冲击滑动耦合作用下高速轴承与密封材料磨损行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速、高温、低温、重载、高频振动环境和工况条件在航空、航天、国防领域及民品高端产品领域越来越频繁,在这种条件下,密封、轴承、齿轮和泵、阀中的磨损问题日益突出,严重制约着复杂装备的寿命、可靠性、极限性能及其稳定性。其中,有一类由于冲击滑动耦合作用产生的磨损,往往直接导致高速轴承及密封的快速、异常失效,最终导致型号等高速复杂机械系统的止转性失效。本文建立了冲击滑动磨损试验机及冲击滑动耦合作用下摩擦副的热-机耦合分析模型,通过模拟分析及试验研究,对该类磨损的机理进行了探索。
     首先基于密封和轴承中典型冲击滑动耦合作用的摩擦副实际工况,研制了冲击滑动磨损试验机。实现了所有物理参量的自动显示、存储和监控,主要技术参数调节灵活,冲击工作载荷稳定,持久工作能力强。模拟试验的有效性和重现性结果表明:在相同条件下的试验数据具有较好的重现性,能够用于材料在冲击滑动耦合作用下的磨损机理研究。
     为了研究冲击滑动作用下由于热-机耦合效应产生的微区特性变化,本文建立了冲击滑动耦合作用下的接触模型,利用虚拟接触载荷法离散载荷,简化了有限元模型中的接触搜索算法,提高了计算效率。结果表明:冲击滑动接触主要表现为反复的热冲击和剪切表面化,并伴随冲击和滑动加剧,材料的表面及亚表层存在温度梯度分布和剪切表面化加剧。热-机耦合作用下,热影响区很薄,仅存在于0.3mm以内的亚表层。热效应增加了沿深度方向分布的等效应力梯度,且最大等效应力更接近接触表层。
     设计了L16(45)四水平正交试验,研究了5种典型摩擦配副材料在冲击滑动耦合作用下的磨损特性及行为。通过因素对磨损影响的极差分析和多元线性回归分析得到:冲击滑动耦合作用下,冲击力及冲击频率对冲击试件的磨损体积影响最大。较硬的钛合金TC4和较软的铝青铜QA10-4-4配副时会出现异常磨损行为,即“软磨硬”现象。在20CrNiMo钢及硬铝与GCr15钢配副时,冲击试件的平均磨损量与冲击频率、冲击力幅值及滑动速度之间存在十分显著的三元线性回归关系,为建立配副定量设计准则提供了依据。
     为研究材料在冲击滑动耦合作用下的磨损机制,本文利用二维、三维轮廓测试、X射线衍射、EDS能谱分析及电子扫描显微镜对磨痕进行分析。结果表明,金属冲击试件在磨损后,磨痕表面分布着大量剥落坑,表明剥落是金属冲击试件磨损的主要原因,磨损机制适用剥层理论。其中当冲击试件屈服极限高时,在冲击滑动耦合作用下材料主要发生疲劳剥落,且冲击频率增加剥落趋向严重,随着摩擦系数增大,导致剥落的裂纹趋向表面化。当冲击试件屈服极限较低时,材料主要发生显微切削、磨粒磨损及粘着剥落,工况参数增加,磨损机制发生由显微切削、磨粒磨损向粘着剥落的转变过程。浸渍锑合金石墨在冲击滑动耦合作用下,接触区内材料颗粒不断剥落,在对偶件的推碾作用下部份被挤入冲击试件的空隙中,在一定程度上减少了接触区内材料的气孔及微裂纹等缺陷,提高了材料的耐磨性。
     在五组配副试验中,钛合金回转试件发生了严重的磨损。钛合金产生“软磨硬”的机制为,钛合金与铜等低熔点金属接触时,其断裂强度与塑性指标显著降低,会发生铜脆现象,导致钛合金发生剥落,并且表面温度大幅变化导致铜的扩散加速,铜脆倾向增大。其他配副中,尽管回转试件磨损轻微,但材料表面的原始形貌发生较大的变化,其中GCr15钢磨痕区内残余奥氏体含量增加,导致这一转变的主要原因为摩擦生热产生的接触区高温及接触区应变产生的再结晶温度降低。论文为高频工作环境下选配合理摩擦副材料提供了依据。
The wear problem of sealing, bearing, gear, pump and valve, caused by severe service conditions, including high temperature, high sliding velocity, extreme low temperature, high load and high frequency vibration, between wear parts, becomes increasingly serious, especially in the application of aviation, aerospace, national defense and high end civilian industry. The life, reliability, extreme performance and stablility of equipments are restricted by these problems. A kind of wear caused by impact-sliding motion between wear parts can induce severe abrasion, which leads to the sudden and abnormal failure of components, and failure of high speed mechanical system. An impact-sliding wear rig was designed and the fully coupled thermal-stress analysis model was constructed for this purpose. The research of mechanics of impact-sliding wear was implemented, using experiment and finite element analysis methods.
