二硅化钼的高温摩擦学特性及其磨损率预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对陶瓷材料高温摩擦磨损性能的研究是摩擦学领域中的热点方向之一。可是,陶瓷材料对于复杂精密零件的难加工性和低力学可靠性,严重阻碍了其在高效动力机械等工程领域中的应用。金属间化合物二硅化钼(MoSi2)是一种极有吸引力的高温结构材料,它具有硬度高、弹性模量高、高温抗氧化性极好、在1400℃下强度基本不降低和可用电火花进行加工等特点。因此,MoSi2材料有望成为高温等特殊工况下选用的新型耐磨材料,广泛应用于航空、航天、武器装备、交通运输及高效动力机械等领域。
     本文采用自蔓延高温合成技术制备了MoSi2及0.8wt.%La2O3-MoSi2复合材料,分别以氧化铝、碳化硅和氮化硅为对摩件,研究不同的环境温度(700-1100℃)、载荷(10-50N)和滑动速度(0.084-0.252m/s)对MoSi2材料高温摩擦磨损行为的影响,探讨了其磨损机制;并建立了基于人工神经网络的MoSi2材料的高温磨损率预测模型。同时也考察了MoSi2涂层的高温摩擦学特性及其磨损机制。本文主要研究结果如下:
     1.随环境温度、载荷和滑动速度的增加,MoSi2/SiC和MoSi2/Si3N4两种摩擦副的摩擦因数呈下降的趋势,MoSi2的磨损率均逐渐减小;而MoSi2/Al2O3配对副的摩擦因数呈先上升后下降的趋势,MoSi2的磨损率随温度的增加先增加后减小,随载荷和滑动速度的增加,其磨损率逐渐下降。比较三种配对副材料,与SiC对摩时,MoSi2/SiC配对副的摩擦因数最小且MoSi2磨损率最小,因此,SiC是MoSi2一种合适的高温配对副材料。
     2. MoSi2材料在高温磨损过程中,氧化磨损始终存在。随着载荷的增大,MoSi2的磨损机制还表现为粘着、研磨、疲劳断裂;随着温度的升高,MoSi2的磨损机制主要表现为粘着、研磨和疲劳断裂等形式;滑动速度的增加使MoSi2的磨损机制从磨粒擦伤为主转化为以粘着和研磨为主。
     3.稀土La203的加入提高了MoSi2基复合材料的高温抗磨性,归因于其强韧化作用。稀土-MoSi2复合材料的磨损机制除氧化磨损之外,随载荷的增大,还表现为粘着磨损、研磨和疲劳磨损;随着温度的增加,表现为以粘着磨损为主逐渐向研磨和粘着磨损转变;随滑动速度的增大,表现为粘着磨损、研磨和磨粒擦伤。
     4.比较了K403合金及硅化钼涂层的高温摩擦学性能。结果表明,与氧化铝1100℃对摩时,硅化钼涂层明显提高了材料的高温抗磨性,30Vol.%ZrO2-MoSi2涂层效果更加显著。镍基合金的高温磨损机制为氧化磨损和疲劳断裂。硅化钼涂层能有效地防止镍基合金的高温氧化,涂层材料的磨损机制表现为氧化磨损、粘着磨损和脆性断裂。
     5.在对人工神经网络和BP神经网络分析的基础上,着重讨论和研究了具有学习率自适应和附加二次动量项的BP网络预测模型的建立,并给出了网络的训练过程。结果表明:利用改进的BP神经网络对温度、载荷以及转速等条件综合作用下的二硅化钼磨损率的预测具有较高的预测精度和实用价值,可以满足综合条件下的二硅化钼磨损率的预测需要。
Friction and wear properties research of ceramic materials at high temperature is a hotspot of tribology. However, ceramics is difficult to be made into complex precision component and has low mechanical reliability, which hinders its application in the engineering areas. Intermetallic compound MoSi2 has better performance such as high hardness, high elasticity modulus, high thermal conductivity and electricity conductivity, superior oxidation resistance and electrical discharge machining. MoSi2 will be expected to use as a new type of wear resistant material under high temperature circumstance.
