咔啉及其类似物的设计、合成及抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是严重危害人类健康的一大类疾病,已逐渐取代心脑血管疾病成为全球头号杀手。目前临床上常用的抗肿瘤药物普遍存在对实体瘤疗效较差、毒副作用较大、容易产生多药耐药等缺点。因此,研究开发更为高效低毒的新型抗肿瘤药物仍是新药研究的热点之一。
     抗有丝分裂剂是一类有效的抗肿瘤药物,而微管蛋白是抗有丝分裂药物的一个重要靶点。近年来,微管蛋白秋水仙碱位点抑制剂(CSIs)由于结构简单而备受关注。本文根据文献报道的CSIs的共同结构特征,利用理性药物设计原理,结合该位点抑制剂中常出现的吲哚结构单元,引入具有抗肿瘤活性的平面结构咔啉和取代芳环分别作为两个疏水平面;以微管蛋白抑制剂中常出现的磺酰胺、酰胺、甲酰基等作为连接桥链,构建了该位点抑制剂的基本骨架。根据这一设计思想,共合成了三类112个全新的咔啉类衍生物,并对其进行了体外抗肿瘤活性筛选。结果表明,三种母核对活性的影响为:γ-咔啉>β-咔啉>α-咔啉;连接桥链一般以磺酰胺和甲酰基更有利于抗肿瘤活性的增强。进而选择其中活性较好的代表性化合物进行了初步的抗肿瘤作用机制研究:微管蛋白聚合抑制试验表明,14个受试化合物均能抑制微管蛋白的聚合;DNA插入实验表明,大部分γ-咔啉类化合物(1-34、1-37、1-74、1-87、1-109)对DNA均无明显作用,而在芳磺酰胺γ-咔啉类化合物1-34连接链的氮原子上引入乙基的化合物1-35,以及具有大平面结构的苯并[1,2-i]γ-咔啉类衍生物(1-115)和3位有碱性基团取代的β-咔啉类衍生物(1-161)均能通过插入DNA双螺旋碱基对置换出溴化乙锭(EB),使EB-DNA结合物的荧光明显减弱;细胞周期影响实验表明,γ-咔啉类化合物1-34、1-74、1-87、1-109对人非小细胞肺癌细胞(A549)的G_2/M期有明显的阻滞作用。
     同时,基于1,2,3,4-四氢咔唑-1-酮类化合物具广泛的生物活性,尤其在抗肿瘤活性方面的作用,我们利用分子杂合原理,对其进行结构改造。通过Mannich反应在母核的2位引入取代甲氨基,合成了17个四氢咔唑-1-酮Mannich碱类化合物,以探讨2位Mannich碱的种类以及N~9位不同取代基对活性的影响。初步体外抗肿瘤活性测试实验结果表明,在其2位引入二乙氨基甲基或4-甲基哌啶甲基,以及在N~9位引入异戊烯基有利于活性的提高。代表化合物2-3的体外微管聚合抑制试验表明,该化合物也能抑制微管蛋白的聚合。
     本文还利用近年来发展较快的微波合成技术对Bischler吲哚合成法和Fischer吲哚合成法进行了改进,首次报道了微波促进的2-取代吲哚、1,2,3,4-四氢咔唑以及γ-咔啉等重要医药中间体的合成。为这三类化合物的合成提供了一种快速、方便、有效的方法,扩大了微波技术在杂环化合物合成中的应用。
Cancer remains a significant health concem,and has gradually been the first killer in the world instead of cardiovascular diseases.The most clinically effective anticancer agents are associated with problems of low efficacy against solid tumors,high toxicity, and development of multidrug resistance.Therefore,it remains a hotspot for medicinal chemist to develop novel antieancer agents with high efficacy and low toxicity.
     Antimitotic agent is one of the most successful classes of anticancer drugs,and microtubule is recognized as an important target for the development of potential antimitotic agents.Recent years,the colchicine binding site inhibitors(CSIs)have attracted a great deal of attention because of their simple structures and potent activities. Based on the common structural features of CSIs reported in the literature,and the finding that indole moiety presented in many CSIs,we utilized rational drug design principle,introduced carboline,an planar antitumor moiey,and an aromatic ring as two hydrophobic planes.Sulfonamide,carbonyl,or amide group which presented in many potent tubulin polymerization inhibitors were used as the linker.Thus,we constructed the basic structure of CSIs,and synthesized three series of novel carboline derivatives. The total 112 compounds were tested for their cytotoxic activities in vitro against several human tumor cell lines.Primary SAR study indicated that the efficacy of three carboline moieties on antitumor activity was:γ-carboline>β-carboline>α-carboline. Utilizing of sulfonamide or carbonyl group as the linker was more beneficial for the activities.In order to gain insight on the mechanisms of action of these compounds,we chose the potent cytotoxic and representative compounds for further assay.Tubulin polymerization inhibition assay showed that all the 14 tested compounds exhibited potential inhibitory effect against microtubule.DNA intercalation assay indicated that most of theγ-carboline derivatives(1-34、1-37、1-74、1-87、1-109)could not interact with DNA except for compounds 1-35.Besides,benzo[1,2-i]γ-carboline derivatives (1-115)and 3-basic group substituted-β-carboline derivatives(1-161)could also intercalate into DNA and reduce the fluorescence of EB-DNA complex.We also tested the effects ofγ-carbolines 1-34、1-74、1-87、1-109 on cell cycle of A549 cell line.It clearly demonstrated that all these compounds arrested the cell cycle on G_2/M phase.
     Based on the extensive biological activities of 1,2,3,4-tetrahydrocarbazole-1-ones, especially their antitumor activity,we utilized the molecular heterozygosity principle and synthesized a series of 2-substituted aminomethyl-9-alkyl-1,2,3,4-tetrahydrocarbazole -1-ones through mannich reaction.The total 17 1,2,3,4-tetrahydrocarbazole -1-one mannich bases were test for their cytotoxic activities in vitro against several human tumor cell lines.The results implied diethylaminomethyl or 4-methylpiperidin methyl moiety was the most suitable mannich base in this series of compounds,and the presence of isoprenyl group at N~9 was beneficial for the activities. Primary mechanism research of compound 2-3 indicated it exhibited a potential inhibitory effect against microtubule.
     In the last part of my dissertation,we described the application of microwave irradiation in organic synthesis.We found a practical and simple microwave enhanced Bischler reaction for the synthesis of 2-phenyl-indoles or 1,2,3,4-tetrahydrocarbazoles, and a microwave enhanced Fischer reaction for the synthesis ofγ-carbolines.These new approaches provided simple,fast,and efficacy methods for the construction of these important pharmaceutical active structures,and extended the microwave irradiation utility in heterocyclic chemistry.
引文
1.Jordan,M.A.;Wilson,L.Microtubules as a target for anticancer drugs.Nat.Rev.Cancer.2004,4,253-265.
    2.Jiang,J.D.;Wang,Y.;Roboz,J.;Strauchen,J.;Holland,J.F.;Bekesi,J.G.Inhibition of microtubule assembly in tumor cells by 3-bromoacetylamino benzoylurea,a new cancericidal compound.Cancer Res.1998,58,2126-2133.
    3.Zhou,J.;Giannakkou,P.Targeting microtubules for cancer chemotherapy.Curr.Med.Chem.Anti-Cancer Agents 2005,5,65-71.
    4.Sangrajrang,S.;Fellous,A.Taxol resistance.Chemotherapy 2000,46,327-334.
    5.Kavallaris,M.;Kuo,D.Y.-S.;Burkhart,C.A.;Regi,D.L.;Norris,M.D.;Haber,M.Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific β-tubulin isotypes.J.Clin.Invest.1997,100,1282-1293.
    6.Drukman,S.;Kavallaris,M.Microtubules alterations and resistance to tubulin-binding agents.Int.J.Oncol.2002,21,621-628.
    7.Tron,G.C.;Pirali,T.;Sorba,G.;Pagliai,F.;Busacca,S.;Genazzani,A.A.Medicinal chemistry of combretastatin A4:Present and future directions.J.Med.Chem.2006,49,3033-3044.
    8.Ozawa,Y.;Sugi,N.H.;Nagasu,T.E7070,a novel sulfonamide agent with potent antitumor activity in vitro and in vivo.Eur.J.Cancer 2001,37,2275.
    9.Li,Y.W.;Zhou,Y.J.;Zhu,J.;Zheng,C.H.;Chen,J.;Tang,H.;Li,Y.N.Study on the stuctural features of colchicine-site inhibitors.Journal of Pharmaceutical Practice 2007,25,372-375.
    10.Brancale,A.;Silvestri,R.Indole,a core nucleus for potent inhibitors of tubulin polymerization.Med.Res.Rev.2007,27,209-238.
    11.Prinz,H.Recent advances in the field of tubulin polymerization inhibitors.Expert Rev.Anticancer Ther.2002,2,695-708.
    12.Li,Q.;Sham,H.;Woods,K.W.;Steiner,B.A.;Gwaltney,S.L.;Barr,K.J.;Imade,H.M.;Rosenberg,S.Preparation of sulfonamides as cell proliferation inhibitors.US6521658,2003.
    13.Caulfield,T.;Cherrier,M.;Combeau,C.;Mailliet,P.Substituted carbozoles as tubulin polymerization inhibitors and their use for the treatment of cancer.EP 1253141,2002.
    14.Acramone,F.;Penco,S.Antitumor Natural Products.In Takeuchi,T.;Nitta,K.;Tanaka,N.,Eds.Japan Scientific Press:Tokyo,1989;p1.
    15.Cao,R.;Peng,W.;Wang,Z.;Xu,A.β-Carboline Alkaloids:Biochemical and Pharmacological Functions.Cur.Med.Chem.2007,14,479-500.
    16.Cao,R.;Chen,Q.;Hou,X.;Chen,H.;Guan,H.;Ma,Y.;Peng,W.;Xu,A.Synthesis,acute toxicities,and antitumor effects of novel 9-substituted β-carboline derivatives.Bioorg.Med Chem.2004,12,4613-4623.
    17.Cao,R.;Chen,H.;Peng,W.;Ma,Y.;Hou,X.;Guan,H.;Liu,X.;Xu,A.Design,synthesis and in vitro and in vivo antitumor activities of novel β-carboline derivatives.Eur.J..Med.Chem.2005,40,991-1001.
