鬼白类化合物与微管蛋白的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鬼臼毒素(podophyllotoxin)最早是从盾叶鬼臼(P.peltatum)中提取分离得到的一类具有抗肿瘤活性的木脂素类化合物。尽管有很强的体外抗肿瘤活性,但由于其较大的细胞毒性,临床上主要外用治疗皮肤癌。因此研究学者致力于一系列以鬼臼为母核结构的半合成衍生物的研究,希望找到副作用小并且可口服的鬼臼衍生物。
     鬼臼毒素是通过抑制微管聚合而发挥抗癌活性。微管是一个关键的真核细胞的细胞骨架成分,参与了有丝分裂,细胞分裂等重要生理过程。α-微管蛋白和β-微管蛋白是组成微管的基本单位,鬼臼毒素与微管蛋白结合于秋水仙碱位点,抑制微管聚合,可以阻止细胞生长于M期(细胞周期的有丝分裂阶段),产生细胞毒作用从而导致细胞死亡。
     近些年发现鬼臼毒素类似物的另一种药用价值体现在杀虫作用方面,研究发现木脂素类化合物可以帮助植物抵御昆虫的侵袭,对昆虫主要表现为拒食作用,在一些特定情况下,他们也可以影响昆虫的生理功能。植物源杀虫剂由于其高效低残留等优点深受国内外学者青睐。
     首先,本研究针对19个具有杀虫活性的鬼臼类衍生物,为了阐明化合物结构与杀虫活性的关系,运用了比较分子场分析(CoMFA)和比较分子相似性指数分析法(CoMSIA)对19个化合物进行建模,得到了可信的模型,此外,我们还运用了分子对接方法,研究微管蛋白与化合物的结合模式。3D-QSAR模型结合对接方法,不仅可以更好地了解昆虫拒食活性与结构的关系,也有助于今后设计合成更高活性的杀虫剂。
     其次,我们对十个鬼臼类衍生物进行体外活性测定,将化合物作用于一系列人类癌细胞:人肺腺癌细胞株A549,人宫颈癌细胞株HeLa,人肝癌肝癌细胞株HepG2,人胃癌细胞株BGC-832,得到了这类化合物的IC50值,其中化合物6b和6g的活性最高。此外,为了证明这类化合物在体外可直接作用于微管蛋白,我们从羊脑中提取微管蛋白,测试抑制微管聚合的活性,得到了化合物6b和6g的微管抑制率IC50值,为了更好的探讨鬼臼类衍生物与微管蛋白的相互作用,开展了6b和6g的动力学模拟研究,在此基础上利用MMPBS/GBSA方法计算体系的结合自由能,探究分子间的相互作用,获得了结合位点处详细的结构和能量信息,这对于理解蛋白质的活性位点和设计类似的小分子抑制剂具有重要的意义。
Podophyllotoxin is a natural medicine possessing an outstanding anti-tumour activity. It can be extracted from the rhizome of Podophillum peltatum (American Podophyllum). Due to its severe toxicity, it was mainly prescribed for the treatment of venereal warts. Prompted by the clinical successes of the podophyllotoxin, significant efforts have been focused on identifying new analogues that have a similar mechanism of action yet superior properties such as low or nil toxic side effects and better oral availability.
     Current evidence suggests that podophyllotoxin affect tubulin polymerization dynamics by binding to microtubules (MT) at colchicine pocket. Mircotubules, a major component of the cytoskeleton composed of a and β subunit, play a role in a variey of cellular functions including mitosis, intracellar transport, and the modulation of cell morphology. There was conclusive evidence that microtubule disruption affected by podophyllotoxin causes cell cycle arrest mainly at the G2/M phase, and subsequently induceed apoptosis, a cell suicide mechanism.
     Lignans and biogenetically-related secondary metabolites play a significant role in the defence of plants against insects. They act largely as regulators of insect feeding, but in a few cases they can influence also specific physiological functions of insects. Due to the high insecticidal activity and low toxicity of botanical pesticides, it attract great attention from in and abroad.
     Podophyllotoxin analogues were proved to be potential insecticides against the fifth-instar larvae of Brontispa longissima in vivo. To elucidate the structural properties of these compounds for insecticidal activity, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were applied to a novel class of19pyrazolopyrimidine derivatives. Based upon the information derived from CoMFA and CoMSIA contour maps, we have identified some key structural features which explain the observed variance in the activities. In addition, a docking approach was used to map the3D-QSAR models to the active site of tubulin protein, which can provide us new insights into the protein-ligand interactions. The3D-QSAR model and docking study not only lead to a better understanding of structural requirements of antifeedant activities but also help us in the design of potent and selective compounds with enhanced activities.
     A series of ten podophyllotoxin derivatives were evaluated for biological activities. The anti-proliferative activities were tested against a panel of human cancer cell lines (human lung adenocarcinoma epithelial cell line A549, human carvical carcinoma cell line HeLa, human hepatocellular liver carcinoma cell line HepG2and human gastric carcinoma cell line BGC-832). Cytotoxic effects of the two lead molecules, namely6b and6g, were further confirmed and evaluated by conventional assays with tubulin including cellular microtubule distribution, and finally in vitro microtubule assembly with purified tubulin. More importantly, all experimental measurements were supported by molecular modeling and dynamic simulation study to understand the nature of these interactions. The information available from molecular modeling and dynamic simulation. These conclusions and methods used in this article will provide theoretical guide for further study, and help us to design and synthesize novel anticancer drugs.
