.
    Beltrame, A., Porshnev, P., Merchan-Merchan, W., Saveliev, A., Fridman, A., Kennedy, L.A., Petrova, O., Zhdanok, S., Amouri, F., Charon, O.2001. Soot and NO formation in methane-oxygen enriched diffusion flames [J]. Combustion and Flame,124(1-2):295-310.
    Bento, D.S., Thomson, Kevin A., Gulder, mer L.2006. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures [J]. Combustion and Flame,145:765-778.
    Berry, T.L., Roberts, W.L.2006. Measurement of smoke point in velocity-matched coflow laminar diffusion flames with pure fuels at elevated pressures [J]. Combustion and Flame,145: 571-578.
    Berry Yelverton, T.L., Roberts, W. L.2008. Effect of Dilution, Pressure, and Velocity on Smoke Point in Laminar Jet Flames [J]. Combustion Science and Technology,180:1334-1346.
    Bilger, R.W.1977. Reaction rates in diffusion flames [J]. Combustion and Flame,30(0):277-284.
    Biteau, H., Steinhaus, T., Schemel, C., Simeoni, A., Marlair, G., Bal, N., Torero, J.L.2008. Calculation Methods for the Heat Release Rate of Materials of Unknown Composition [J]. Fire Safety Science,9:1165-1176.
    Bond, T.C., Bergstrom, R.W.2006. Light Absorption by Carbonaceous Particles:An Investigative Review [J]. Aerosol Science and Technology,40(1):27-67.
    Bourguignon, E., Johnson, M.R., Kostiuk, L.W.1999. The use of a closed-loop wind tunnel for measuring the combustion efficiency of flames in a cross flow [J]. Combustion and Flame, 119(3):319-334.
    Brookes, S.J., Moss, J.B.1999a. Measurements of soot production and thermal radiation from confined turbulent jet diffusion flames of methane [J]. Combustion and Flame,116(1-2): 49-61.
    Brookes, S.J., Moss, J.B.1999b. Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames [J]. Combustion and Flame,116(4):486-503.
    Burke, S.P., Schumann, T.E.W.1928. Diffusion Flames [J]. Industrial and Engineering Chemistry, 20(10):998-1004.
    Camacho, J.R., Choudhuri, Ahsan R.2006. Shapes of elliptic methane laminar jet diffusion flames [J]. Journal of engineering for gas turbines and power,128:1-7.
    Cetegen, B.M., Ahmed, T.A.1993. Experiments on the periodic instability of buoyant plumes and pool fires [J]. Combustion and Flame,93(1-2):157-184.
    Chandrasekhar, S.1961. Hydrodynamic and Hydromagnetic Stability [M]. Oxford:Clarendon Press,481-493.
    Chen, L.-D., Seaba, J.P., Roquemore, W.M., Goss, L.P.1989. Buoyant diffusion flames [J]. Symposium (International) on Combustion,22(1):677-684.
    Dai, Z., Faeth, G.M.2000. Hydrodynamic suppression of soot formation in laminar coflowing jet diffusion flames [J]. Proceedings of the Combustion Institute,28:2085-2092.
    Darabkhani, H.G., Bassi, J., Huang, H.W., Zhang, Y.2009. Fuel effects on diffusion flames at elevated pressures [J]. Fuel,88(2):264-271.
    Darabkhani, H.G., Zhang, Yang.2010. Methane diffusion flame dynamics at elevated pressures [J]. Combustion Science and Technology,182:231-251.
    Davis, R.W., Moore, E.F., Santoro, R.J., Ness, J.R.1990. Isolation of Buoyancy Effects in Jet Diffusion Flame Experiments [J]. Combustion Science and Technology,73:625-635.
    De Ris, J., Cheng, X.1994. The Of Role Of Smoke-point In Material Flammability Testing [J]. Fire Safety Science,4:301-312.
    Delichatsios, M.A.1993. Smoke yields from turbulent buoyant jet flames [J]. Fire Safety Journal, 20(4):299-311.
    Delichatsios, M.A.1994. A Phenomenological Model for Smoke-Point and Soot Formation in Laminar Flames [J]. Combustion Science and Technology,100(1-6):283-298.