    18.Wu,J.;Chen,Q.;Yu,F.;Wang,Z.;Peng,W.Harmine derivatives,intermediates used in their preparation,preparation processes and use thereof.CN2004 106335,2004.
    19.Chen,J.;Chen,W.L.;Hu,Y.Microwave-Enhanced Fischer Reaction:An Efficient One-Pot Synhesis ofγ-carboline.Synlett 2008,1,77-82.
    20.Lee,C.-S.;Ohta,T.;Shudo,K.;Okamoto,T.Some reactions of pyrido[4,3-b]indole (γ-carboline).Heterocycles 1981,16,1081-1084.
    21.Su,Y.;Yang,J.Study on the Synthesis of 4-Chlorobenzene Sulfonyl Chloride.Chemical World 2001,12,657-658.
    22.Santo,M.A.;Marques,S.M.;Tuccinardi,T.;Carelli,P.;Panelli,L.;Rossello,A.Design,synthesis and molecular modeling study of iminodiacetyl monohydroxamic acid derivatives as MMP inhibitors.Bioorg.Med.Chem.2006,14,7539-7550.
    23.Yekta,S.;Krasnova,L.B.;Mariampillai,B.;Picard,C.J.;Chen,G.;Pandiaraju,S.;Yudin,A.K.Preparation and catalytic applications of partially fluorinated binaphthol ligands.J.Fluorine Chem.2004,125,517-525.
    24.Schneider,C.;Gueyrard,D.;Popowycz,F.;Joseph,B.;Goekjian,P.G.Synthesis of 6-substituted pyrido[2,3-b]indoles by electrophilic substitution.Synlett 2007,14,2237-2241.
    25.Zuse,A.;Schmidt,P.;Baasner,S.;B(o|¨)hm,K.J.;M(u|¨)ller,K.;Gerlach,M.;G(u|¨)nther,E.G.;Unger,E.;Prinz,H.Sulfonate derivatives of naphtho[2,3-b]thiophen-4(9H)-one and 9(10H)-anthracenone as highly active antimicrotubule agents.Synthesis,antiproliferative activity,and inhibition of tubulin polymerization.J.Med.Chem.2007,50,6059-6066.
    26.Hu,L.;Li,Z.-R.;Li,Y.;Qu,J.;Ling,Y.-H.;Jiang,J.-D.;Boykin,D.W.Synthesis and structure-activity relationships of carbazole sulfonamides as a novel class of antimitotic agents against solid tumors.J.Med.Chem.2006,49,6273-6282.
    27.Molina,A.;Vaquero,J.J.;Garc(?)a-Navio,J.L.;Alvarez-Builla.One-pot Graebe-Ullmann synthesis ofg-carbolines under microwave irradiation.Tetrahedron Lett.1993,34,2673-2676.
    28.Samanta,S.;Srikanth,K.;Banerjee,S.;Debnath,B.;Gayen,S.;Jha,T.5-N-Substituted-2-(substituted benzenesulphonyl) glutamines as antitumor agents.Part Ⅱ:Synthesis,biological activity and QSAR study.Bioorg.Med.Chem.2004,12,1413-1423.
    29.Hamada,T.;Yonemitsu,O.An improved synthesis ofarenesulfonyl chlorides from aryl halides.Synthesis 1986,10,852-854.
    30.Jacob,P.;Anderson,G.;Meshul,C.K.;Shulgin,A.T.;Castagnoli,N.J.Monomethylthio analogs of 1-(2,4,5-trimethoxyphenyl)-2-aminopropane.J.Med.Chem 1977,20,1235-1239.
    31.Suter,C.M.Diphenyl ether series.Ⅱ.Preparation and structure of some sulfonic acids and related derivatives.J.Am.Chem.Soc.1931,53,1112-1116.
    32.Eiter,K.;Nezval,A.The constitution of calycanthines.V.9-Methyl-3-carboline and 6-methyl-3-carboline.Monatshefte fuer Chemie 1950,81,404-413.
    33.Hagen,T.J.;Skolnick,P.;Cook,J.M.Synthesis of 6-substituted β-carbolines that behave as benzodiazepine receptor antagonists or inverse agonists J.Med.Chem.1987,30,750-753.
    34.Tarzi,O.I.;Ponce,M.A.;Cabrerizo,F.M.;Bonesi,S.M.;Erra-Balsells,R.Electronic spectroscopy of the.beta.-carboline derivatives nitronorharmanes,nitroharmanes,nitroharmines and chloroharmines in homogeneous media and in solid matrix.ARKIVOC 2005,12,295-310.
    35.Vera-Luque,P.;Alajarin,R.;Alvarez-Builla,J.;vaquero,J.J.An Improved Synthesis of α-Carbolines under Microwave Irradiation.Org.Lett.2006,8,415-418.
    36.Kent,A.Complexes of polynitro compounds.I.Compounds of polynitrohydrocarbons with 1-keto-1,2,3,4-tetrahydrocarbazole.J.Chem.Soc.1935,976-978.
    37.Asche,C.;Frank,W.;Albert,A.;Kucklaender,U.Synthesis,antitumor activity and structure-activity relationships of 5H-benzo[b]carbazoles.Bioorg.Med.Chem.2005,13,819-837.
    38.Li,X.;Vince,R.Conformationally restrained carbazolone-containing a,g-diketo acids as inhibitors of HIV integrase.Bioorg.Med.Chem.2006,14,2942-2955.
    39.Ruberg,L.;Small,L.Amino alcohols derived from carbazole.J.Am.Chem.Soc.1938,60,1591-1593.
    40.Barta,T.E.;Veal,J.M.;Rice,J.W.;Partridge,J.M.;Fadden,R.P.;Ma,W.;Jenks,M.;Geng,L.;Hanson,G.J.;Huang,K.H.;Barabasz,A.F.;Foley,B.E.;Otto,J.;Hall,S.E.Discovery of benzamide tetrahydro-4H-carbazol-4-ones as novel small molecule inhibitors of Hsp90.Bioorg.Med.Chem.Lett.2008,18,3517-3521.
    41.Periyasami,G.;Raghunathan,R.;Surendiran,G.;Mathivanan,N.Synthesis of novel spiropyrrolizidines as potent antimicrobial agents for human and plant pathogens.Bioorg.Med.Chem.Lett.2008,18,2342-2345.
    42.Maertens,F.;Toppet,S.;Hoomaert,G.J.;Compernolle,F.Incorporation of an indole-containing diarylbutylamine pharmacophore into furo[2,3-a]carbazole ring systems.Tetrahedron 2005,61,1715-1722.
    43.Vandana,T.;Prasad,K.J.R.A convenient synthesis of functionalized pyrimido[4,5-a]carbazoles.Hetercycl.Commun.2003,9,579-585.
    44.Joseph,D.;Martarello,L.;Kirsch,G.Tetracyclic compounds from tetrahydrocarbazolones.Part 1.Synthesis from 2,3,4,9-tetrahydrocarbazol-1-ones.J.Chem.Res.,Synop.1995,9,350-351.
    45.Mithun,A.;Bantwal,S.H.;Boja,P.Convenient one pot synthesis and antimicrobial evaluation of some new Mannich bases carrying 4-methylthiobenzyl moiety.Eur.J.Med.Chem.2007,42,1095-1101.
    46.Ivanova,Y.;Momekov,G.;Petrov,O.;Karaivanova,M.;Kalcheva,V.Cytotoxic Mannich bases of 6-(3-aryl-2-propenoyl)-2(3 H)-benzoxazolones.Eur.J.Med.Chem.2007,42,1382-1387.
    47.Dimmock,J.R.;Kumar,P.Anticancer and cytotoxic properties of Mannich bases.Curr.Med.Chem.1997,4,1-22.
    48.Sheng,R.;Shen,L.;Chen,Y.Q.;Hu,Y.Z.A Convenient and Efficient Synthesis of 1-Oxo-1,2,3,4-tetrahydrocarbazoles Via Fischer Indole Synthesis.Synthetic Commun.2008,39,1120-1127.
    49.Faust,R.;Garratt,P.J.;P(?)rez,M.A.T.;Piccio,V.J.-D.;Madsen,C.;Stenstr(?)m,A.;Fr(?)lund,B.;Davidson,K.;Teh,M.-T.;Sugden,D.7-Substituted-melatonin and 7-substituted-1-methylmelatonin analogues:Effect of substituents on potency and binding affinity.Bioorg.Med.Chem.2007,15,4543-4551.
    50.Maertens,F.;den,B.,A.V.;Compernolle,F.;Hoornaert,G.J.Intramolecular Ritter Reactions of 2-(2-Cyanoethyl)tetrahydrocyclopenta-[b]indole and-carbazole Derivatives.Eur.J.Org.Chem.2004,4648-4656.
    51.Harris,T.D.;Reilly,T.J.;DelPrincipe,J.A.An improved synthesis of 1-methyl-2,5-piperazinedione J.Heterocyclic Chem.1981,18,423-424.
    52.Yoshida,K.;Goto,J.;Ban,Y.Oxidation of cycloalkan[b]indoles with iodine pentoxide(I2O5).Chem.Pharm.Bull.1987,35,4700-4704.
    53.Arnould,J.C.;Cossy,J.;Pete,J.P.Photochemical reactivity of a-aminoenones:cyclization and new type of reaction to a-sulfonamidocyclohexenones.Tetrahedron 1980,36,1585-1592.
    54.Lidstr(o|¨)m,P.;Tierney,J.;Wathey,B.;Westman,J.Microwave assisted organic synthesis-a review.Tetrahedron 2001,57,9225-9283.
    55.Sundberg,R.J.Chemistry of Indoles.Academic:New York,1970;p 164.
    56.Brown,R.T.;Joule,J.A.;Sammes,P.G.In Comprehensive Organic Chemistry.In Barton,S.D.;Ollis,W.D.,Eds.Pergamon:Oxford,1979;Vol.4,p 441.
    57.Remers,W.A.;Brown,R.K.The Chemistry of Heterocyclic Compounds,Indoles,part 1.Academic:New York,1972;p 232.
    58.Gassman,P.G.;van Bergen,T.J.;Gilbert,D.P.;Cue,B.W.General method for the synthesis of indoles.J.Am.Chem.Soc.1974,96,5495-5508.
    59.Houlihan,W.J.;Parrino,V.A.;Uike,Y.Lithiation of N-(2-alkylphenyl)alkanamides and related compounds.A modified Madelung indole synthesis.J.Org.Chem.1981,46,4511-4515.