     In this paper, MoSi2 and 0.8wt.%La2O3-MoSi2 composites were prepared by self-propagating high-temperature synthesis(SHS) and vacuum sintered. Alumina, Silicon carbide and silicon nitride were used as friction disc, while MoSi2 and MoSi2-based composites as pin. The effects of temperatures (700~1100℃), loads(10~50N), sliding velocity(0.084-0.252m/s) on its frictional and wear properties were investigated by using XP-5 type high temperature friction and wear Tester. The wear mechanisms were also studied. A network forecasting model for wear rate is built with artificial neural network technology. The friction and wear properties of MoSi2 coatings were also studied. The results are shown as follows:
     1. With the ambient temperature, load and sliding speed increasing, the friction factor of MoSi2/SiC and MoSi2/Si3N4 gradually reduced, and the wear rate also reduced. However, the friction factors of MoSi2/Al2O3 increase first and then decline. With the ambient temperature increasing, the wear rate of MoSi2 increases first and then decline. With the load and sliding speed increasing, the wear rate of MoSi2 gradually reduces. In the three pairs, the friction factor of MoSi2/SiC is the smallest and the ware rate is also the smallest. From the perspective of couples, SiC ceramic is more suitable couples for MoSi2 material at high temperatures.
     2. The oxidation wear of MoSi2 materials always exists during the wear process. With the load increasing, the main wear mechanisms of MoSi2 are adhesion wear, grinding and fatigue fracture. With temperature increasing, the main wear mechanisms of MoSi2 are adhesion wear, grinding and fatigue fracture.With Sliding velocity increasing, the wear mechanisms of MoSi2 change from scratches abrasive to adhesive and grinding.
     3. The wear resistance of MoSi2 is improved by adding La2O3 into MoSi2 substrate due to the strengthening and toughening. The oxidation wear of rare-MoSi2 materials always exists during the wear process. With the load increasing, the main wear mechanisms of rare-MoSi2 materials are adhesion wear, grinding and fatigue fracture. With temperature increasing, the main wear mechanisms of rare-MoSi2 materials change from adhesion abrasion to grinding and adhesion wear. With sliding velocity increasing, the wear mechanisms of rare-MoSi2 materials are adhesion wear, grinding and grind scratch.
     4. The friction and wear properties of the K403 alloy and MoSi2 coating at 1100℃were compared. The results show that the wear resistance of K403 alloy is improved after coated the MoSi2 coating and the wear resistance effect is more obvious after coated 30Vol.%ZrO2-MoSi2. The wear mechanisms of Nickel-based alloys are oxidation wear and fatigue fracture. The oxidation of K403 alloy was prevented after coated MoSi2 coating. The wear mechanics of MoSi2 coating are oxidation, adhesion wear, and fatigue fracture.
     5. Based on the artificial neural network and BP neural network analysis, the adaptive learning rate and additional secondary momentum BP neural networks prediction model were studied. The network training process was also given. Network prediction and the actual testing results show that the improved BP neural network has higher prediction accuracy. Network prediction can meet the predicting need of molybdenum disilicide under the complex conditions.
引文
[1]张立同,成来飞,徐永东,等.自愈合碳化硅陶瓷基复合材料研究及应用进展[J].航空材料学报,2006,26(3):226-231.
    [2]J ACK K H, JURGEN G.Heinrich. Prospects for nitrogen eramics in engine app lications [J]. Silicon Nitride,2003,10 (4):32.
    [3]王正军.氮化硅陶瓷的研究进展[J].材料科学与工艺.2009,17(2):154-158.
    [4]Hawk J A, Alman D E. A comparative study of the abrasive wear behavior of MoSi2[J].Scripta Metallurgica et Materialia,1995,32(5):725-730.
    [5]张厚安.第二相对MoSi2材料制备与性能的影响[D],长沙:中南大学,2002.
    [6]Li H J, Jiao G S, Li K Z, et al.Multilayer oxidation resistant coating for SiC coated carbon/carbon composites at high temperature[J]. Materials Science and Engineering:A, 2008,475,(1-2),279-284.
    [7]屈晓斌,陈建敏.材料的磨损失效及其预防研究现状与发展趋势[J].摩擦学学报,1999,19(2):187-191.