    Delichatsios, M.A.2011. Correlations for soot and smoke-point in momentum controlled luminous laminar jet diffusion flames (in space) [C]. Chia Laguna, Cagliari, Sardinia, Italy: 7thMediterranean Combustion Symposium.
    Dotson, K.T.2009. Smoke Points of Microgravity and Normal Gravity Coflow Diffusion Flames [D]:[Master]. University of Maryland.
    Dotson, K.T., Sunderland, P.B., Yuan, Z.-G., Urban, D.L.2011. Laminar smoke points of coflowing flames in microgravity [J]. Fire Safety Journal,46:550-555.
    Drysdale, D.1999. An Introduction to Fire Dynamics,2nd edition [M]. Chichester, England:John Wiley & Sons Ltd,111-116.
    Drysdale, D.D.2002. Thermochemistry. In:Dinenno, P.J. (ed.) SFPE Handbook of Fire Protection Engineering [M].3rd ed. Quincy, Massachusetts 02269:National Fire Protection Association, 1/95,1/95-1/96.
    Durox, D., Yuan, T, Baillot, F., Most, J.M.1995. Premixed and Diffusion Flames in a Centrifuge [J]. Combustion and Flame,102:501-511.
    Durox, D., Yuan, T, Villermaux, E.1997. The Effect of Buoyancy on Flickering in Diffusion Flames [J]. Combustion Science and Technology,124:277-294.
    Enright, P.A.1999. Heat release and the combustion behaviour of upholstered furniture [D]: [Ph.D.]. Canterbury:University of Canterbury.
    Fan, W.C.2001. Fire Safety Research Of Historical Buildings In China [C]. Newcastle, Australia: 5th Asia-Oceania Symposium on Fire Science and Technology:83-96.
    Fang, J., Tu, R., Guan, J.-F., Wang, J.-J., Zhang, Y.-M.2011. Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires [J]. Fuel,90(8): 2760-2766.
    Flower, W.L., Bowman, C.T.1988. Soot production in axisymmetric laminar diffusion flames at pressures from one to ten atmospheres [J]. Symposium (International) on Combustion,21(1): 1115-1124.
    Friedman, R.1998. Principles of Fire Protection Chemistry and Physics [M]. National Fire Protection Association.
    Gulder, L., Thomson, Kevin A., Snelling, David R.2006. Effect of fuel nozzle material properties on soot formation and temperature field in coflow laminar diffusion flames [J]. Combustion and Flame,144:426-433.
    Galea, E.R., Markatos, N.C.1987. A review of mathematical modelling of aircraft cabin fires [J]. Applied Mathematical Modelling,11(3):162-176.
    Gomez, A., Sidebotham, G., Glassman, I.1984. Sooting Behavior in Temperature-Controlled Laminar Diffusion Flames [J]. Combustion and Flame,58:45-57.
    Gong, J., Zhou, X., Deng, Z., Yang, L.2013. Influences of low atmospheric pressure on downward flame spread over thick PMMA slabs at different altitudes [J]. International Journal of Heat and Mass Transfer,61(0):191-200.
    Hamins, A., Klassen, M., Gore, J., Kashiwagi, T.1991. Estimate of flame radiance via a single location measurement in liquid pool fires [J]. Combustion and Flame,86(3):223-228.
    Hirschler, M.M.1985. Soot From Fires:Ⅰ. Properties and Methods of Investigation [J]. Journal of Fire Sciences,3:343-374.
    Hu, L., Wang, Q., Tang, F., Delichatsios, M., Zhang, X.2013a. Axial temperature profile in vertical buoyant turbulent jet fire in a reduced pressure atmosphere [J]. Fuel,106(0): 779-786.
    Hu, L.H., Tang, F., Delichatsios, M.A., Wang, Q., Lu, K.H., Zhang, X.C.2013b. Global behaviors of enclosure fire and facade flame heights in normal and reduced atmospheric pressures at two altitudes [J]. International Journal of Heat and Mass Transfer,56(1-2):119-126.
    Hu, X., He, Y, Li, Z., Wang, J.2011. Combustion characteristics of n-heptane at high altitudes [J]. Proceedings of the Combustion Institute,33(2):2607-2615.