     First, an impact-sliding wear rig was designed and constructed, based on the working conditions of impact-sliding wear in sealing and bearing. This wear rig can display and store the physical parameters. The operation of the testing rig is flexible, the impact load is steady and it can endure long time operation. The results of repeatable tests exhibit good repeatability under the same test conditions. The testing rig meets the demands of the impact-sliding wear researches.
     To research the distribution of temperature and stress, caused by thermal-stress effect under impact-sliding motion, contact model was established. To increase the efficiency of calculation, a new contact tracking approach was adopted, using virtual contact loading method. The results show that impact-sliding contact causes transient heating and surfacial-tendency of shear stress. The gradient of temperature and surfacial-tendency of shear stress become intensively with the increasing of impact and sliding. The thermal influence area is thin, and the effect of thermal can take effects less than 0.3mm depth only. The thermal effects increase the gradient of mises distribution along depth direction, and the maximum mises stress is closer to contact surface.
     A four levels orthogonal table-L16(45) was adopted to design the experiments. The impact-sliding wear tests, including 5 sets of typical counterparts, were conducted, using the impact-sliding wear testing rig. The results, processed through multiple element linear regression and range analysis, show that impact motion, including impact frequency and impact load, has greater influence than sliding velocity on wear mass loss of impact specimens. The results of wear volume show clearly that although the titanium alloy TC4 has greater hardness than aluminum bronze, the wear volume of titanium alloy has much greater value compared with aluminum bronze yet. That is the phenomenon of the“the hard worn by the soft”. The relationship between average wear loss and experimental factors, including impact frequency, impact load and sliding velocity, is of ternary linear regression, when 20CrNiMo steel and duraluminium alloy wear against GCr15 steel. The quantitative design of wear counterparts can be established, using this conclusion.
     To research the wear mechanism of materials under impact-sliding interaction, some non-destructive examinations have been performed on worn specimens, including 2D and 3D profilometry, scanning electron microscopy, XRD and EDS technology. The results show that after abrasion, the surface profile of metal specimens changes greatly with large numbers of flaking on worn track. It indicates that material flaking is the main cause of wear of metal impact specimens, under impact-sliding contact, and the wear mechanism of metal impact specimens is delamination wear. When the yield limit of material is high, fatigue flaking is in dominant position, and the flaking becomes serious with the increase of impact frequency. The cracks are of surfacial tendency with the increasing of friction coefficient. When the yield limit of material is low, the wear of impact specimens is caused by mechanical removal and adhesion mainly, and with the increase of experimental factors, the wear mechanism of impact specimens changes from mechanical removal to adhesion. When material is brittle, the particles flake off impact specimen constantly. A portion of these particles fill the interspaces of impact specimen. As a result, the number of micro-crack and porosity is decreased and the wear resistance is improved.