    60.Larock,R.C.;Yum,E.K.Synthesis of indoles via palladium-catalyzed heteroannulation of internal alkynes.J.Am.Chem.Soc.1997,113,6689-6690.
    61.Remers,W.A.;Brown,R.K.The Chemistry of Heterocyclic Compounds,Indoles,part 1.Academic:New York,1972;p 317.
    62.Buu-Ho(?),N.P.;Saint,R.G.;Deschamps,D.;Bigot,P.;Hieu,H.T.Carcinogenic nitrogen compounds.LXXII.Moehlau-Bischler reaction as a preparative route to 2-arylindoles.J.Chem.Soc.(C).1971,15,2606-2609.
    63.Qian,M.;Qian,H.;Xu,S.-J.;Feng,W.-H.;Zhan,L.-X.Study on the Synthesis of 2-Phenyl Indole.Shandong Chem.Ind 2001,30,8-10.
    64.Grellier,P.;Ramiaramanana,L.;Millerioux,V.;Deharo,E.;Schr(?)vel,J.;Frappier,F.;Trigalo, F.;Bodo,B.;Pousset,J.L.Antimalarial activity of cryptolepine and isocryptolepine,alkaloids isolated from Cryptolepis sanguinolenta.Phytotherapy Res.1996,10,317-321.
    65.Kirby,G.C.;Paine,A.;Warhurst,D.C.;Noamese,B.K.;Phillipson,J.D.In vitro and in vivo antimalarial activity of cryptolepine,a plant-derived indoloquinoline.Phytotherapy Res.1995,9,359-363.
    66.Cimanga,K.;De Bruyne,T.;Pieters,L.;Vlietinck,A.;Turger,C.A.In Vitro and in Vivo Antiplasmodial Activity of Cryptolepine and Related Alkaloids from Cryptolepis sanguinolenta.J.Nat.prod.1997,60,688-691.
    67.Nguyen,C.H.;Bisagni,E.;Lavelle,F.;Bissery,M.C.;Huel,C.Synthesis and antitumor properties of new 4-methyl-substituted-pyrido[4,3-b]indoles(gamma-carbolines).Anti-cancer Drug Des.1992,7,219-233.
    68.Nguyen,C.H.;Lavelle,F.;Riou,J.F.;Bissery,M.C.;Huel,C.;Bisagni,E.Further SAR in the new antitumor 1-amino-1-substituted g-carbolines and 5H-benzo[e]pyrido[4,3-b]indoles series.Anti-cancer Drug Des.1992,7,235-251.
    69.Molina,A.;Vaquero,J.J.;Garcia-Navio,J.L.;Alvarez-Builla,J.;Pascual-Teresa,B.;Gago,F.;Rodrigo,M.M.;Ballesteros,M.Synthesis and DNA Binding Properties of g-Carbolinium Derivatives and Benzologues.J.Org.Chem.1996,61,5587-5599.
    70.Robinson,R.;Thornley,S.5-Carboline and some derivatives.J.Chem.Soc.1924,125,2169-2176.
    71.Nantka-Namirski,P.;Zieleniak,J.Carboline synthesis by the method of Graebe-Ullmann.Ⅱ.Synthesis of 2,4-dimethyl-g-carboline derivatives.Acta.Pol.Pharm.1961,18,449-460.
    72.Nantka-Namirski,P.;Zieleniak,J.Carboline synthesis by the method of Graebe-Ullman.Ⅲ.Synthesis and inhibitory effect of certain derivatives of g-carboline.Acta.Pol.Pharm.1962,19,229-242.
    73.Nantka-Namirski,P.;Zieleniak,J.Reaction of benzo-1,2,3-triazole with certain halo and nitro derivatives of pyridine.Acta.Pol.Pharm.1977,34,349-357.
    74.Nantka-Namirski,P.;Zieleniak,J.Carboline synthesis by the Graebe-Ullmann method.Ⅳ.Synthesis of certain g-carboline derivatives.Acta.Pol.Pharm.1977,34,449-454.
    75.Nantka-Namirski,P.;Zieleniak,J.Carboline synthesis by the Graebe-Ullman method.Ⅴ.Synthesis and reactions of g-carboline N-oxide.Acta.Pol.Pharm.1977,34,455-458.
    76.Kermack,W.O.;Storey,N.E.Attempts to find new antimalarials.ⅩⅩⅨ.Synthesis of various derivatives of 2,3-benz-g-carboline.J.Chem.Soc.1950,607-612.
    77.Clark,V.M.;Cox,A.;Herbert,E.J.Photocyclization of anilinopyridines to carbolines.J.Chem.Soc.1968,7,831-833.
    78.Rocca,P.;Marsais,F.;Godard,A.;Queguiner,G.Connection between metalation and cross-coupling strategies.A new convergent route to azacarbazoles.Tetrahedron 1993,49,49-64.
    79.Lwaki,T.;Yasuhara,A.;Sakamoto,T.Novel synthetic strategy of carbolines via palladium-catalyzed amination and arylation reaction.J.Chem.Soc.Perk.T.1 1999,11,1505-1510.
    80.Robinson,B.Studies on the Fischer indole synthesis.Chem.Rev.1969,69,227-250.
    81.Robinson,B.The Fischer Indole Synthesis.Wiley:NewYork,1983.
    82.Mann,F.G.;Prior,A.F.;Willcox,T.J.Structure and properties of certain polycyclic indoloand quinolino derivatives.ⅩⅢ.The cyclization of certain 4-pyridyl-and 4-quinolyl hydrazones.J.Chem.Soc.1959,3830-3834.
    83.Hu,Y.Z.;Chen,Y.Q.An Efficient and General Synthesis of Indolo[2,3-a]carbazoles Using the Fischer Indole Synthesis.Synlett 2005,1,1-25.
    84.Carlin,R.B.;Larson,G.W.The Fischer indole Synthesis.Ⅳ.Halogen interchange during zinc halide induced Fischer reactions of acetophenone 2,6-dihalophenylhydrazones.J.Am.Chem.Soc.1957,79,934-941.
    85.Li,Z.;Seo,T.S.;Ju,J.1,3-Dipolar cycloaddition of azides with electron-deficient alkynes under mild condition in water.Tetrahedron Lett.2004,45,3143-3146.
    86.Hajipour,A.R.;Mallakpour,S.E.;Khoee,S.An easy and fast method for conversion of oximes to the corresponding carbonyl compounds under microwave irradiation.Syncommun.2002,32,9-15.
    87.Holshouser,M.H.;Kolb,M.Facile synthesis of glycol metabolites ofphenethylamine drugs.J.Pharm.Sci.1986,75,619-621.
    88.Forlani,L.2,4-Diamino-1,3-thiazole hydrotribromide;a new brominating agent.Synthesis 1980,6,487-489.
    89.Kudzma,L.V.Synthesis of substituted indoles and carbazoles from 2-fluorophenyl imines.Synthesis 2003,11,1661-1666.
    90.Zimmer,H.Syntheses with a-heterosubstituted phosphonate carbanions.Ⅵ.Deoxybenzoins and indoles.Chimia 1977,31,330-332.
    91.Gupta,K.C.Synthesis of 2-arylindoles via aza-ring closure of sulfonium salts.Ind.J.Chem.Soc.1988,65,223-225.
    92.Joshi,K.C.Preparation of new fluorine containing 2-phenylindole derivatives as antifertility agents.Ind.J.Chem.Soc.1985,62,388-390.
    93.Sakarnoto,T.;Kondo,Y.;Yamanaka,H.Condensed heteroaromatic ring systems.Ⅹ.Synthesis of benzindoles from o-bromonaphthylamines.Heterocycles 1986,24,1845-1847.
    94.Wender,P.A.;White,A.W.Methodology for the facile and region-controlled synthesis of indoles.Tetrahedron 1983,39,3767-3776.
    95.Haruko,T.;Minoru,M.;Yuichi,K.Photochemistry of the phthalimide system.XLII.Intermolecular photoreactions of phthalimide-alkene systems.Regio-and stereoselective oxetane formation from N-rnethylphthalimide and N-aeetylindole derivatives.Chem.Pharm.Bull.1988,36,3770-3779.
    96.Rebeiro,G.L.;Khadilkar,B.M.Chloroaluminate ionic liquid for fischer indole synthesis.Synthesis 2001,3,370-372.
    97.Campaigne,E.;Lake,R.D.Synthesis of Tetrahydrocarbazoles and Carbazoles by the Bischler Reaction.J.Org.Chem.1959,24,478-487.
    98.Neil,C.;McCall,E.B.Preparation of tetrahydrocarbazoles from 2-chloro-cyclohexanone.J.Chem.Soc.,Abstr.1950,2870-2874.
    99.Allen,F.L.;Suschitzky,H.Heterocyclic fluorine compounds.I.Monofluoro-1,2,3,4-tetrahydrocarbazoles and monofluorocarbazoles.J.Chem.Soc.,Abstr.1953,3845-3849.
    100.Canas-Rodriguez,A.;Mateo,B.A.Tetrahydrocarbazoles.Part Ⅱ.Tricyclic inhibitors of gastric acid secretion.An.Quim C-Org.Bioq.1985,81,254-257.
    101.Ishikawa,M.;Koike,H.Preparation of N-acyl nitrogen-containing cyclic ketones.JP 10147571,1998.
    102.Sundeen,J.E.;Dejneka,T.1,2,3,4-Tetrahydropyrido[4',3':4,5]thiazolo[3,2-a]benzimidazoles.US 4122083,1978.
    103.Smith,P.A.S.;Boyer,J.H.The synthesis of heterocyclic compounds from aryl azides.Ⅱ.Carbolines and thienoindole.J.Am.Chem.Soc.1951,73,2626-2629.
    1.Mitchison,T.;Kirschne,M.Dynamic instability of microtubule growth.Nature 1984,312,237-242.
    2.Margolis,R.L.;Wilson,L.Opposite end assembly and disassembly ofmicrotubules at steady state in vitro.Cell 1978,13,1-8.
    3.Desai,A.;Mitchison,T.J.Microtubule polymerization dynamics.Annu.Rev.Cell.Dev.Biol.1997,13,83-117.
    4.Howard,J.;Hyman,A.A.Dynamics and mechanics of the microtubule plus end.Nature 2003,422,753-758.
    5.Jordan,M.A.;Wilson,L.Microtubules as a target for anticancer drugs.Nat.Rev.Cancer.2004,4,253-265.