    Huggett, C.1980. Estimation of rate of heat release by means of oxygen consumption measurements [J]. Fire and Materials,4(2):61-65.
    Intasopa, G.2011. Soot Measurements in High-Pressure Diffusion Flames of Gaseous and Liquid Fuels [D]:[Master]. Toronto:University of Toronto.
    Janssens, M.2002. Calorimetry. In:Dinenno, P.J. (ed.) SFPE Handbook of Fire Protection Engineering [M].3rd ed. Quincy, Massachusetts 02269:National Fire Protection Association, 3/43.
    Jarl, F.2004. Enhancement of Spatial Resolution with Obscuration and Two Dimensional Equivalence Ratio Imaging [D]:[Master]. Lund, Sweden:Lund University.
    Joo, H.I.2010. Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures [D]:[Ph.D.]. University of Toronto.
    Joo, H.I., Giilder, Omer L.2009. Soot formation and temperature field structure in co-flow laminar methane-air diffusion flames at pressures from 10 to 60 atm [J]. Proceedings of the Combustion Institute,32:769-775.
    Jost, W.1946. Explosion and Combustion Processes in Gases [M]. New York:McGraw-Hill,212.
    Jun, F., Yu, C.Y., Ran, T., Qiao, L.F., Zhang, Y.M., Wang, J.J.2008. The influence of low atmospheric pressure on carbon monoxide of n-heptane pool fires [J]. Journal of Hazardous Materials,154(1-3):476-483.
    Karatas, A.E., Gulder, Omer L.2012. Soot formation in high pressure laminar diffusion flames [J]. Progress in Energy and Combustion Science,38:818-845.
    Kent, J.H.1986. A quantitative relationship between soot yield and smoke point measurements [J]. Combustion and Flame,63:349-358.
    Kent, J.H., Wagner, H.Gg.1984. Why Do Diffusion Flames Emit Smoke? [J]. Combustion Science and Technology,41:245-269.
    Khaldi, F., Gillon, P.2003. Laminar jet diffusion flame behavior under a strong magnetic field gradient [C]. Orleans, Frankreich:Proceedings of the European Combustion Meeting:1-6.
    Klimek, R., Wright, T.2004. Spotlight-16 Image Analysis Software [R]. Cleveland, OH:NASA Glenn Research Center.
    Koseki, H., Mulholland, G.W.1991. The effect of diameter on the burning of crude oil pool fires [J]. Fire Technology,27(1):54-65.
    Koylu, U.O., Faeth, G.M.1991. Carbon monoxide and soot emissions from liquid-fueled buoyant turbulent diffusion flames [J]. Combustion and Flame,87:61-76.
    Lautenberger, C.W., De Ris, J.L., Dembsey, N.A., Barnett, J.R., Baum, H.R.2005. A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames [J]. Fire Safety Journal,40(2):141-176.
    Li, Z.-H., He, Y., Zhang, H., Wang, J.2009. Combustion characteristics of n-heptane and wood crib fires at different altitudes [J]. Proceedings of the Combustion Institute,32(2):2481-2488.
    Lin, K.-C., Faeth, G.M.1996. Hydrodynamic Suppression of Soot Emissions in Laminar Diffusion Flames [J]. Journal of Propulsion and Power,12:10-17.
    Lin, K.C., Faeth, G.M., Sunderland, P.B., Urban, D.L., Yuan, Z.G.1999. Shapes of nonbuoyant round luminous hydrocarbon/air laminar jet diffusion flames [J]. Combustion and Flame, 116(3):415-431.
    Lingens, A., Reeker, M., Schreiber, M.1996. Instability of buoyant diffusion flames [J]. Experiments in Fluids,20:241-248.
    Linteris, G.T., Rafferty, I.P.2008. Flame size, heat release, and smoke points in materials flammability [J]. Fire Safety Journal,43:442-450.
    Liu, Y, Rogg, B.1996. Prediction of Radiative Heat Transfer in Laminar Flames* [J]. Combustion Science and Technology,118(1-3):127-145.
    Malalasekera, W.M.G., Versteeg, H.K., Gilchrist, K.1996. A Review of Research and an Experimental Study on the Pulsation of Buoyant Diffusion Flames and Pool Fires [J]. Fire and Materials,20(6):261-271.