    [8]周曦亚,方培育MoSi2及其复合材料的研究和应用[J].中国陶瓷工业,2006,13(1):34-37.
    [9]Alman D E, Stoloff N S.The Effect of Niobium Morphology on the Fracture Behavior of MoSi2/Nb Composites[J].Metallurgical and Materials transaction,1995,26A:289-303.
    [10]马勤,杨延清,康沫狂.二硅化铝—用途广泛的金属间化合物[J].材料开发与应用,1997,12(6):27-31.
    [11]Petrovic J J.Toughening strategries for MoSi2-based high temperature structural silicide materials [J]. Intermetallics,2000, (8):1175-1182.
    [12]Fan Xiaobao, Ishigak Takamasai. Parametric Study on Nitridation and Carburization of MoSi2 Powders in an Induation Plasma[J].Plasma Chemistry and plasma Processing,1998,18(4):487-507.
    [13]Petrovic J.J.MoSi2-Based High Temperature Structural Silicides. MRS Bulletin, XVIII,1993,35-40.
    [14]Vasudeva A k, Petrovic J J.A Comparative Overview of Molybdenum Disilicde Composites. Materials Science and Engineering, A,1992,155(2):1-17.
    [15]彭可,易茂中,冉丽萍.自蔓延热爆合成MoSi2-WSi2复合粉末[J].中国有色金属学报,2005,15(6):870-875.
    [16]李公平,张小东,丁宝卫.载能钼团簇束与单晶硅碰撞室温下合成二硅化钼[J].核技术,2005,28(3):221-226.
    [17]张厚安,许剑光,颜建辉,胡小平.二硅化钼及其复合材料的制备与性能[M],国防工业出版社,2007.
    [18]Tiwari R, Herman H, Sampath S. Vacuum Plasma Spraying of. MoSi2 and its Composites. Mater. Sci. Eng:,A 1992,155(1-2):95-100.
    [19]张厚安,王德志.球料比对机械合金化MoSi2合金化过程的影响[J].湘潭矿业学院学报,1997,(1):68-71.
    [20]Li Mingwei, Zhu Jingchuan.Synthesis of MoSi2 by Mechanical Alloying [J].J.Mater.Sci.Tehnol, 2001,17(1):15-16.
    [21]张厚安,刘心宇,陈平Al/MoSi2复合材料的机械合金化合成[J].粉末冶金技术,2002,20(3):166-168.
    [22]寇开昌,杨延清MoSi2-WSi2复合体系的自蔓延合成[J].稀有金属材料与工程,2000,(3):190-192.
    [23]冯培忠,曲选辉,王晓虹.二硅化钼的制备与应用的新发展[J].粉末冶金工业,2005,15(4):46-50.
    [24]ZhangGuojun,Yue Xuemei, Watanane Tadahikdm. Addition effects of aluminum and in situ formation of aluminum in MoSi2[J]. Journal of materials science,1999(34):997-1001
    [25]ZhangGuojun,Yue Xuemei,Watanane Tadahikdm. Synthesis of Mo(Si, Al)2 alloy by reactive hot processing at low high temperature for a short time. Journal of science [J].1999(34),593-597
    [26]Waghmare, Kaxiras U V, Efthimios, Bulatov V V. Effects of alloying on the ductility of MoSi2 single crystals from first-principles calculations[J]. Modelling and Simulation in Materials Science and Engineering,1998,6(4):493-506
    [27]Henager C H,Brimhall J,Hirth J P. Synthesis of a MoSi2-SiC composites in suit using a solid state displacement reaction[J]. Mater. Sci.Eng.,1992,A155:109-114.
    [28]Besterci M,Ball B O Kov A,Hvizdo P. Creep behaviour of MoSi2-HfO2 composites[J]. Journal of Materials Scienice,2005,40(5):3869-3878.
    [29]Sun L, Pan J S, Lin C J.Wear behavior of TiC-MoSi2 composites [J].Materials Letter, 2003,57:1239-1243.
    [30]CookJ.Khan A, lee E, Mahapatra R. Oxidation of MoSi2-based composite[J]. Mater.Sci.Eng.,1992,A155:183-189.