    6.Panda,D.;Miller,H.P.;Wilson,L.Rapid treadmilling of brain microtubules free of microtubule-associated proteins in vitro and its suppression by tau.Proc.Natl.Acad.Sci.USA.1999,96,12459-12464.
    7.Panda,D.;Samuel,J.C.;Massie,M.;Feinstein,S.C.;Wilson,L.Differential regulation of microtubule dynamics by three-and four-repeat tau:Implications for the onset of neurodegenerative disease.Proc.Natl.Acad.Sci.USA.2003,100,9548-9553.
    8.Panda,D.;Rathinasamy,K.;Santra,M.K.;Wilson,L.Kinetic suppression of microtubule dynamic instability by griseofulvin:Implications for its possible use in the treatment of cancer.Proc.Natl.Acad.Sci.USA 2005,102,9878-9883.
    9.Panda,D.;Miller,H.P.;Wilson,L.Determination of the size and chemical nature of the stabilizing “cap”at microtubule ends using modulators of polymerization dynamics.Biochemistry 2002,41,1609-1617.
    10.Islam,M.N.;Islander,M.N.Microtubulin binding sites as target for developing anticancer agents Mini-Rev.Med.Chem.2004,4,1077-1104.
    11.Bhattacharyya,B.;Panda,D.;Gupta,S.;Banerjee,M.Anti-mitotic activity ofcolchicine and the structural basis for its interaction with tubulin.Med.Res.Rev.2008,28,155-183.
    12.Zefirova,O.N.;Diikov,A.G.;Zyk,N.V.;Zefirov,N.S.Ligands of the colchicine site of tubulin:A common pharmacophore and new structural classes.Russ.Chem.Bull.,International Edition 2007,
    56,680-688.
    13.Jordan,M.A.;Toso,R.J.;Thrower,D.;Wilson,L.Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations.Proc.Natl.Acad Sci.USA 1993,90,9552-9556.
    14.Rowinsky,E.;Donehower,R.Antimicrotubule agents.5 ed.;Lippincott-Raven:Philadelphia,1997.
    15.Nogales,E.;Wolf,S.G.;Downing,K.H.Structure of the alpha beta tubulin dimer by electron crystallography.Nature 1998,391,199-203.
    16.Lowe,J.;Li,H.;Downing,K.H.;Nogales,E.Refined structure of alpha beta-tubulin at 3.5(?)resolution.J.Mol.Biol.2001,313,1045-1057.
    17.Ravelli,R.B.;Gigant,B.;Curmi,P.A.;Jourdain,I.;Lachkar,S.;Sobel,A.;Knossow,M.Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain.Nature 2004,428,198-202.
    18.Nguyen,T.L.;McGrath,C.;Hermone,A.R.;Burnett,J.C.;Zaharevitz,D.W.;Day,B.W.;Wipf,P.;Hamel,E.;Gussio,R.A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach.J.Med.Chem.2005,48,6107-6116.
    19.Li,Y.W.;Zhou,Y.J.;Zhu,J.;Zheng,C.H.;Chen,J.;Tang,H.;Li,Y.N.Study on the stuctural features of colchicine-site inhibitors.Journal of Pharmaceutical Practice 2007,25,372-375.
    20.Capraro,H.G.The Alkaloids.Academic Press:New York,1984;Vol.23.
    21.Graening,T.;Schmalz,H.G.Total syntheses of colchicine in comparison:A journey through 50 years of synthetic organic chemistry.Angew.Chem.Int.Ed.Engl.2004,43,3230-3256.
    22.Brossi,A.;Yeh,H.J.;Chrzanowska,M.;Wolff,J.;Hamel,E.;Lin,C.M.;Quin,F.;Sulfness,M.;Silverton,J.Colchicine and its analogues.Recent findings.Med.Res.Rev.1988,8,77-94.
    23.Malkinson,F.D.Colchicine.New uses of an old drug.Arch.Dermatol.1982,118,453-457.
    24.Wallace,S.L.Colchicine.Sem.Arthritis.Rheumat.1974,3,369-381.
    25.Nakagawa,Y.;Nakamura,S.;Kase,Y.;Noguehi,T.;Ishihara,T.Colchicine lesions in the rat hippocampus mimic the alterations of several markers of Alzheimers disease.Brain Res.1987,408,57-64.
    26.Mattson,M.P.Effects of microtubule stabilization and destabilization on tau immunoreactivity in cultured hippocampal neurons.Brain Res.1992,582,107-118.
    27.Nakagawa-Goto,K.;Chen,C.X.;Hamel,E.;Wu,C.C.;Bastow,K.F.;Brossi,A.;Lee,K.H.Antitumor agents.Part 236:Synthesis of water soluble colchicine derivatives.Bioorg.Med.Chem.Lett.2005,15,235-238.
    28.Correia,J.J.;Lobert,S.Physiochemical aspects of tubulin-interacting antimitotic drugs.Curr.Pharm.Des.2001,7,1213-1228.
    29.Hastie,S.B.Interactions of colchicine with tubulin.Pharmacol.Ther.1991,51,377-401.
    30.Frankhauser,G.;Humphrey,R.R.The rare occurrence of mitosis without spindle apparatus “colchicine mitosis” producing endopolyploidy in embryos of axolotl.Proc.Natl.Acad.Sci.USA 1952,38,1073-1082.
    31.Weiner,J.L.;Buhler,A.V.;Whatley,V.J.;Harris,R.A.;Dinwiddi,T.V.Colchicine is a competitive antagonist at human recombinant gamma-aminobutyric acid A receptors.J.Pharmacol.Exp.Ther.1998,284,95-102.
    32.Volbracht,C.;Leist,M.;Kolb,A.S.;Nicotera,P.Apoptosis in caspase-inhibited neurons.Mol.Med.2001,7,36-48.
    33.Andreu,J.M.;Timasheff,S.N.Conformational states of tubulin liganded to colchicine,tropolone methyl ether,and podophyllotoxin.Biochemistry 1982,21,6465-6476.
    34.Rosner,M.;Capraro,H.G.;Jacobson,A.E.;Atwell,L.;Brossi,A.;Lorio,M.A.;Williams,T.H.;Sik,R.H.;Chignell,C.F.Biological effects of modified colchicines.Improved preparation of 2-demethylcolchicine,3-demethylcolchicine,and(+)-colchicine and reassignment of the position of the double bond in dehydro-7-deacetamidocolchicines.J.Med.Chem.1981,24,257-261.
    35.Andrew,J.M.;Ramirez,P.B.;Gorbunoff,M.J.;Ayala,D.;Timasheff,N.Role of the colchicine ring A and its methoxy groups in the binding to tubulin and microtubule inhibition.Biochemistry 1998,37,8356-8368.
    36.McClure,W.O.;Paulson,J.C.The interaction of colchicine and some related alkaloids with rat brain tubulin.Mol.Pharmacol.1977,13,560-575.
    37.Choudhury,G.G.;Banerjee,A.;Bhattacharyya,B.;Biswas,B.B.Interaction of colchicine analogues with purified tubulin.FEBS Lett.1983,161,55-59.
    38.Bhattacharyya,B.;Wolff,J.Immobilization-dependent fluorescence of colchicine.J.Biol.Chem.1984,259,11836-11843.
    39.Hastie,S.B.;Williams,R.C.J.;Puett,D.;McDonald,T.L.The binding of isocolchicine to tubulin.Mechanisms of ligand association with tubulin.J.Biol.Chem.1989,264,6682-6688.
    40.Oakley,B.R.;Oakley,C.E.;Yoon,Y.;Jung,K.A.Gamma-tubulin is a component of the spindle pole body that is essential for microtubule function in Aspergillus nidulans.Cell 1990,61,1289-1301.
    41.Staretz,M.E.;Hastie,S.B.Synthesis and tubulin binding of novel C-10 analogues of colchicine.J.Med.Chem.1993,36,758-764.
    42.Hastie,S.B.Spectroscopic and kinetic features of allocolchicine binding to tubulin.Biochemistry 1989,28,7753-7760.
    43.Itoh,Y.;Brossi,A.;Hamel,E.;Lin,C.M.Colchicine models:Synthesis and binding to tubulin of tetramethoxybiphenyls.Helv.Chim.Acta.1988,71,1199-1209.
    44.ter Haar,E.;Rossenkranz,H.S.;E.,H.;Day,B.W.Computational and molecular modeling evaluation of the structural basis for tubulin polymerization inhibition by colchicine site agents.Bioorg.Med.Chem.1996,4,1659-1671.
    45.Chakrabarti,G.;Sengupta,S.;Bhattacharyya,B.Thermodynamics of colchicinoid-tubulin interactions.Role of B-ring and C-7 substituent.J.Biol.Chem.1996,271,2897-2901.
    46.Banwell,M.G.;Peters,S.C.;Greenwood,R.J.;Mackay,M.F.;Hamel,E.;Lin,C.M.Semisyntheses,x-ray crystal structures,and tubulin-binding properties of 7-oxodeacetamidocolchicine and 7-oxodeacetamidoisocolchicine.Aust.J.Chem.1992,45,1577-1588.
    47.Shi,Q.;Verdier-Pinard,P.;Brossi,A.;Hamel,E.;McPhail,A.T.;Lee,K.H.Antitumor agents.172.Synthesis and biological evaluation of novel deacetamidothiocolchicin-7-ols and ester analogs as antitubulin agents.J.Med.Chem.1997,40,961-966.
    48.Al-Tel,T.H.;AbuZarga,M.H.;Sabri,S.S.;Freyer,A.J.;Shamma,M.New natural colchicinoids:Indications of two possible catabolic routes for the colchicine alkaloids.J.Nat.Prod.1990,53,623-629.
    49.Cifuentes,M.;Schilling,B.;Ravindra,R.;Winter,J.;Janik,M.E.Synthesis and biological evaluation of B-ring modified colchicine and isocolchicine analogs.Bioorg.Med.Chem.Lett.2006,16,2761-2764.
    50.Sharifi,N.;Hamel,E.;Lill,M.A.;Risbood,P.;Kane,C.T.J.;Hossain,M.T.;Jones,A.;Dalton,J.T.;Farrar,W.L.A bifunctional colchicinoid that binds to the androgen receptor.Mol.Cancer.Ther.2007,6,2328-2336.
    51.Thorson,J.S.;Ahmed,A.Preparation and cytotoxic effects ofcolchicine neoglycosides.WO 2008067039,2008.