     Among 5 sets of experiments, the rotational specimen, made of titanium alloy TC4, wears more severely than impact specimen, made of aluminum bronze. This phenomenon can be explained by the behavior of copper-induced embrittlement of titanium alloy. The fracture strength and plastic property of titanium alloy decrease greatly as contacted with certain kinds of metal with low melting point, such as Cu and etc. With the increase of temperature, the diffusion of Cu is accelerated, and copper-induced embrittlement becomes severely. In other experiments of countparts, the wear loss of rotational specimen is not detectable, but the profile and micro-structure changed obviously yet. It can be found that the content of residual austenite increases. This phenomenon can be explained by the decrease of recrystallization temperature, caused by high friction-induced temperature and strain of contact area. This thesis provides the guide line to select wear counterparts properly under high frequency work condition.
引文
1 T. A. Adler, O. N. Dogan. Erosive wear and impact damage of high-chromium white cast irons. Wear. 1999, 225-229:174-180
    2 N. J. Fisher, A. B. Chow, M. K. Weckwerth. Experimental fretting-wear studies of steam generator materials. ASME Journal of Pressure Vessel Technology. 1995, 117:312-319
    3 R. Lewis, R.S. Dwyer-Joyce. Combating automative engine valve recession: a case study. Tribology and Lubrication Technology. 2003, 59(10):48–51.
    4 Z. Zalisz, A.Watts, S.C. Mitchell, A.S.Wronski. Friction and wear of lubricated M3 Class 2 sintered high speed steel with and without TiC and MnS. Wear. 2005, 258(5–6):701-711
    5 A. Kawana, H. Ichimura, Y. Iwata, S. Ono. Development of PVD ceramic coatings for valve seats. Surface and Coatings Technology. 1996,86–87:212-217
    6 K.J. Chun, J.H. Kim, J.S. Hong. A study of exhaust valve and seat insert wear depending on cycle numbers. Wear. 2007, 263:1147-1157
    7 Y.S.Wang, S. Narasimhan, J.M. Larson, J.E. Larson, G.C. Barber. The effect of operating conditions on heavy duty engine valve seat wear. Wear. 1996, 201:15-25
    8 R. Lewis, R.S.Dwyer-Joyce. Wear of diesel engine inlet valves and seat inserts. Proceedings of the Institution of Mechanical Engineers. Part D. Journal of Automobile Engineering. 2002, 216 (3):205-216
    9王黎钦,李秀娟,古乐,齐毓霖.一类极苛刻条件下的异常磨损现象——"软磨硬".第七届全国摩擦学大会论文集. 2002,736-739
    10王黎钦,李秀娟,古乐,等.涡喷发动机高温高速轴承失效机理及改进措施.机械科学与技术. 2002, 21(6): 963-965.
    11王勇华,朱华,黄孝龙,吴兆宏.金属材料冲击磨损的研究现状.矿山机械. 2004,86-88
    12 A. T. Alpas, H. HJ, J. ZHANG. Plastic deformation and damage accumulation below the worn surfaces. Wear. 1993, 162(64):188-195
    13 Torrance A A. The metallography of worn surfaces and some theories of wear.Wear. 1978,(50):
    14 Suh N P. An overview of the delamination theory of wear. Wear. 1977,(44):
    15 Yang Y Y, Fang H SH, Zheng Y K, etc. The failure models induced by white layers during impact wear. Wear. 1995, (185):17-22
    16 Rice S L, Wayne S F. Wear of two titanium alloys under repetitive compound impact. Wear. 1980, (61)