    [31]Westbook J H,Wood D L. "Pest" degradation in beryllides,silicides,aluminides,and related compound-ds[J].Nucl Materials,1964,2(12):208-215.
    [32]Mckamey C G, Tortorelli P F, Devan J H.Study of pest oxidation in polycrystalline MoSi2 [J].Journal of Materials Research,1992, (7):2747-2755.
    [33]Chou T C, Nieh T G.Mater Res Comparative studies on the pest reaction of single-and poly-crystalline MoSi2 [J].Scripta Metallurgicaet Materialia,1992,27(1):19-24.
    [34]Hansson. K,Halvarsson M,Tang J E.Oxidation behaviour of a MoSi2-based composite in different atmosphere in the low temperature range(400-550℃)[J].J Ceram Soc,2004,24:3559-3561.
    [35]Kurokawa K, Houzumi H, Saeki l.Low temperature oxidation of full dense and porous MoSi2 [J].Mater Sci Eng,1999,261(A):292-301.
    [36]颜建辉,张厚安,李益民.不同致密度MoSi2材料在700-1200℃的氧化行为[J].稀有金属,2007,31(1):18-21.
    [37]YAN Jianhui,ZHANG Houan, TANG Siwen, XUJianguang. Cyclic Oxidation Behaviors of MoSi2 with relative density, Journal of Wu Han University of Technology Materials Science,2008,23(5):699-703.
    [38]YAN Jianhui, Li Yimin, ZHANG Houan Effect of relative density on cyclic oxidation resistance properties of MoSi2, Journal of Central South University of Technology,2008,15(3):301-304.
    [39]常春,李木森,陈传中MoSi2高温氧化层的微观结构[J].金属学报,2003,39(2):126-131.
    [40]Kuchino J., Kurokawa K., Shibayama T. Effect of microstructure on oxidation resistance of MoSi2 fabricated by spark plasma sintering[J].Vacuum.2004,73:623-628.
    [41]·陈雪梅.MoSi2基复合陶瓷的高温氧化行为[J].机械工程材料,999,23(3):30-32.
    [42]王刚,赵世柯,江莞.二硅化钼材料低温氧化的研究进展.无机材料学报[J],2001,16(6):1041-1048.
    [43]Vasudevan A K, Petrovic J J.A Comparative Overview of Molybdenum Disiicide Composites[J].Mater Sci & Eng,1992,155(A):1-7.
    [44]王零森.特种陶瓷,长沙:中南大学出版社,2003.
    [45]郭建亭.高温合金的发展报告,全国高温合金会议,大连,2004.
    [46]Maxwell W A, Smith R W.NACA Res.Memo,1953:E53F26.
    [47]Maxwell W A.NACA Res.Memo,1952:E52D09.
    [48]Fitzer E, Kehr D.Carbon carbide and silicide coatings [J].Thin Solid Films,1976,39:55-67.
    [49]Boettinger W J,.Perepezko J H, Frankwicz P S.Application of Ternary Diagrams to the Development of MoSi2-Based Materials.Materials Science and Engineering, A,1992,155:33-44.
    [50]Yanagihara K, Maruyama T, Nagata K. Effect of third elements on the pesting suppression of Mo-Si-X intermetallics (X= Al, Ta,Ti, Zr and Y) [J]. Intermetallics,1996,4: S133-S139.
    [51]Sun L, Pan J S. TiC whisker-reinforced MoSi2 matrix composite[J]. Materials Letters,2001,51:270-274.
    [52]Suzuki Y, Niihara K.Effect of SiC reinforcement con microstructure and mechanical properties of MoSi2 [J].Science and Enginee-ring of Composite Materials,1997,6(2):85-94.
    [53]Hebsur M G.Development and characterization of SiC(f)/MoSi2-Si3N4(P) hybrid composites [J].Mater Sci Eng,1999,261(Al-2):24-37.
    [54]荆志新MoSi2基复合发热元件制备及其高温性能研究[D].西安:西北工业大学,2003.