    Mandatori, P.M., Gulder, O.L.2011. Soot formation in laminar ethane diffusion flames at pressures from 0.2 to 3.3 MPa [J]. Proceedings of the Combustion Institute,33:577-584.
    Manikantachari, K.R.V., Raghavan, V., Srinivasan, K.2011. Natural Flickering of Methane Diffusion Flames [C]. World Academy of Science, Engineering and Technology, (59): 376-381.
    Markstein, G.H.1985. Relationship between smoke point and radiant emission from buoyant turbulent and laminar diffusion flames [J]. Symposium (International) on Combustion,20(1): 1055-1061.
    Maxworthy, T.1999. The flickering candle:transition to a global oscillation in a thermal plume [J]. Journal of Fluid Mechanics,390:297-323.
    Mccrain, L.L., Roberts, W.L.2005. Measurements of the soot volume field in laminar diffusion flames at elevated pressures [J]. Combustion and Flame,140(1-2):60-69.
    Mcgrattan, K., Hostikka, S., Floyd, J.2009. Fire Dynamics Simulator (Version 5) User's Guide [R]. NIST Special Publication 1019-5. Gaithersburg, Maryland, USA:National Institute of Standards and Technology,140.
    Melvin, A., Moss, J.B., Clarke, J.F.1971. Structure of A Reaction-Broadened Diffusion Flame [J]. Combustion Science and Technology,4(1):17-30.
    Miller, I.M., Maahs, H.G.1977. High-pressure flame system for pollution studies with results for methane-air diffusion flames [R]. Washington:National Aeronautics and Space Administration.
    Mitchell, R.E., Sarofim, A.F., Clomburg, L.A.1980. Experimental and numerical investigation of confined laminar diffusion flames [J]. Combustion and Flame,37:227-244.
    Mokdad, A.H., Marks, J.S., Stroup, D.F., Gerberding, J.L.2004. Actual causes of death in the united states,2000 [J]. JAMA,291(10):1238-1245.
    Most, J.-M., Mandin, P., Chen, J., Joulain, P.1996. Influence of gravity and pressure on pool fire-type diffusion flames [J]. Proceedings of the Combustion Institute,26(1):1311-1317.
    Mulholland, G.W.2002. Smoke Production and Properties. In:Dinenno, P.J. (ed.) SFPE Handbook of Fire Protection Engineering [M].3rd ed. Quincy, Massachusetts 02269: National Fire Protection Association,2/263.
    Nikitin, Y.V.1998. Variations of Mass Combustion Rate with Oxygen Concentration and Gas Pressure of a Milieu [J]. Journal of Fire Sciences,16(6):458-467.
    Novoenergyllc.2014. Combustion Efficiency [EB/OL]. Available: http://wte.novoenergyllc.com/index.php?option=com content&view=category&layout=blog &id=40&Itemid=60.
    Oh, K.C., Shin, H.D.2006. The effect of oxygen and carbon dioxide concentration on soot formation in non-premixed flames [J]. Fuel,85(5-6):615-624.
    Orloff, L., De Ris, J., Delichatsios, M.A.1992. Radiation from Buoyant Turbulent Diffusion Flames [J]. Combustion Science and Technology,84(1-6):177-186.
    Planecrashinfo.2014. Causes of Fatal Accidents by Decade [EB/OL]. Available: http://www.planecrashinfo.com/cause.htm.
    Powell, H.N.1955. The Height of Diffusion Flames and the Relative Importance of Mixing and Reaction Rates [J]. Proceedings of the Combustion Institute,5(1):290-302.
    Purser, D.A.2002. Toxicity Assessment of Combustion Products. In:Dinenno, P.J. (ed.) SFPE Handbook of Fire Protection Engineering [M].3rd ed. Quincy, Massachusetts 02269: National Fire Protection Association,2/83-2/86.
    Ramanathan, V., Carmichael, G.2008. Global and regional climate changes due to black carbon [J]. Nature Geosci,1(4):221-227.
    Roditcheva, O.V., Bai, X.S.2001. Pressure effect on soot formation in turbulent diffusion flames [J]. Chemosphere,42(5-7):811-821.