    17 Tang Naiyong, Niessen P, Pick R J. An investigation of shock induced damage in oxygen-free high conductivity copper. Material Science and Engineering. 1991,131
    18 Prasad B K, Prasad S A. Abrasion induced microstructural changes during low stress abrasion of a plain carbon(0.5%) steel. Wear. 1991,151
    19 Rack H J, Desouza U J, Wang A. Impact deformation and damage in austenitic high chromium white cast iron by spherical projectile at normal incidence. Wear,1992,(159)
    20黄维刚,方鸿生,郑燕康.高应力冲击磨损的白层剥落机理.钢铁研究学报. 1998,(1):
    21杨业元,方鸿生,郑燕康.冲击磨损失效行为的研究.矿山机械. 1995,(7):25~28
    22傅戈雁,石世宏.多冲碰撞载荷下激光涂层的接触损伤分析.激光与红外. 2006, 36(7):587-589
    23傅戈雁,石世宏,唐卫东.激光涂层零件的多冲碰撞形变效应与分析.激光杂志. 2005, 26(4):79-81
    24章建军,朱金华.贝氏体钢在多次冲击接触载荷下的反常磨损行为研究.摩擦学学报. 2006, 26(3):198~202
    25 Rise S L. Formation of subsurface zones in impact wear. ASLE Transaction. 1981,(2):264-268
    26杨业元,方鸿生,郑燕康.接触应力状态对材料冲击磨损特性的影响.金属学报. 1995,31(7):324-328
    27许云华,朱金华,王发展.应力特性对冲击磨损机理的影响.热加工工艺. 1999,(1):3-5
    28 Jeon G. Han, Kyung H. Nam, In S. Choi. The shear impact wear behavior of Ti compound coatings. Wear. 1998,(214):91~97
    29 Molinari A, Straffelini C, Campestrini P. Influence of microstructure onimpact and wear behavior of sintered Cr and Mo steel. Powder Metallurgy.1999,(3):534-546
    30 Bolozan N, Badea, Petruta. Chromium alloy irons wear behavior in high impact condition. Metal Material.2000,(2):421-429
    31 Ei Mahallawi I, Abdel-Karim R, Naguib A. Evaluating effect of chromium on wear performance of high manganese steel. Journal of Engineering and Applied Science. 2000,(5):945-964
    32 S. I. Maldonado-Ruíz, D. López, A. Velasco, etc. Microstructural evaluation of wear resistant high chromium, high carbon cast irons. Materials Science and Technology. 2004, 20(3):393-398
    33 R. Bantle, A. Matthews. Investigation into the impact wear behavior of ceramic coatings. Surface and Coatings Technology. 1995,(74-75):857-868
    34 N. J. Fisher, A. B. Chow, M. K. Weckwerth. Experimental fretting-wear studies of steam generator materials. Transactions of the ASME. 1995,(117):312-320
    35 Seung Mo Hong, In Sup Kim. Impact fretting wear of alloy 690 tubes at
    25℃and 290℃. Wear. 2005, (259):356-360
    36 Hyung-Kyu Kim, Young-Ho Lee. Influence of contact shape and supporting condition on tube fretting wear. Wear. 2003, (255): 1183–1197
    37 Lina, A, Moinereau, D, Delaune, X. The influence of water flow on the impact/sliding wear and oxidation of PWR control rods specimens. Wear. 2001,(250): 839-852
    38 D. H. Jones, A. Y. Nehru, J. Skinner. The impact fretting wear of a nuclear reactor component. Wear. 1985,(106):139-162
    39 J. Knudsen, A.R. Massih. Vibro-impact dynamics of a periodically forced beam. Journal of Pressure Vessel Technology. 2000, 122:210-221.
    40 J. Knudsen, A.R. Massih, R. Gupta. Analysis of a loosely supported beam under random excitations. Flow-induced Vibration. 2000:505-512.
    41 J. Knudsen, A.R. Massih. Dynamic stability of weakly damped oscillators with elastic impacts and wear. Journal of Sound and Vibration. 2003, 263:175-204.