    [55]Kircher T, Courtright Engineering Limitations of MoSi2 Coatings [J].Mater Sci Eng,1992, 155(Al-2):67-74.
    [56]文学敏,文翠兰.新材料及其应用[M].北京:科学技术文献出版社,1988:15-36.
    [57]颜建辉,张厚安,李益民.等离子喷涂及真空热处理过程中MoSi2涂层的相演变[J].焊接学报,2008,29(8):32-36.
    [58]Li H J, Jiao G S, Li K Z, et al.Multilayer oxidation resistant coating for SiC coated carbon/carbon composites at high temperature. Materials Science and Engineering:A, 2008,475,(1-2),279-284.
    [59]Ghosh K, McCay M H, Dahotre N B. Formation of a wear resistant surface on Al by by Laser in-situ synthesis of MoSi2. Journal of Materials Processing Technology,1999,88(1):169-179.
    [60]Hidouci A, Pelletier J M, Microstructure and mechanical properties of MoSi2 coatings produced by laser processing. Materials Science and Engineering A,1998,252(1):17-26.
    [61]Liu Z D, Hou S X, Liu D Y,et al. An experimental study on synthesizing submicron MoSi2-based coatings using electrothermal explosion ultra-high speed spraying method. Surface and Coatings Technology,2008,202(13):2917-2921.
    [62]Petrovic JJ, Honnell R E. MoSi2 particle reinforced SiC and Si3N4. Matrix composites[J]. J.Mater. Sci. Lett.,1990,(9):1083-1084.
    [63]Lim C, Yano T.Microstructure and mechanical properties of RB-SiC/MoSi2 composite [J].J.Mater. Sci,1989,24:4144-4151.
    [64]Chiang Y M,Haggerty J S,Messoner R P.Resction-Based Processing Methods for Ceramic Matrix Composites[J].American Ceramic Society Bulletion,1989,68(2):420-428.
    [65]Hawk J A, Alman D E, Petrovic J J.Abrasive wear of Si3N4-MoSi2 composites [J].Wear,1997, 203:247-256.
    [66]Moore T J. Feasibility study of the welding of SiC[J].J.Am.Ceram.Soc,1985:c151-c153.
    [67]陈平,张厚安,唐果宁MoSi2/CrWmn钢干摩擦磨损特性及磨损机制的研究[J].矿冶工程,2002,4:103-105.
    [68]Zhang H A, Liu X Y, Chen P.Dry friction and wear properties of intermetallics MoSi2 [J].Transactions of Nonferrous Metals Society of China,2001,11(6):916-919.
    [69]陈平,张厚安,唐果宁.干摩擦条件下MoSi2/45钢摩擦磨损性能的研究[J].湘潭矿业学院学报,2002,1:47-50.
    [70]张厚安,陈平,刘心宇.金属间化合物二硅化钼在干摩擦条件下的磨粒磨损特性[J].机械工程材料,2002,5:21-22.
    [71]张厚安,刘心宇,陈平.二硅化钼自配副在干摩擦条件下的摩擦学性能研究[J].摩擦学学报,2001,6:456-459.
    [72]陈平,唐果宁,张厚安.二硅化钼在油润滑下的摩擦学性能研究[J].矿山机械,2003,9:53-55.
    [73]陈平MoSi2材料的摩擦磨损性能及其磨损机制研究[D].焦作,焦作工学院,2002.
    [74]陈平,张厚安,唐果宁.MoSi2-淬火45#钢在油润滑下的摩擦学特性[J].湘潭矿业学院学报,2004,1:55-57.
    [75]陈平,张厚安,龙春光.油润滑下MoSi2/CrWMn钢摩擦磨损性能的研究[J].矿冶工程,2003,(6):79-81.
    [76]张厚安,龙春光,刘心宇.油润滑下Al/MoSi2材料的摩擦学特性[J].稀有金属,2003,27(2):225-228.
    [77]张厚安,陈平,唐果宁.油润滑下WSi2/MoSi2复合材料的摩擦学性能[J].湘潭矿业学院学报,2003,18(1):57-59:
    [78]阎逢元,林新华,吕晋军.碳化硼颗粒增强二硅化钼复合材料的摩擦学性能[J].摩擦学学报,2002,22(4):263-267.