    52.Das,L.;Datta,A.B.;Gupta,S.;Poddar,A.;Sengupta,S.;Janik,M.E.;Bhattacharyya,B.7-NH-dansyl isocolchicine exhibits a significantly improved tubulin-binding affinity and microtubule inhibition in comparison to isocolchicine by binding tubulin through its A and B rings.Biochemistry 2005,44,3249-3258.
    53.Bergemann,S.;Brecht,R.;Buttner,F.;Guenard,D.;Gust,R.;Seitz,G.;Stubbs,M.T.;Thoret,S.Novel B-ring modified allocolchicinoids of the NCME series:Design,synthesis,antimicrotubule activity and cytotoxicity.Bioorg.Med.Chem.2003,11,1269-1281.
    54.Buettner,F.;Bergemann,S.;Guenard,D.;Gust,R.;Seitz,G.;Thoret,S.Two novel series of allocolchicinoids with modified seven membered B-rings:Design,synthesis,inhibition of tubulin assembly and cytotoxicity.Bioorg.Med.Chem.2005,13,3497-3511.
    55.Joncour,A.;Liu,J.M.;Dau,M.E.T.H.;Baudoin,O.Asymmetric synthesis of antimicrotubule biaryl hybrids of allocolchicine and steganacin.Chem.Eur.J.2007,13,5450-5465.
    56.Cortese,F.;Bhattacharyya,B.;Wolff,J.Podophyllotoxin as a probe for the colchicine-binding site oftubulin.J.Biol.Chem.1977,252,1134-1140.
    57.Desb(?)ne,S.;Giorgi-Renault,S.Drugs that inhibit tubulin polymerization:the particular case of podophyllotoxin and analogues.Curr.Med.Chem.Anti-Cancer Agents 2002,2,71-90.
    58.Sackett,D.L.Podophyllotoxin,steganacin and combretastatin:Natural products that bind at the colchicine site of tubulin.Pharmacol.Ther.1993,59,163-228.
    59.Castro,A.;Miguel del Corral,J.M.;Gordaliza,M.;Grande,C.;G(?)mez-Zurita,A.;Garcia-Gr(?)valos,D.;San Feliciano,A.Synthesis and cytotoxicity of podophyllotoxin analogues modified in the A ring.Eur.J.Med.Chem.2003,38,65-74.
    60.Landais,Y.;Robin,J.P.;Lebrun,A.Ruthenium dioxide in fluoro acid medium.I.A new agent in the biaryl oxidative coupling.Application to the synthesis of non-phenolic bisbenzocyclooctadiene lignan lactones.Tetrahedron 1991,47,3787-3804.
    61.Gensler,W.J.;Murthy,C.D.;Trammell,M.H.Nonenolizable podophyllotoxin derivatives.J.Med.Chem.1977,20,635-644.
    62.Jardine,I.In Anticancer Agents Based on Natural Products.In Cassady,J.M.;Douros,J.D.,Eds.New York,1980;pp 319-351.
    63.Magedov,I.V.;Manpadi,M.;Rozhkova,E.;Przheval'skii,N.M.;Rogelj,S.;Shors,S.T.;Steelant,W.F.A.;Slambrouck,S.V.;Kornienko,A.Structural simplification of bioactive natural products with multicomponent synthesis:Dihydropyridopyrazole analogues of podophyllotoxin.Bioorg.Med.Chem.Lett.2007,17,1381-1385.
    64.Ji,Z.;Wang,H.K.;Bastow,K.F.;Zhu,X.K.;Cho,S.J.;Cheng,Y.C.;Lee,K.H.Antitumor agents.177.Design,syntheses,and biological evaluation of novel etoposide analogs bearing pyrrolecarboxamidino group as DNA topoisomerase Ⅱ inhibitors.Bioorg.Med.Chem.Lett.1997,7,607-612.
    65.Liu,Y.Q.;Yang,L.;Tian,X.Design,synthesis,and biological evaluation of novel pyridine acid esters of podophyllotoxin and esters of 4'-demethylepipodophyllotoxin.Med.Chem.Res.2007,16,319-330.
    66.Leteurtre,F.;Sackett,D.L.;Madalengoitia,J.;Kohlhagen,G.;Macdonald,T.;Hamel,E.;Paull,K.D.;Pommier,Y.Azatoxin derivatives with potent and selective action on topoisomerase Ⅱ.Biochem.Pharmacol.1995,49,1283-1290.
    67.You,Y.Podophyllotoxin derivatives:Current synthetic approaches for new anticancer agents.Curr.Pharm.Design 2005,11,1695-1717.
    68.Gordaliza,M.;Castro,M.A.;Miguel del Corral,J.M.;Feliciano,A.S.Antitumor properties of podophyllotoxin and related compounds.Curr.Pharm.Design 2000,6,1811-1839.
    69.Gordaliza,M.;Garc(?)a,P.A.;Miguel del Corral,J.M.;Castro,M.A.;Gomez-Zurita,M.A.Podophyllotoxin:distribution,sources,applications and new cytotoxic derivatives.Toxicon 2004,44,441-459.
    70.Imperio,D.;Pirali,T.;Galli,U.;Pagliai,F.;Cafici,L.;Canonico,P.L.;Sorba,G.;Genazzani,A.A.;Tron,G.C.Replacement of the lactone moiety on podophyllotoxin and steganacin analogues with a 1,5-disubstituted 1,2,3-triazole via ruthenium-catalyzed click chemistry.Bioorg.Med.Chem.2007,15,6748-6757.
    71.Pettit,G.R.;Cragg,G.M.;Herald,D.L.;Schmidt,J.M.;Lobavanijaya,P.Antineoplastic agents.84.Isolation and structure of combretastatin.Can.J.Chem.1982,60,1374-1376.
    72.Lin,C.M.;Singh,S.B.;Chu,P.S.;Dempcy,R.O.;Schmidt,J.M.;Pettit,G.R.;Hamel,E.Interactions of tubulin with potent natural and synthetic analogs of the antimitotic agent Combretastatin:A structure-activity study.Mol.Pharmacol.1988,34,200-208.
    73.Pettit,G.R.;Singh,S.B.;Hamel,E.;Lin,C.M.;Alberts,D.S.;Garcia-Kendal,D.Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4.Experientia 1989,45,209-211.
    74.Shustik,C.;Dalton,W.;Gros,P.P-glycoprotein-mediated multidrug resistance in tumor cells:Biochemistry,clinical relevance and modulation.Mol.Aspects Med.1995,16,1-78.
    75.Fardel,O.;Lecureur,V.;Guillouzo,A.The P-glycoprotein multidrug transporter.Gen.Pharmacol.1996,27,1283-1291.
    76.Pettit,G.R.;Grealish,M.P.;Herald,D.L.;Boyd,M.R.;Hamel,E.;Pettit,R.K.Antineoplastic agents.443.Synthesis of the cancer cell growth inhibitor hydroxyphenstatin and its sodium diphosphate prodrug.J.Med.Chem.2000,43,2731-2737.
    77.Nam,N.H.Combretastatin A-4 analogues as antimitotic antitumor agents.Curr.Med.Chem. 2003,10,1697-1722.
    78.Chaudhary,A.;Pandeya,S.N.;Kumar,P.;Sharma,P.P.;Gupta,S.;Soni,N.;Verma,K.K.;Bhardwaj,G.Combretastatin A-4 analogs as anticancer agents.Mini-Rev.Med.Chem.2007,7,1186-1205.
    79.Pettit,G.R.;Minardi,M.D.;Rosenberg,H.J.;Hamel,E.;Bibby,M.C.;Martin,S.W.;Jung,M.K.;Pettit,R.K.;Cuthbertson,T.J.;Chapuis,J.C.Antineoplastic agents.509.Synthesis of fluorcombstatin phosphate and related 3-halostilbenes.J.Nat.Prod.2005,68,1450-1458.
    80.Gaukroger,K.;Hadfield,J.A.;Lawrence,N.J.;Nolan,S.;McGown,A.T.Structural requirements for the interaction of combretastatins with tubulin:How important is the trimethoxy unit?Org.Biomol.Chem.2003,1,3033-3037.
    81.Hall,J.J.;Sriram,M.;Strecker,T.E.;Tidmore,J.K.;Jelinek,C.J.;Kumar,G.D.K.;Hadimani,M.B.;Pettit,G.R.;Chaplin,D.J.;Trawick,M.L.;Pinney,K.G.Design,synthesis,biochemical,and biological evaluation of nitrogen-containing trifluoro structural modifications of combretastatin A-4.Bioorg.Med.Chem.Lett.2008,18,5146-5149.
    82.Fortin,S.;Moreau,E.;Lacroix,J.;Teulade,J.C.;Patenaude,A.;C-Gaudreault,R.N-Phenyl-N'-(2-chloroethyl)urea analogues of combretastatin A-4:Is the N-phenyl-N'-(2-chloroethyl)urea pharmacophore mimicking the trimethoxy phenyl moiety? Bioorg.Med.Chem.Lett.2007,17,2000-2004.
    83.Maya,A.B.S.;P(?)rez-Melero,C.;Mateo,C.;Alonso,D.;Fern(?)ndez,J.L.;Gajate,C.;Mollinedo,F.;Pel(?)ez,R.;Caballero,E.;Medarde,M.Further naphthylcombretastatins.An investigation on the role of the naphthalene moiety.J.Med.Chem.2005,48,556-568.
    84.Tron,G.C.;Pirali,T.;Sorba,G.;Pagliai,F.;Busacca,S.;Genazzani,A.A.Medicinal chemistry of combretastatin A 4:Present and future directions.J.Med.Chem.2006,49,3033-3044.
    85.Cushman,M.;Nagarathnam,D.;Gopal,D.;Chakraborti,A.K.;Lin,C.M.;Hamel,E.Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization.J.Med.Chem.1991,34,2579-2588.
    86.Cushman,M.;Nagarathnam,D.;Gopal,D.;He,H.M.;Lin,C.M.;Hamel,E.Synthesis and evaluation of analogues of(Z)-1-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene as potential cytotoxic and antimitotic agents.J.Med.Chem.1992,35,2293-2306.
    87.Monk,K.A.;Siles,R.;Hadimani,M.B.;Mugabe,B.E.;Ackley,J.F.;Studerus,S.W.;Edvardsen,K.;Trawick,M.L.;Garner,C.M.;Rhodes,M.R.;Pettit,G.R.;Pinney,K.G.Design,synthesis,and biological evaluation of combretastatin nitrogen-containing derivatives as inhibitors of tubulin assembly and vascular disrupting agents.Bioorg.Med.Chem.2006,14,3231-3244.