    42 J. Knudsen. Vibro-impact Dynamics of Fretting Wear. Licentiate Thesis. 2001.
    43 J. Knudsen, A.R. Massih. Impact oscillations and wear of loosely supported. Journal of Sound and Vibration. 2004, 278:1025-1050
    44 A. Van Herpen, B. Reynier, C. Phalippou. Effect of test duration on impact/sliding wear damage of 304L stainless steel at room temperature: metallurgical and micromechanical investigations. Wear. 2001, (249): 37-49
    45 B. Reynier, C. Phalippou, P. Riberty, J. Sornin. Influence of a periodic latency time on the impact/sliding wear damage of two PWR control rods and guide cards specimens. Wear. 2005, (259):1314-1323
    46 M.H. Attia , E. Magel. Experimental investigation of long-term fretting wear of multi-span steam generator tubes with U-bend sections. Wear. 1999, (225~229):563-574
    47杨书申,彭竹琴. T10钢脉动冲击磨损规律的试验研究.郑州纺织工学院学报. 2001,12(4):51-54
    48 T.Ootani, N.Yahata, A.Fujiki, A.Ehira. Impact wear characteristics of engine valve and valve seat insert materials at high temperature (impact wear tests of austenitic heat-resistant steel SUH36 against Fe-base sintered alloy using plane specimens). Wear. 1995,(188):175-184
    49 T.Ootani, N.Yahata, A.Fujiki, A.Ehira. Impact wear characteristics of engine valve and valve seat insert materials at high temperature (2nd report, impact wear tests of austenitic heat-resistant steel SUH 36 against two types of Fe-base sintered alloy with plane and oblique surfaces). Transactions of the Japan Society of Mechanical Engineers. 1996,(62): 2351-2358
    50王勇华,朱华,钱善华,李刚.冲击与摩擦耦合作用下GCr15钢的磨损行为研究.轴承. 2005, 10(10): 25-27
    51王勇华,朱华,钱善华.冲击与摩擦耦合作用下GCr15-45摩擦副的磨损行为研究.煤矿机械. 2005,(6):25-7
    52 A. Ramalhoa, Ph. Kapsa, G. Bouvard, J.-C. Abryb, etc. Effect of temperatures up to 400℃on the impact-sliding of valve-seat contacts. Wear. 2009, 267:777-780
    53赵运才,李颂文,刘竞生.发动机气门-门座磨损失效机理实验研究.摩擦学学报. 2000, 20(5):386-388
    54 Wood R J K, Wheeler D W. Design and performance of a high velocity air-sand jet impingement erosion facility. Wear, 1998, 220 (2): 95-112
    55 Shanov V, Tabakoff W, Gunaraj J A. Study of CVD coated and uncoated INCO 718 exposed to particulate flow. American Society of Mechanical Engineers, Heat Transfer Division, 1996, 336: 227-234
    56 Deng T, Bingley M S, Bradley M S A, et al. A comparison of the gas-blast and centrifugal-accelerator erosion testers: The influence of particle dynamics. Wear, 2008, 265 (7-8): 945-955
    57 Lugscheider E, Knotek O, wolff C, et al. Structure and properties of PVD-coatings by means of impact tester. Surface and Coatings Technology, 1999, 116-119: 141-146
    58 Peter A. Engle, Qian Yang. Impact wear of multiplated electrical contacts. Wear, 1995, 181-183 (2): 730-742
    59 Li X M, Yang Y Y, Shao T M, et al. Impact wear performances of Cr3C2-NiCr coatings by plasma and HVOF spraying. Wear, 1997, 202 (2): 208-214
    60 Fricke R W, Allen C. Repetitive impact wear of steels. Wear, 1993, 162-164: 837-847
    61 Shao Tianmin, Hua Meng, Impact wear behavior of laser hardened hypoeutectoid 2Cr13 martensite stainless steel. Wear, 2003, 255 (1-6): 444-
    455
    62李学敏.一种新型冲击磨损试验机的研制.甘肃工业大学学报. 1997, 23(1):45-52
    63王艳,石心余,蔡立君等.新型小载荷冲击磨损试验机的研制及其实验研究.摩擦学学报. 2007, 27(5):487-491
    64 Bouzakis K. D, Vidakis N, Leyendecker T, et al. Determination of the fatigue behavior of thin hard coatings using the impact test and a FEM simulation. Surface and Coatings Technology. 1996, (86-87):549-556