    Roper, F.G.1977. The Prediction of Laminar Jet Diffusion Flame Sizes:Part Ⅰ. Theoretical model [J]. Combustion and Flame,29:219-226.
    Ross, H.D.2001. Microgravity Combustion:Fire in Free Fall. In:(ed.) Faeth, G.M., "Laminar and Turbulent Gaseous Diffusion Flames," Microgravity Combustion:Fire in Freefall [M]. ed. Elsevier Science.
    Saito, K., Williams, F.A., Gordon, A.S.1986. Effects of Oxygen on Soot Formation in Methane Diffusion Flames [J]. Combustion Science and Technology,47:117-138.
    Saji, C.B., Balaji, C., Sundararajan, T.2008. Investigation of soot transport and radiative heat transfer in an ethylene jet diffusion flame [J]. International Journal of Heat and Mass Transfer, 51(17-18):4287-4299.
    Schalla, R.L., Clark, T.P., Mcdonald, G.E.1954. Formation and combustion of smoke in laminar flames [R]. naca-report-1186. Cleveland:National Advisory Committee for Aeronautics.
    Schug, K.P., Manheimer-Timnat, Y., Yaccarino, P., Glassman, I.1980. Sooting Behavior of Gaseous Hydrocarbon Diffusion Flames and the Influence of Additives [J]. Combustion Science and Technology,22(5-6):235-250.
    Singh, J., Patterson, R.I.A., Kraft, M., Wang, H.2006. Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames [J]. Combustion and Flame,145(1-2):117-127.
    Sivathanu, Y.R., Faeth, G.M.1990. Soot volume fractions in the overfire region of turbulent diffusion flames [J]. Combustion and Flame,81(2):133-149.
    Smooke, M.D., Long, M.B., Connelly, B.C., Colket, M.B., Hall, R.J.2005. Soot formation in laminar diffusion flames [J]. Combustion and Flame,143(4):613-628.
    Sunderland, P.B., Haylett, J.E., Urban, D.L., Nayagam, V.2008. Lengths of laminar jet diffusion flames under elevated gravity [J]. Combustion and Flame,152:60-68.
    Sunderland, P.B., Mendelson, B. J., Yuan, Z.-G., Urban, D. L.1999. Shapes of Buoyant and Nonbuoyant Laminar Jet Diffusion Flames [J]. Combustion and Flame,116:376-386.
    Sunderland, P.B., Mortazavi, S., Faeth, G.M., Urban, D.L.1994. Laminar Smoke Points of Nonbuoyant Jet Diffusion Flames [J]. Combustion and Flame,96:97-103.
    Tao, C., Cai, X., Wang, X.2013. Experimental determination of atmospheric pressure effects on flames from small-scale pool fires [J]. Journal of Fire Sciences:1-8.
    Tewarson, A.2002. Generation of Heat and Chemical Compounds in Fires. In:Dinenno, P.J. (ed.) SFPE Handbook of Fire Protection Engineering [M].3rd ed. Quincy, Massachusetts 02269: National Fire Protection Association,3/102,3/103,3/131.
    Tewarson, A.2004. Combustion efficiency and its radiative component [J]. Fire Safety Journal, 39(2):131-141.
    Thomson, K.A., Gillder, O.L., Weckman, E.J., Fraser, R.A., Smallwood, G.J., Snelling, D.R.2005. Soot concentration and temperature measurements in co-annular, nonpremixed CH4/air laminar flames at pressures up to 4 MPa [J]. Combustion and Flame,140:222-232.
    Turns, S.R.1996. An introduction to combustion:concepts and applications [M]. McGraw-Hill.
    Ukleja, S.2012. Production of Smoke and Carbon Monoxide in Underventilated Enclosure Fires [M]. University of Ulster.
    Urban, D.L., Yuan, Z.-G., Sunderland, P.B., Lin, K.-C., Dai, Z., Faeth, G.M.2000. Smoke-point properties of non-buoyant round laminar jet diffusion flames [J]. Proceedings of the Combustion Institute,28:1965-1972.
    Villermaux, E., Durox, D.1992. On the physics of jet diffusion flames [J]. Combustion Science and Technology,84(1-6):279-294.