    [79]Alman D E, Hawk J A, Petrovic J J.Abrasive Wear Behavior of MoSi2/SiC and MoSi2/ZrO2 Composites [J].Scripta Metallurgica Et Materialia,1995,32(11):1765-1770.
    [80]Pan J, Surappa M K, Saravanan R A. Fabrication and Characterization of SiC/MoSi2 Composites [J].Mater Sci Eng,1998,244(A):191-198.
    [81]张厚安,刘心宇.Al对MoSi2材料干摩擦磨损性能的影响[J].湘潭矿业学院学报,2002,1:43-46.
    [82]张厚安,刘心宇,陈平WSi2/MoSi2复合材料的摩擦磨损特性[J].摩擦学学报,2002,22(3):165-169.
    [83]张厚安,陈平.稀土/MoSi2复合材料的干摩擦磨损性能[J].稀有金属,2001,25(4):292-285.
    [84]Li J L, Xiong D S, Huang ZJ, etal.Effect of Ag and CeO2 on friction and wear properties of Ni-base composite at high temperature[J].Wear,2009,267(1-4):576-584.
    [85]Li J L, Xiong D S, Huang ZJ, etal.Effect of Ag and CeO2 on friction and wear properties of Ni-base composite at high temperature[J].Wear,2009,267(1-4):576-584.
    [86]Kazuhisa Miyoshi, Serene C. Farmer, Ali Sayir. Wear properties of two-phase Al2O3/ZrO2 (Y2O3) ceramics at temperatures from 296 to 1073 K.Tribology[J]. International,2006, 38(11-12),974-986.
    [87]Melandri C., Gee M. G., Portu G de, Guicciardi S. High temperature friction and wear testing of silicon nitride ceramics.Tribology[J]. International, Volume 28, Issue 6, September 1995, Pages 403-413.
    [88]陈雪梅,罗启富.Si3N4/3Cr2W8V钢摩擦副滑动摩擦磨损性能[J].江苏理工大学学报,1996,17(4):61-63.
    [89]陈雪梅.温度对Si3N4陶瓷摩擦磨损行为的影响[J].材料科学与工艺,1999,7(1):108.111.
    [90]Melandri C, GeeM G., dePortu G., Guicciardi S. High temperature friction and wear testing of silicon nitride ceramics。Tribology International,1995,28 (6):403-413
    [91]李同生,薛群基,林洋一郎.四种陶瓷材料与SUS304不锈钢的高温摩擦学特性研究[J].摩擦学学报,1994,14(2):162-169.
    [92]肖汉宁,千田哲也.碳化硅陶瓷的高温摩擦磨损及机制分析[J].硅酸盐学报,1997,25(2):157-162.
    [93]周松青,肖汉宁,李贵毓.原位合成TiB2-SiC基复相陶瓷高温磨损断裂力学特性的研究[J].润滑与密封,2007,32(7):59-65.
    [94]周松青,肖汉宁,李贵毓.原位合成TiB2-SiC基复相陶瓷高温性能及其磨损断裂力学机制的研究[J].陶瓷,2008,8:45-51.
    [95]周松青,肖汉宁,李贵毓.原位合成碳化硅-硼化钛复相陶瓷的高温摩擦性能及其磨损机制[J].硅酸盐学报,2006,34(2):152-157.
    [96]刘虹志,欧阳家虎,李玉峰.热压烧结TZ3Y20A-SrSO4陶瓷基复合材料的高温摩擦学性能[J].材料热处理学报,2009,30(2):9-13.
    [97]薛群基,刘惠文.陶瓷材料的润滑.摩擦学学报[J].1995,15(4):378-382.
    [98]Min-Soo Suh, Young-Hun Chae, Seock-Sam Kim. Friction and wear behavior of structural ceramics sliding against zirconia [J]. Wear,2008,264 (9-10):800-806.
    [99]Dogan C P,J. Hawk A. Role of composition and microstructure in the abrasive wear of high-alumina ceramics[J].Wear,1999,2(225-229):1050-1058.