    88.Kong,Y.;Grembecka,J.;Edler,M.C.;Hamel,E.;Mooberry,S.L.;Sabat,M.;Rieger,J.;Brown,M.L.Structure-based discovery of a boronic acid bioisostere of combretastatin A-4.Chem.Biol.2005,12,1007-1014.
    89.Coggiola,B.;Pagliai,F.;Allegrone,G.;Genazzani,A.A.;Tron,G.C.Synthesis and biological activity of mustard derivatives of combretastatins.Bioorg.Med.Chem.Lett.2005,15,3551-3554.
    90.Zhang,Q.;Peng,Y.Y.;Wang,X.I.;Keenan,S.M.;Arora,S.;Welsh,W.J.Highly potent triazole-based tubulin polymerization inhibitors.J.Med.Chem.2007,50,749-754.
    91.Romagnoli,R.;Baraldi,P.G.;Sarkar,T.;Carrion,M.D.;Cara,C.L.;Cruz-Lopez,O.;Preti,D.;Tabrizi,M.A.;Tolomeo,M.;Grimaudo,S.;Cristina,A.D.;Zonta,N.;Balzarini,J.;Brancale,A.;Hsieh,H.P.;Hamel,E.Synthesis and biological evaluation of 1-methyl-2-(3',4',5'-trimethoxybenzoyl)-3-aminoindoles as a new class of antimitotic agents and tubulin inhibitors.J.Med.Chem.2008,51,1464-1468.
    92.Romagnoli,R.;Baraldi,P.G.;Pavani,M.G.;Tabrizi,M.A.;Preti,D.;Fruttarolo,F.;Piccagli,L.;Jung,M.K.;Hamel,E.;Borgatti,M.;Gambari,R.Synthesis and biological evaluation of 2-amino-3-(3',4',5'-trimethoxybenzoyl)-5-aryl thiophenes as a new class of potent antitubulin agents.J.Med.Chem.2006,49,3906-3915.
    93.Romagnoli,R.;Baraldi,P.G.;Carrion,M.D.;Cara,C.L.;Preti,D.;Fruttarolo,F.;Pavani,M.G.;Tabrizi,M.A.;Tolomeo,M.;Grimaudo,S.;Cristina,A.D.;Bzlzarini,J.;Hadfield,J.A.;Brancale,A.;Hamel,E.Synthesis and biological evaluation of 2-and 3-arninobenzo[b]thiophene derivatives as antimitotic agents and inhibitors oftubulin polymerization.J.Med.Chem.2007,50,2273-2277.
    94.Reddy,G.R.;Kuo,C.C.;Tan,U.K.;Coumar,M.S.;Chang,C.Y.;Chiang,Y.K.;Lai,M.J.; Yeh,J.Y.;Wu,S.Y.;Chang,J.Y.;Liou,J.P.;Hsieh,H.P.Synthesis and structure & activity relationships of 2-amino-1-aroylnaphthalene and 2-hydroxy-1-aroylnaphthalenes as potent antitubulin agents.J.Med.Chem.2008,51,8163-8167.
    95.Romagnoli,R.;Baraldi,P.G.;Carrion,M.D.;Cruz-Lopez,O.;Cara,C.L.;Tolomeo,M.;Grimaudo,S.;Cristina,A.D.;Pipitone,M.R.;Balzarini,J.;Kandil,S.;Brancale,A.;Sarkar,T.;Hamel,E.Synthesis and biological evaluation of 2-amino-3-(3',4',5'-trimethoxybenzoyl)-6-substituted-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivatives as antimitotic agents and inhibitors of tubulin polymerization.Bioorg.Med.Chem.Lett.2008,18,5041-5045.
    96.Romagnoli,R.;Baraldi,P.G.;Sarkar,T.;Carrion,M.D.;Cruz-Lopez,O.;Cara,C.L.;Tolomeo,M.;Grimaudo,S.;Cristina,A.D.;Pipitone,M.R.;Balzarini,J.;Gambari,R.;Ilaria,L.;Saletti,R.;Brancale,A.;Hamel,E.Synthesis and biological evaluation of 2-(3',4',5'-trimethoxybenzoyl)-3-N,N-dimethylamino benzo[b]furan derivatives as inhibitors of tubulin polymerization.Bioorg.Med.Chem.2008,16,8419-8426.
    97.Pettit,G.R.;Singh,S.B.;Niven,M.L.;Hamel,E.;Schmidt,J.M.Antineoplastic agents.Part 123.Isolation,structure,and synthesis of combretastatins A-1 and B-1,potent new inhibitors of microtubule assembly,derived from Combretum caffrum.J.Nat.Prod.1987,50,119-131.
    98.Hu,L.;Li,Z.R.;Li,Y.;Qu,J.;Ling,Y.H.;Jiang,J.D.;Boykin,D.W.Synthesis and structure-activity relationships of carbazole sulfonamides as a novel class of antimitotic agents against solid tumors.J.Med.Chem.2006,49,6273-6282.
    99.Hu,L.X.;Jiang,J.D.;Qu,J.R.;Li,Y.;Jin,J.;Li,Z.R.;Boykin,D.W.Novel potent antimitotic heterocyclic ketones:Synthesis,antiproliferative activity,and structure-activity relationships.Bioorg.Med.Chem.Lett.2007,17,3613-3617.
    100.Hsieh,H.P.;Liou,J.P.;Mahindroo,N.Pharmaceutical design of antimitotic agents based on combretastatins.Curr.Pharm.Design 2005,11,1655-1677.
    101.Borrel,C.;Thoret,S.;Cachet,X.;Guenard,D.;Tillequin,F.;Koch,M.;Michel,S.New antitubulin derivatives in the combretastatin A 4 series:Synthesis and biological evaluation.Bioorg.Med.Chem.2005,13,3853-3864.
    102.Alloatti,D.;Giannini,G.;Cabri,W.;Lustrati,I.;Marzi,M.;Ciacci,A.;Gallo,G.;Tinti,M.O.;Marcellini,M.;Riccioni,T.;Guglielmi,M.B.;Carminati,P.;Pisano,C.Synthesis and biological activity of fluorinated combretastatin analogues.J.Med.Chem.2008,51,2708-2721.
    103.Mousset,C.;Giraud,A.;Provot,O.;Hamze,A.;Bignon,J.;Liu,J.M.;Thoret,S.;Dubois,J.;Brion,J.D.;Alami,M.Synthesis and antitumor activity of benzils related to combretastatin A-4.Bioorg.Med.Chem.Lett.2008,18,3266-3271.
    104.Kerr,D.J.;Hamel,E.;Jung,M.K.;Flynn,B.L.The concise synthesis ofchalcone,indanone and indenone analogues of combretastatin A-4.Bioorg.Med Chem.2007,15,3290-3298.
    105.Maya,A.B.S.;Perez-Melero,C.;Salvador,N.;Pelaez,R.;Caballero,E.;Medarde,M.New naphthylcombretastatins.Modifications on the ethylene bridge.Bioorg.Med.Chem.2005,13,2097-2107.
    106.Duan,J.X.;Cai,X.;Meng,F.;Lan,L.;Hart,C.;Matteucci,M.Potent antitubulin tumor cell cytotoxins based on 3-aroyl indazoles.J.Med.Chem.2007,50,1001-1006.
    107.Odlo,K.;Hentzen,J.;dit Chabert,J.F.;Ducki,S.;Gani,O.A.B.S.M.;Sylte,I.;Skrede,M.;Fl(?)renes,V.A.;Hansen,T.V.1,5-Disubstituted 1,2,3-triazoles as cis-restricted analogues of combretastatin A-4:Synthesis,molecular modeling and evaluation as cytotoxic agents and inhibitors of tubulin.Bioorg.Med.Chem.2008,16,4829-4838.
    108.Bellina,F.;Cauteruccio,S.;Monti,S.;Rossi,R.Novel imidazole-based combretastatin A-4nalogues:Evaluation of their in vitro antitumor activity and molecular modeling study of their binding to the colchicine site oftubulin.Bioorg.Med.Chem.Lett.2006,16,5757-5762.
    109.Xue,N.;Yang,X.;Wu,R.;Chen,J.;He,Q.;Yang,B.;Lu,X.;Hu,Y.Synthesis and biological evaluation of imidazol-2-one derivatives as potential antitumor agents.Bioorg.Med.Chem.2008,16,2550-2557.
    110.Johnson,M.;Younglove,B.;Lee,L.;LeBlanc,R.;Holt,J.H.;Hills,P.;Mackay,H.;Brown,T.;Mooberry,S.L.;Lee,M.Design,synthesis,and biological testing of pyrazoline derivatives of combretastatin A-4.Bioorg.Med.Chem.Lett.2007,17,5897-5901.
    111.Pirali,T.;Busacca,S.;Beltrami,L.;Imovilli,D.;Pagliai,F.;Miglio,G.;Massarotti,A.; Verotta,L.;Tron,G.C.;Sorba,G.;Genazzani,A.A.Synthesis and cytotoxic evaluation of combretafurans,potential scaffolds for dual-action antitumoral agents.J.Med.Chem 2006,49,5372-5376.
    112.Tron,G.C.;Pagliai,F.;Del Grosso,E.;Genazzani,A.A.;Sorba,G.Synthesis and cytotoxic evaluation of combretafurazans.J.Med.Chem.2005,48,3260-3268.
    113.Sun,C.M.;Lin,L.G.;Yu,H.J.;Cheng,C.Y.;Tsai,Y.C.;Chu,C.W.;Din,Y.H.;Chau,Y.P.;Don,M.J.Synthesis and cytotoxic activities of 4,5-diarylisoxazoles.Bioorg.Med.Chem.Lett.2007,17,1078-1081.
    114.Kaffy,J.;Pontikis,R.C.,D.;Croisy,A.;Monneret,C.;Florent,J.-C.Isoxazole-type derivatives related to combretastatin A-4,synthesis and biological evaluation.Bioorg.Med.Chem.2006,14,4067-4077.