    65 Pollock G.D and Noor A.K. Sensitivity analysis of the compact/impact response of composite structures. Computers and Structures. 1996, 61(2):251-269
    66 Ive H. Explicit calculations of highly non-liner contact-impact problems. Nuclear Engineering and Design. 1994, 150(2-3):207-214
    67 Hallqiust J.O. DYNA3D course notes, Tech.Re.UCID-29899, Rev.2, University of California. Lawrence Livermore National Laboratory. 1987
    68 Hallquist J.O, Goudreau G.L, Benson D.J. Sliding interfaces with contact-impact in large-scale Lagrangian computations. Computer Methods in Applied Mechanics and Engineering. 1985, 51:107-137
    69 Hallquist J. O. DYNA3D course notes. UCID-19899-Rec.2, DE88 005232. 1987
    70 Hallquist J. O. NIKE3D. An implicit, finite deformation, finite element code for analyzing: the static and dynamic response of three-dimensional solids, Tech Rep UCID-18822, Rec.1. Univerisity of California, Lawrence Livermore National Laboratory. 1984
    71 Bertholf L. D, Benzley S. E. TOODY II, A computer program for two-dimensional wave propagation. Sandia National Laboratories, Albuquerque, NM.Rept.SC-RR-68-41, 1968
    72 Zhong Z. H. On Contact-impact Problems. Dissertation No.178, Linkoping University, 1988
    73 Pollock G. D, Noor S. K. Sensitivity analysis of the compact/impact of composite atructures. Computers and Structures, 1996, 61(2): 251-269
    74 Schweizerhof K, Nilsson L, Hallquist J. O. Crachworthiness analysis in the automotive industry. International Journal of Computer Applications in Technology. 1992, 5(2-4):134-156
    75 Benson D.J, Hallquist J.O.A single surface contact algorithm for the post-buckling analysis of shell structures. Computer Methods and Applied Mechanics. 1990, 78:141-150
    76 Mats Oldenburg, Larsgunnar Nilssion. The Position Code Algorithm for Contact Searching. International Journal for Numerical Methods in Engineering. 1994, 37:359-386
    77严立,徐久军.磨损问题的仿真求解研究.摩擦学学报. 1999, 19(1):50-55
    78袁成清,严新平,彭中笑.关于第14届材料磨损国际会议的简要评述.摩擦学学报, 2003, 23(4):356-360.
    79王猷,樊瑜谨.冲击磨料磨损过程的有限元分析及实验.矿业研究与开发. 2004, 4:39-41
    80王猷,樊瑜谨.冲击磨料磨损中磨料粒度影响的有限元分析.矿业研究与开发. 2008, 4:43-45
    81 ONeil D A, Wayne S F. Numerical simulation of fracture in coated brittle materials subjected to tribo-contact. Journal of Engineering Materials andTechnology (Transactions of the ASME). 1994, 116(4):471-478
    82 Chue C H, Chung H H, Lin J F, et al. The effects of strain hardened layer on pitting formation during rolling contact. Wear. 2001, 249;109-116
    83 Kimura Y, Shima M. Longitudinal contact-point model for calculating stress-intensity at surface cracks in sliding wear. Wear. 1991, 141:335-347
    84 Ghorbanpoor A L, Ziiang J. Crack behavior for sliding contact problems. Engineering Fracture Mechanics. 1992, 41(1):41-48
    85 Glodez S, Winter H, Stuwe H P. A fracture mechanics model for the wear of gear flanks by pitting. Wear. 1997, 208:177-183
    86 Komvopoulos K, Cho S S. Finite element analysis of subsurface crack propagation in a half space due to a moving asperity contact. Wear. 1997, 209:57-68
    87 Zhang H Q, Sadeghipour K, Baran G. Numerical study of polymer surface wear caused by sliding contact. Wear. 1999, 224:141-152
    88 B.布尚.摩擦学导论.北京:机械工业出版社. 2007
    89 Gao C H, Lin X Z. Transient temperature field analysis of a brake in a non-axisymmetric three-dimensional model. Journal of Materials Processing Technology. 2002, 129:513-517