    [100]宁莉萍,王齐华,简令奇.梯度自润滑复合材料在不同滑动摩擦下的摩擦学特性[J].材料科学与工程学报,2004,22(2):288-291.
    [101]Ouyang J H,Murakami T,Sasaki S,et al. Hightemperature tribology and solidlubrication of advanced ceramics[J].Key Engineering Materials,2008,368-372:1088-1091.
    [102]王静波,吕晋军,宁莉萍.锡青铜基自润滑材料的摩擦学特性研究[J].摩擦学学报,2001,21(2):110-113.
    [103]国志刚.机构可靠性若干专题研究[D].西安:西北工业大学,2006.
    [104]Heinz Kloss, Rolf Wasche. Analytical approach for wear prediction of metallic and ceramic materials in tribological applications [J].Wear,2009,266 (3-4):476-481.
    [105]Zheng J M, L I Y, Xiao J M, et al. On klentification of tool wear bymultip le features fusion based on artificial neural network [J].Mechanical System & Signal and Technology,2002,1: 111-113.
    [106]吕德峰,左洪福,蔡景,等.一种磨损预测的优化算法研究[J].摩擦学学报,2008,26(6):562-566.
    [107]王世春.BP网络在多元回归分析中的应用[D].合肥:合肥工业大学,2003.
    [108]Valoor M T, Chandrashekhara K. A thick composite beam model for delamination prediction by the use of neural networks [J]. Composites Science and Technology,2000, (60):1773-1779.
    [109]Simon Haykin.神经网络原理[M].北京:机械工业出版社,2004.
    [110]Hagan M. T., Demuth H. B., Beal M. Neural Network Design[M].北京:机械工业出版社,2002.
    [111]FENG PZ, QU XH, Akhtar F, et al. Self-propagating high temperature synthesis of MoSi2 matrix composites[J]. The Nonferrous Metals Society of China,2006,25(3):225-230.
    [112]Yang Q., Senda T., Kotani, N. et al. Sliding wear behavior and tribofilm formation of ceramics at high temperatures[J].Surface and Coatings Technology,2004,184(2-3); 270-277.
    [113]Kazuhisa Miyoshi, Serene C. Farmer, Ali Sayir. Wear properties of two-phase Al2O3/ZrO2 (Y2O3) ceramics at temperatures from 296 to 1073 K[J]. Tribology International, 2006,38(11-12):974-986.
    [114]Dong F. Wang, Ji H. She, Zhi Y. Ma. Effect of microstructure on erosive wear behavior of SiC ceramics[J].Wear,1995180(1-2):35-41.
    [115]Vasudevan A.K. and Petrovic J.J, A comparative overview of molybdenum disilicide composites[J].Mater. Sci. Eng. A.,1992,155(1-2):1-17.
    [116]KrakhmalevP.V., Bergstrom J.Tribological behavior and wear mechanisms of MoSi2-base composites sliding against AA6063 alloy at elevated temperature.Wear,2006,260 (4-5), 450-457.
    [117]Sun L, Panin JS, Lin CJ. Wear behavior of TiC-MoSi2 composites[J]. Materials Letters, 2003,57(7):1239-1243.
    [118]Alman D. E., Hawk J. A. Abrasive wear behavior of a brittle matrix (MoSi2) composite reinforced with a ductile phase (Nb) [J].Wear,2001,25(1-12),890-900.
    [119]Gee.M G., Matharu CS, Almond E A, Eyre T S. The measurement of sliding friction and wear of ceramics at high temperature[J]. Wear,1990,138(1-2):169-187.
    [120]肖汉宁,千田哲也,殷冀湘.氧化铝陶瓷在高温磨损过程中的塑性变形与再结晶[J].摩擦学学报,1997,12(3):420-424.
    [121]周松青,肖汉宁.碳化硅陶瓷的摩擦化学磨损机制及磨损图的研究[J].硅酸盐学报,2002,30(3)641-644.
    [122]陈华辉,刑建东,李卫.耐磨材料应用手册[M].北京:机械工业出版社,2006.
    [123]Bryant M D, Wang Jin-Po, Lin Jan-Wen. Thermalmounding in high speed dry slider. Experiment, theory and comparison [J].Wear,1995,181-183:668-677.