    115.Gurjar,M.K.;Wakharkar,R.D.;Singh,A.T.;Jaggi,M.;Borate,H.B.;Shinde,P.D.;Verma,R.;Rajendran,P.;Dutt,S.;Singh,G.;Sanna,V.K.;Singh,M.K.;Srivastava,S.K.;Mahajan,V.A.;Hadhav,V.H.;Dutta,K.;Krishnan,K.;Chaudhary,A.;Agarwal,S.K.;Mukherjee,R.;Burman,A.C.Synthesis and evaluation of 4/5-hydroxy-2,3-diaryl(substituted)-cyclopent-2-en-1-ones as cis-restricted analogues of combretastatin A-4 as novel anticancer agents.J.Med.Chem.2007,50,1744-1753.
    116.Peifer,C.;Stoiber,T.;Unger,E.;Totzke,F.;Schachtele,C.;Marrne,D.;Brenk,R.;Klebe,G.;Schollmeyer,D.;Dannhardt,G.Design,synthesis,and biological evaluation of 3,4-diarylmaleimides as angiogenesis inhibitors.J.Med.Chem.2006,49,1271-1281.
    117.Wu,M.J.;Sun,Q.M.;Yang,C.H.;Chen,D.D.;Ding,J.;Chen,Y.;Lin,L.P.;Xie,Y.Y.Synthesis and activity of Combretastatin A-4 analogues:1,2,3-thiadiazoles as potent antitumor agents.Bioorg.Med.Chem.Lett.2007,17,869-873.
    118.Mateo,C.;(?)lvarez,R.;Melero,C.P.;Pel(?)ez,R.Conformationally restricted macrocyclic analogues of combretastatins.Bioorg.Med.Chem.Lett.2007,17,6316-6320.
    119.Brancale,A.;Silvestri,R.Indole,a core nucleus for potent inhibitors of tubulin polymerization.Med.Res.Rev.2007,27,209-238.
    120.Liou,J.P.;Chang,Y.L.;Kuo,F.M.;Chang,C.W.;Tseng,H.Y.;Wang,C.C.;Yang,Y.N.;192 Chang,J.Y.;Lee,S.J.;Hsieh,H.P.Concise synthesis and structure-activity relationships of combretastatin A-4 analogues,1-aroylindoles and 3-aroylindoles,as novel classes of potent antitubulin agents.J.Med.Chem.2004,47,4247-4257.
    121.Dupeyre,G.;Chabot,G.G.;Thoret,S.;Cachet,X.;Seguin,J.;Guenard,D.;Tillequin,F.;Scherman,D.;Koch,M.;Michel,S.Synthesis and biological evaluation of (3,4,5-trimethoxyphenyl)indol-3-ylmethane derivatives as potential antivascular agents.Bioorg.Med.Chem.2006,14,4410-4426.
    122.Kuo,C.C.;Hsieh,H.P.;Pan,W.Y.;Chen,C.P.;Liou,J.P.;Lee,S.J.;Chang,Y.L.;Chen,L.T.;Chen,C.T.;Chang,J.Y.BPROL075,a novel synthetic indole compound with antimitotic activity in human cancer cells,exerts effective antitumoral activity in vivo.Cancer Res.2004,64,4621-4628.
    123.Chang,Y.W.;Chen,W.C.;Lin,K.T.;Chang,L.;Yao,H.T.;Hsieh,H.P.;Lan,S.J.;Chen,C.T.;Chao,Y.S.;Yeh,T.K.Development and validation of a liquid chromatography-tandem mass spectrometry for the determination of BPROL075,a novel antimicrotuble agent,in rat plasma:Application to a pharmacokinetic study.J.Chromatogr.B.2007,846,162-168.
    124.Ty,N.;Dupeyre,G.;Chabot,G.G.;Seguin,J.;Tillequin,F.;Scherman,D.;Michel,S.;Cachet,X.Synthesis and biological evaluation of new disubstituted analogues of 6-methoxy-3-(3',4',5'-trimethoxybenzoyl)-1H-indole(BPROL075),as potential antivascular agents.Bioorg.Med.Chem.2008,16,7494-7503.
    125.Liou,J.P.;Wu,Z.Y.;Kuo,C.C.;Chang,C.Y.;Lu,P.Y.;Chen,C.M.;Hsieh,H.P.;Chang,J.Y.Discovery of 4-amino and 4-hydroxy-1-aroylindoles as potent tubulin polymerization inhibitors.J.Med.Chem.2008,51,4351-4355.
    126.Liou,J.P.;Wu,C.Y.;Hsieh,H.P.;Chang,C.Y.;Chen,C.M.;Kuo,C.C.;Chang,J.Y.4-and 5-Aroylindoles as novel classes of potent antitubulin agents.J.Med.Chem.2007,50,4548-4552.
    127.(?)lvarez,C.;(?)lvarez,R.;Corchete,P.;L(?)pez,J.L.;P(?)rez-Melero,C.;Pel(?)ez,R.;Medarde,M.Diarylmethyloxime and hydrazone derivatives with 5-indolyl moieties as potent inhibitors of tubulin polymerization.Bioorg.Med.Chem.2008,16,5952-5961.
    128.De Martino,G.;La Regina,G.;Coluccia,A.;Edler,M.C.;Barbera,M.C.;Brancale,A.; Wilcox,E.;Hamel,E.;Artico,M.;Silvestri,R.Arylthioindoles,potent inhibitors of tubulin polymerization.J.Med.Chem.2004,47,6120-6123.
    129.De Martino,G.;Edler,M.C.;La Regina,G.;Coluccia,A.;Barbera,M.C.;Barrow,D.;Nicholson,R.I.;Chiosis,G.;Brancale,A.;Hamel,E.;Artico,M.;Silvestri,R.Arylthioindoles,potent inhibitors of tubulin polymerization.2.Structure-activity relationships and molecular modeling studies.J.Med.Chem.2006,49,947-954.
    130.Regina,G.L.;Edler,M.C.;Brancale,A.;Kandil,S.;Coluccia,A.;Piscitelli,F.;Hamel,E.;Martino,G.D.;Matesanz,R.;D(?)az,J.F.;Scovassi,A.I.;Prosperi,E.;Lavecchia,A.;Novellino,E.;Artico,M.;Silvestri,R.Arylthioindole inhibitors of tubulin polymerization.3.Biological evaluation,structure-activity relationships and molecular modeling studies.J.Med.Chem.2007,50,2865-2874.
    131.Kaufmann,D.;Pojarov(?),M.;Vogel,S.;Liebl,R.;Gastpar,R.;Gross,D.;Nishino,T.;Pfaller,T.;von Angerer,E.Antimitotic activities of 2-phenylindole-3-carbaldehydes in human breast cancer cells.Bioorg.Med.Chem.2007,15,5122-5136.
    132.Yoshino,H.;Ueda,N.;Niijima,J.;Sugumi,H.;Kotake,Y.;Koyanagi,N.;Yoshimatsu,K.;Asada,M.;Watanabe,T.;Nagasu,T.Novel sulfonamides as potential,systemically active antitumor agents.J.Med.Chem.1992,35,2496-2497.
    133.Koyanagi,N.;Nagasu,T.;Fujita,F.;Watanabe,T.;Tsukahara,K.;Funahashi,Y.;Fujita,M.;Taguchi,T.;Yoshino,H.;Kitoh,K.In vivo tumor growth inhibition produced by a novel sulfonamide,E7010,against rodent and human tumors.Cancer Res.1994,54,1702-1706.
    134.Yoshimatsu,K.;Yamaguchi,A.;Yoshino,H.;Koyanagi,N.;Kitoh,K.Mechanism of action of E7010,an orally active sulfonamide antitumor agent:Inhibition of mitosis by binding to the colchicine site oftubulin.Cancer Res.1997,57,3208-3213.1
    35.Yamamoto,K.;Noda,K.;Yoshimura,A.;Fukuoka,M.;Furuse,K.;Niitani,H.Phase I study of E7010.Cancer Chemother.Pharmacol.1998,42,127-134.
    136.Shan,B.;Medina,J.C.;Santha,E.;Frankmoelle,W.P.;Chou,T.C.;Learned,R.M.;Narbut,M.R.;Stott,D.;Wu,P.;Jaen,J.C.Selective,covalent modification of β-tubulin residue Cys-239 by T138067,an antitumor agent with in vivo efficacy against multidrug-resistant tumors.Proc.Natl.Acad. Sci.USA 1999,96,5686-5691.
    137.Chang,J.Y.;Hsieh,H.P.;Chang,C.Y.;Hsu,K.S.;Chiang,Y.F.;Chen,C.M.;Kuo,C.C.;Liou,J.P.7-Aroyl-aminoindoline-1-sulfonamides as a novel class of potent antitubulin agents.J.Med.Chem.2006,49,6656-6659.
    138.Liou,J.P.;Hsu,K.S.;Kuo,C.C.;Chang,C.Y.;Chang,J.Y.A novel oral indoline-sulfonamide agent,N-[1-(4-nethoxybenzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-isonicotinamide (J30),exhibits potent activity against human cancer cells in vitro and in vivo through the disruption of microtubule.J.Pharmacol.Exp.Ther.2007,323,398-405.
    139.Lebegue,N.;Gallet,S.;Flouquet,N.;Carato,P.;Pfeiffer,B.;Renard,P.;L(?)once,S.;Pierr(?),A.;Chavatte,P.;Berthelot,P.Novel benzopyridothiadiazepines as potential active antitumor agents.J.Med.Chem.2005,48,7363-7373.
    140.D'Amato,R.J.;Lin,C.M.;Flynn,E.;Folkman,J.;Hamel,E.2-Methoxyestradiol,an endogenous mammalian metabolite,inhibits tubulin polymerization by interacting at the colchicine site.Proc.Natl.Acad.Sci.USA 1994,91,3964-3968.
    141.Mabjeesh,N.J.;Escuin,D.;LaVallee,T.M.;Pribluda,V.S.;Swartz,G.M.;Johnson,M.S.;Willard,M.T.;Zhong,H.;Simons,J.W.;Giannakakou,P.2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF.Cancer Cell 2003,3,363-375.
    142.Verrills,N.M.;Kavallaris,M.Improving the targeting of tubulin-binding agents:lessons from drug resistance studies.Curr.Pharm.Des.2005,11,1719-1733.
    143.Fotsis,T.;Zhang,Y.;Pepper,M.S.;Adlercreutz,H.;Montesano,R.;Nawroth,P.P.;Schweigerer,L.The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth.Nature 1994,368,237-239.
    144.Klauber,N.;Parangi,S.;Flynn,E.;Hamel,E.;D'Amato,R.J.Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and taxol.Cancer Res.1997,57,81-86.