    Walsh, K.T., Long, M.B., Tanoff, M.A., Smooke, M.D.1998. Experimental and computational study of CH, CH*, and OH* in an axisymmetric laminar diffusion flame [J]. Proceedings of the Combustion Institute,27:615-623.
    Wampfler, G.L.1966. Light transmitting and light scattering properties of smoke [M]. U.S. Forest Products Laboratory.
    White, F.M.1991. Viscous fluid flow [M]. McGraw-Hill Professional Publishing.
    Widmann, J.F., Yang, J.C., Smith, T.J., Manzello, S.L., Mulholland, G.W.2003. Measurement of the optical extinction coefficients of post-flame soot in the infrared [J]. Combustion and Flame,134(1-2):119-129.
    Wieser, D., Jauch, P., Willi, U.1997. The Influence of High Altitude on Fire Detector Test Fires [J]. Fire Safety Journal,29(2):195-204.
    Yang, M., He, Y, Li, H., Zhang, X., Li, Z., Wang, J.2012. Combustion of Laminar Non-Premixed Acetylene Jet at Two Different Altitudes [J]. Combustion Science and Technology,184: 1950-1969.
    Yao, W, Hu, X., Rong, J., Wang, J., Zhang, H.2013. Experimental study of large-scale fire behavior under low pressure at high altitude [J]. Journal of Fire Sciences:1-13.
    Yao, W, Zhang, J., Nadjai, A., Beji, T., Delichatsios, M.2012. Development and validation of a global soot model in turbulent jet flames [J]. Combustion Science and Technology,184(5): 717-733.
    Yao, W, Zhang, J., Nadjai, A., Beji, T, Delichatsios, M.A.2011. A global soot model developed for fires:Validation in laminar flames and application in turbulent pool fires [J]. Fire Safety Journal,46(7):371-387.
    Yin, J., Yao, W, Liu, Q., Zhou, Z., Wu, N., Zhang, H., Lin, C.-H., Wu, T., Meier, O.C.2013. Experimental study of n-Heptane pool fire behavior in an altitude chamber [J]. International Journal of Heat and Mass Transfer,62(0):543-552.
    Yuan, T., Durox, D., Villermaux, E.1993. The Effects of Ambient Pressure Upon Global Shape and Hydrodynamic Behavior of Buoyant Laminar Jet Diffusion Flames [J]. Combustion Science and Technology,92:69-86.
    北京汉克威科技发展有限公司.2014.英国仕富梅4100气体纯度分析仪[EB/OL]. Available: http://www.docin.com/p-54171935.html.
    北京七星华创电子股份有限公司.2014.D07-19B气体质量流量控制器[EB/OL]. Available: http://www.mfcsevenstar.cn/product/d07/68.html.
    曾怡.2013.低压下射流扩散火焰的燃烧特性与图像特征[D]:[博士].合肥:中国科学技术大学.
    程晓舫,约翰.德里斯.1993.固体燃料烟点测量装置的研制[J].火灾科学,2(1):56-62.
    范维澄,王清安,姜冯辉,周建军.1995.火灾学简明教程[M].合肥:中国科学技术大学出版社,1-3.
    李凤泉.2004.对西藏文物古建筑消防工作的探讨[J].消防科学与技术,23(4):399-400.
    廖光煊,王喜世,秦俊.2003.热灾害实验诊断方法[M].合肥:中国科学技术大学出版社,59-66,153-156,93-99.
    民航总局航空安全办公室.2008.2007年飞行事故、航空地面事故和飞行事故征候统计[EB/OL]. Available:http://www.docin.com/p-395282040.html.
    杨满江.2011.高原环境下压力影响气体燃烧特征和烟气特性的实验与模拟研究[D]:[博士].合肥:中国科学技术大学.
    张晓蓉,杨巧红,荆春霞,吴赤蓬.2007.1994~2005年西藏自治区火灾发生的流行趋势[J].疾病控制杂志,11(3):286-288.
    朱春玲.2006.飞行器环境控制与安全救生[M].北京:北京航空航天大学出版社,36-37.
    庄磊,王福亮,孙晓乾,陆守香.2006.布达拉宫古建筑火灾危险性调查研究[J].消防科学与技术,25(3):337-340.