    90 M. Ciavarella L. Johansson L. Afferrante A. Klarbring and J. R. Barber. Interaction of thermal contact resistance and frictional heating in thermoelastic instability. International Journal of Solids and Structures. 2003, 40(21):5583-5597
    91 Gao C H, Lin X Z. Transient temperature field analysis of a brake in a non-axisymmetric three-dimensional model. Journal of Materials. 2002, 129:513-517
    92 L. Afferrante M, Ciavarell P, Decuzzi, G. Demelio. Transient analysis of frictionally excited thermoelastic instability in multi-disk clutches and brakes. Wear. 2003, 254(1-2):136-146
    93 Ji-Hoon Choi and In Lee. Finite element analysis of transient thermoelastic behaviors in disk brakes. Wear. 2004, 257(1-2):47-58
    94赵海燕,张海泉,汤晓华等.快速列车盘型制动热过程有限元分析.清华大学学报(自然科学版). 2005, 45(5):589-592
    95韩东太,杜雪平.矿井提升机摩擦热分析及衬垫温度场数值模拟.矿山机械. 2007, 35:78-81
    96朱建军,黄启忠,王秀飞,张明瑜.炭/炭复合材料湿式制动过程中的温度场模拟.粉末冶金材料科学与工程. 2007, 12(2):91-95
    97周延泽.高速角接触球轴承保持架振动与强度研究.北京航天航空大学博士学位论文. 2000
    98孙宝元.二向压电式车削测力仪结构优化设计.机械工程学报. 1990, 26(3):65-70
    99 A. Srivastava, V. Joshi, R. Shivpuri. Computer modeling and prediction of thermal fatigue cracking in die-casting tooling. Wear. 2004, 256 (122) : 38-43
    100 A. B?HMER, M. ERTZ, K. KNOTHE. Shakedown limit of rail surface including material hardening and thermal stresses. Fatigue and Fracture of Engineering Materials and Structures. 2003, 26 (10) : 985-998
    101 Moyar, G. J, Stone, D. H. An analysis of the thermal contributions to railway wheel shelling. Wear. 1991, 144 (122) :117-138
    102 K. L. Johnson. Contact Mechanics. Cambridge University Press. 1985
    103 H. Deresiewicz. A note on Hertz's theory of impact. Acta Mechanica. 1968, 6:110-112
    104 Zhao H. Virtual contact loading method for contact problems considering material and geometric nonlinearities. Computers and Structures, 1996 , 58(3) :621-632
    105 Zhao H. Analysis of load distribution within solid and hollow roller bearing. ASEM Journal of Tribology. 1998, 120(1):134-139
    106 Zhao H. Stress concentration factors within bolt-nut connectors under elasto-plastic deformation. International Journal of Fatigue. 1998, 20(9) :651-659
    107裴有福,金元生,温诗铸.轮轨接触温升的有限元分析.中国铁道科学. 1996,17(4):48-58
    108戴锅生.传热学.北京:高等教育出版社. 2001
    109韩铭宝,刘宗德,刘怡光.热冲击下A3钢力学性能的研究.爆炸与冲击. 1999, 19(1):20-26
    110 Daniel Thuresson. Influence of material properties on sliding contact braking applications. Wear. 2004, 257(5-6):451-460
    111 Luciano Afferrante and Paolo Decuzzi. The effect of engagement laws on the thermomechanical damage of multidisk clutches and brakes. Wear. 2004,257(1-2):66-72
    112裴延玲,赵勇,马跃,宫声凯,徐惠彬.热冲击对γ—TiAl基合金显微组织的影响.金属学报. 2008, 44(5):565-568
    113 Revel P, Kipcher D, Bogard V. Experimental and numerical simulation of a stainless steel coating subjected to thermal fatigue. Materials Science and Engineering. 2000, 290A (1-2):25-32
    114李云雁,胡传荣.试验设计与数据处理.北京:化学工业出版社. 2008
    115余永宁.金属学原理.北京:冶金工业出版社. 2000
    116 Aigner K, Lengauer W, Ettmayer P. Interactions in iron-based cermet systems. Journal of Alloys and Compound. 1997, (262-263): 486-491
    117 Collins J A. Failure of materials in mechanical design: analysis, prediction, prevention. New York: John Wiley & Sons press, 1993
    118李建明.磨损金属学.北京:冶金工业出版社. 1990
    119 Lynch S P, Metal induced embrittlement of materials. Materials Charaterization. 1992, 28:279-289
    120刘道新,刘双梅,樊国福.钛合金的固态Cu致脆行为研究.航空材料学报. 2006, 26(1):1-5