    145.Dahut,W.L.;Lakhani,N.J.;Gulley,J.L.;Arlen,P.M.;Kohn,E.C.;Kotz,H.;McNally,D.;Parr,A.;Nguyen,D.;Yang,S.X.;Steinberg,S.M.;Venitz,J.;Sparreboom,A.;Figg,W.D.Phase I clinical trial of oral 2-methoxyestradiol,an antiangiogenic and apoptotic agent,in patients with solid tumors.Cancer.Biol.Ther.2006,5,22-27.
    146.James,J.;Murry,D.J.;Treston,A.M.;Storniolo,A.M.;Sledge,G.W.;Sidor,C.;Miller,K.D.Phase Ⅰ safety,pharmacokinetic and pharmacodynamic studies of 2-methoxyestradiol alone or in combination with docetaxel in patients with locally recurrent or metastatic breast cancer.Invest.New Drugs 2007,25,41-48.
    147.Rajkumar,S.V.;Richardson,P.G.;Lacy,M.Q.;Dispenzieri,A.;Greipp,P.R.;Witzig,T.E.;Schlossman,R.;Sidor,C.F.;Anderson,K.C.;Gertz,M.A.Novel therapy with 2-methoxyestradiol for the treatment of relapsed and plateau phase multiple myeloma.Clin.Cancer Res.2007,13,6162-6167.
    148.Sweeney,C.;Liu,G.;Yiannoutsos,C.;Kolesar,J.;Horvath,D.;Staab,M.J.;Fife,K.;Armstrong,V.;Treston,A.;Sidor,C.;Wilding,G.A phase Ⅱ multicenter,randomized,double-blind,safety trial assessing the pharmacokinetics,pharmacodynamics,and efficacy of oral 2-methoxyestradiol capsules in hormone-refractory prostate cancer.Clin.Cancer Res.2005,11,6625-6633.
    149.LaVallee,T.M.;Hanson,A.D.;Swartz,G.;Volker,K.;Agoston,G.E.;Shah,J.;Suwandi,L.;Fogler,W.E.;Pribluda,V.S.;Treston,A.M.Structure-activity relationships of new chemical entities based on the anti-tumor and antiangiogenic agent 2-methoxyestradiol.Proc.Am.Assoc.Cancer Res.2004,45.
    150.LaVallee,T.M.;Burke,P.A.;Swartz,G.M.;Hamel,E.;Agoston,G.E.;Shah,J.;Suwandi,L.;Hanson,A.D.;Fogler,W.E.;Sidor,C.F.;Treston,A.M.Significant antitumor activity in vivo following treatment with the microtubule agent ENMD-1198.Mol.Cancer.Ther.2008,7,1472-1482.
    151.Kim,D.Y.;Kim,K.H.;Kim,N.D.;Lee,K.Y.;Han,C.K.;Yoon,J.H.;Moon,S.K.;Lee,S.S.;Seong,B.L.Design and biological evaluation of novel tubulin inhibitors as antimitotic agents using a pharmacophore binding model with tubulin.J.Med.Chem.2006,49,5664-5670.
    152.Xia,Y.;Yang,Z.Y.;Xia,P.;Bastow,K.F.;Tachibana,Y.;Kuo,S.C.;E.,H.;Hackl,T.;Lee,K.H.Synthesis and biological evaluation of 6,7,2',3',4'-substituted-1,2,3,4-tetrahydro-2-phenyl-4-quinolones as a new class of antimitotic antitumor agents.J.Med.Chem.1998,41,1155-1162.
    153.Li,L.;Wang,H.K.;Kuo,S.C.;Wu,T.S.;Lednicer,D.;Lin,C.M.;Hamel,E.;Lee,K.H. Antitumor agents.150.2',3',4',5',5,6,7-Substituted 2-phenyl-4-quinolones and related compounds:Their synthesis,cytotoxicity,and inhibition of tubulin polymerisation J.Med.Chem.1994,37,1126-1135.
    154.Li,L.;Wang,H.K.;Kuo,S.C.;Wu,T.S.;Mauger,A.;Lin,C.M.;Hamel,E.;Lee,K.H.Antitumor agents.155.Synthesis and biological evaluation of 3',6,7-substituted 2-phenyl-4-quinolones as antimicrotubule agents.J.Med.Chem.1994,37,3400-3407.
    155.Kuo,S.C.;Lee,H.Z.;Juang,J.P.;Lin,Y.T.;Wu,T.S.;Chang,J.J.;Lednicer,D.;Paull,K.D.;Lin,C.M.;Hamel,E.;Lee,K.H.Synthesis and cytotoxicity of 1,6,7,8-substituted 2-(4'-substituted phenyl)-4-quinolones and related compounds:Identification as antimitotic agents interacting with tubulin.J.Med.Chem.1993,36,1146-1156.
    156.Ferlin,M.G.;Chiarelotto,G.;Gasparotto,V.;Dalla Via,L.;Pezzi,V.;Barzon,L.;Palu,G.;Castagliuolo,I.Synthesis and in vitro and in vivo antitumor activity of 2-phenylpyrroloquinolin-4-ones.J.Med.Chem.2005,48,3417-3427.
    157.Gasparotto,V.;Castagliuolo,I.;Chiarelotto,G.;Pezzi,V.;Montanaro,G.;Brun,P.;Palu,G.;Ferlin,M.G.Synthesis and biological activity of 7-phenyl-6,9-dihydro-3H-pyrrolo[3,2-f]quinolin-9-ones:A new class of antimitotic agents devoid of aromatase activity.J.Med.Chem.2006,49,1910-1915.
    158.Gasparotto,V.;Castagliuolo,I.;Ferlin,M.G.3-Substituted 7-phenyl-pyrroloquinolinones show potent cytotoxic activity in human cancer cell lines.J.Med.Chem.2007,50,5509-5513.
    159.Zune,A.;Schmidt,P.;Baasner,S.;B(o|¨)hm,K.J.;M(u|¨)ller,K.;Gerlach,M.;G(u|¨)nther,E.G.;Unger,E.;Prinz,H.9-Benzylidene-naphtho[2,3-b]thiophen-4-ones as novel antimicrotubule agents.Synthesis,antiproliferative activity,and inhibition of tubulin polymerization.J.Med.Chem.2006,49,7816-7825.
    160.Zuse,A.;Schmidt,P.;Baasner,S.;B(o|¨)hm,K.J.;M(u|¨)ller,K.;Gerlach,M.;G(u|¨)nther,E.G.;Unger,E.;Prinz,H.Sulfonate derivatives of naphtho[2,3-b]thiophen-4(9H)-one and 9(10H)-anthracenone as highly active antimicrotubule agents.Synthesis,antiproliferative activity,and inhibition of tubulin polymerization.J.Med.Chem.2007,50,6059-6066.
    161.Lisowski,V.;Enguehard,C.;Lancelot,J.-C.;Caignard,D.-H.;Lambel,S.;Leonce,S.;Pierre, A.;Atassi,G.;Renard,P.;Rault,S.Design,synthesis and antiproliferative activity of tripentones:A new series of antitubulin agents.Bioorg.Med.Chem.Lett.2001,11,2205-2208.
    162.Lisowski,V.;L(?)once,S.;Kraus-Berthier,L.;Santos,S.O.J.;Pierr(?),A.;Atassi,G.;Caignard,D.-H.;Renard,P.;Rault,S.Design,synthesis,and evaluation of novel thienopyrrolizinones as antitubulin agents.J.Med.Chem.2004,47,1448-1464.
    163.Rochais,C.;Lisowski,V.;Dallemagne,P.;Rault,S.Synthesis and biological evaluation of novel pyrrolopyrrolizinones as anticancer agents.Bioorg.Med.Chem.2006,14,8162-8175.
    164.Guo,S.C.;Zhao,Y.F.;Li,R.D.;Xie,L.,J.;Yang,Y.B.;Gong,P.Synthesis and Biological Evaluation of Novel Tricyclic Oximino Derivatives as Antitumor Agents.Chem.Res.Chinese U.2008,24,47-53.
    165.Kasibhatla,S.;Baichwal,V.;Cai,S.X.;Roth,B.;Skvortsova,I.;Skvortsov,S.;Lukas,P.;M.English,N.;Sirisoma,N.;Drewe,J.;Pervin,A.;Tseng,B.;Carlson,R.O.;Pleiman,C.M.MPC-6827:A small-molecule inhibitor of microtubule formation that is not a substrate for multidrug resistance pumps.Cancer Res.2007,67,5865-5871.
    166.Ouyang,X.;Chen,X.;Piatnitski,E.;Kiselyov,A.S.;He,H.Y.;Mao,Y.;Pattaropong,V.;Yu,Y.;Kim,K.H.;Kincaid,J.;Smith,L.;Wong,W.C.;Lee,S.P.;Milligan,D.L.;Malikzay,A.;Fleming,J.;Gerlak,J.;Deevi,D.;Doody,J.F.;Chiang,H.H.;Patel,S.N.;Wang,Y.;Rolser,R.L.;Kussie,P.;Labelle,M.;Tuma,M.K.Synthesis and structure-activity relationships of 1,2,4-triazoles as a novel class of potent tubulin polymerization inhibitors.Bioorg.Med.Chem.Lett.2005,15,5154-5159.
    167.Ouyang,X.;Piatnitski,E.;Pattaropong,V.;Chen,X.;He,H.Y.;Kiselyov,A.S.;Velankar,A.;Kawakami,J.;Labelle,M.;Smith,L.;Lohman,J.;Lee,S.P.;Malikzay,A.;Fleming,J.;Gerlak,J.;Wang,Y.;Rolser,R.L.;Zhou,K.;Mitelman,S.;Camara,M.;Surguladze,D.;Doody,J.F.;Tuma,M.K.Oxadiazole derivatives as a novel class of antimitotic agents:Synthesis,inhibition of tubulin polymerization,and activity in tumor cell lines.Bioorg.Med.Chem.Lett.2006,16,1191-1196.
    168.Mahboobi,S.;Sellmer,A.;H(o|¨)cher,H.;Eichhorn,E.;B(a|¨)r,T.;Schmidt,M.;Maier,T.;Stadlwieser,J.F.;Becker,T.L.[4-(Imidazol-l-yl)thiazol-2-yl]phenylamines.A novel class of highly potent colchicine site binding tubulin inhibitors:Synthesis and cytotoxic activity on selected human cancer cell lines.J.Med.Chem.2006,49,5769-5776.