    [124]孟凡英,郭绍义,刘曾岭,等.氮化硅基陶瓷的摩擦磨损特性研究[J].浙江理工大学学报,2008,25(1):79-82.
    [125]Tomizawa H. Friction and wear of Si3N4 AT 150-800℃[J]. Asle. Trans.,1986,29(2):181-195.
    [126]冯培忠,王晓虹,贾志永,等MoSi2基复合材料的高温裂纹自愈合行为[J].2008,29(1):24-27.
    [127]孙乐民,李爱娜,侯明.由配副硬度差确定摩擦副最佳配副组合的试验[J].河南科技大学学报自然科学版,2006,27(5):5-8.
    [128]徐光宪.稀土(第2版)[M].北京:冶金工业出版社,1995.
    [129]颜建辉,张厚安,唐思文.稀土对MoSi2力学性能和抗氧化性能的影响[J].中国稀土学报,2007,25(4):438-441.
    [130]张厚安,龙春光,唐果宁.稀土对MoSi2低温氧化行为的影响[J].中国钼业,1999,23(1):22-24.
    [131]颜建辉,张厚安,唐思文.稀士强韧化MoSi2材料的摩擦学性能[J].润滑与密封, 2007,32(6):37-39.
    [132]吕晋军,王静波,杨生荣MoSi2及其复合材料摩擦学性能研究[J].摩擦学学报,2003,23(5):361-366.
    [133]张厚安,陈平,颜建辉.La2O3和WSi2增强MoSi2复合材料的摩擦磨损性能研究[J].摩擦学学报,2005,(3):230-233.
    [134]哈比希.材料的磨损与硬度.北京:机械工业出版社,1987.
    [135]Fan X B, Ishigaki T, In-flight nitriding of the MoSi2 powders in an Ar-N2 induction plasma[J], Thin Solid Films,1998,316(1-2),174-180.
    [136]Smeacetto F, Ferrarics M, Salvo M. Multilayer coating with self-sealing properties for crbon-carbon composites[J], Carbon,2003,41(11):2105-2112.
    [137]Nomura N, Suzuki T, Yoshimi K, et al. Microstrure and oxidation resistance of a plasma sprayed Mo-Si-B multiphase alloy caoting[J]. Intermetallics,2003,11(7):735-739.
    [138]陈雪梅.ZrO2颗粒弥散MoSi2陶瓷力学性能及氧化性能[J].江苏理工大学学报,1998,19(6):41-44.
    [139]Lu G Y, Lederich R, Soboyejo W. Residual stresses and transformation toughening in MoSi2 composites reinforced with partially stabilized zirconia[J]. Materials science and Engineering A,1996,210:25-41.
    [140]Hines J E,Bradt R C,Biggers J V. Grain size and porosity effects on the abrasive wear of aluminumv, in; Glaeser W A,Ludema K C, and Rhee S K(Eds.), Wear of Materials 1997,462-467.
    [141]王世春.BP网络在多元回归分析中的应用[D].合肥:合肥工业大学,2003.
    [142]何毅.基于BP神经网络电容法刨花含水率测试仪的研究与开发[D].南京,南京林业大学,2006.
    [143]刘乐.改进BP网络及其在预测问题中的应用研究[D].济南,山东师范大学,2009.
    [144]Laxmidhar Behera, Swagat Kumar, Awhan Patnail. On Adaptive Learning Rate That Guarantees Convergence in Feedforward Networks. IEEE Trans on Neural Networks[J], 2006,17(5):1116-1125.
    [145]金峤,方帅,阎石等.BP网络模型的改进方法综述[J].沈阳建筑工程学院学报(自然科学.版),2001,17(3):197-200.
    [146]滕明鑫,熊忠阳,张玉芳.BP改进算法综述[J].计算机科学,2008,35(4):237-23.
    [147]Mirchandani G, Wei C. On Hidden Nodes for Neural Nets[J]. IEEE Trans. on Circuits and Systems,1992,36(5):661-664.
    [148]董光平.一种优化初值的综合全局寻优快速BP算法[J].合肥工业大学学报,2000,23(6):992-995.