引文
[1]Linda A. A., What tubulin drugs tell us about microtubule structure and dynamics[J]. Seminars in Cell & Developmental Biology.2011,22:916-926
    [2]Steven B. H. and Daniel J. L., Microtubule organization:cell shape is destiny[J]. Curr Biol. 2007,17(7):R249-R251
    [3]Sackett D. L., Vinca Site Agents Induce Structural Changes in Tubulin Different from and Antagonistic to Changes Induced by Colchicine Site Agents[J]. Biochemistry. 1995,34:7010-7019
    [4]Fosket, D. E.& Morejohn, L. C. Structural and functional organization of tubulin, Annu[J]. Rev. Plant Physiol. Plant Mol.Biol.1992,43,201-240.
    [5]Luduefia, R. F. Are tubulin isotypes functionally significant[J]. Mol. Biol. Cell.1993,4: 445-457
    [6]Mitchison, T. J. Compare and contrast actin filaments and microtubules[J]. Mol. Biol. Cell. 1992,3:1309-1315
    [7]Hill T. L., Theoretical problems related to the attachment of microtubules to kinetochores[J]. Proc Natl Acad Sci.1985,82(13):4404-4408
    [8]Holy T. E., Leibler. S., Dynamic instability of microtubules as an efficient way to search in space[J]. Proc Natl Acad Sci.1994,91(12):5682-5685
    [9]Wollman, R., Cytrynbaum, E. N., Jones, J. T., Meyer, T., Scholey, J. M., Mogilner, A., Efficient chromosome capture requires a bias in the'search-andcapture'process during mitotic-spindle assembly[J]. Curr Biol,2005,15(9):828-832
    [10]Zhou, J., Giannakakou, P., Targeting microtubules for cancer chemotherapy[J]. Curr. Med. Chem. Anti-Cancer Agents.2005,565-71.
    [11]Wilson, L., Jordan, M.A., New microtubule/tubulin-targeted anticancer drugs and novel chemotherapeutic strategies [J]. J. Chemother.2004,16:83-85
    [12]Gascoigne K.E., Taylor S.S. Cancer cells display profound intra-and interline variation following prolonged exposure to antimitotic drugs[J]. Cancer Cell.2009,14:111-122
    [13]Jordan MA, Wilson LMicrotubules as a target for anticancer drugs[J].Nature Rev Cancer. 2004,4:253-265.
    [14]Schiff, P. B., J. Fant, and S. B. Horwitz.. Promotion of microtubule assembly in vitro by Taxol. Nature.1979,277:665-667.
    [15]Bai, R. L., Pettit, G. R., and Hamel, E. Binding of dolastatin10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites, J. Biol. Chem.1990,265,17141-17149.
    [16]Lowe, J., H. Li, K. H. Downing, and E. Nogales. Refined structureof α-β-tubulin at 3.5 A resolution[J]. J. Mol. Biol.2001,313:1045-1057.
    [17]Nogales, E., S. G. Wolf, and K. H. Downing.1998. Structure of the α-β-tubulin dimer by electron crystallography[J]. Nature.391:199-203
    [18]Gigant B., Wang C., Ravelli R.B., Roussi F., Steinmetz M.O., Curmi P.A., Sobel A. Knossow M Structural basis for the regulation of tubulin by vinblastine[J]. Nature.2005, 435:519-522
    [19]Krishnegowda, G., Prakasha Gowda A.S., et al. Synthesis and biological evaluation of a novel class of isatin analogs as dual inhibitors of tubulin polymerization and Akt pathway[J]. Bioorg Med Chem.2011,19(20):6006-6014.
    [20]Tundis, R., Loizzo, M.R., et al. In vitro cytotoxic activity of extracts and isolated constituents of Salvia leriifolia Benth. against a panel of human cancer cell lines[J]. Chem Biodivers. 2011,8(6):1152-1162.
    [21]Hastie, S.B., Williams, R.C.J., Puett, D., et al. The binding of isocolchicine to tubulin.Mechanisms of ligand association with tubulin[J].J Biol Chem,1989,264(12): 6682-6688.
    [22]Nguyen, T. L., Mcgrath C., Hermone A R, et al. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach[J].J Med Chem. 2005,48(19):6107-6116.
    [23]陈静,陶雪芬,应华洲.微管蛋白秋水仙碱位点抑制剂研究进展[J].中国现代应用药学.2011,28(9):824-830
    [24]Brossi, A.., Yeh, H.J., et al. Colchicine and its analogues. Recent findings[J]. Med. Res. Rev. 1988,8:77-94.
    [25]Imbert, T.F., Discovery of podophyllotoxins. Biochimie[J].1998,80:207-222.
    [26]Kozawa, M., Baba, K., Matsuyama, Y., Kido, T., Sakai, M., Takemoto, T., Components of the root of Anthriscum Sylvestris Hoffm Ⅱ. Insecticidal activity[J]. Chem. Pharm. Bull.30 (1982)2885-2888.
    [27]Fang, S.D., Gu, Y.L., Yu, H.G., Sayep, M., The antitumor chemical constituents from Sabina vulgaris, Ant. Acta Botanica[J]. Sinica.1989,31:382-388.
    [28]A.S. Feliciano, J.M. Miguel Del Corral, M. Gordaliza, M.A. Castro, Acetylated lignans from Juniperus Sabina[J]. Phytochemistry.1989,28:659-660.
    [29]Ravelli, R.B.G., Gigant, B., Curmi, P.A., Jourdain, I., Lachkar, S., Sobel, A., Knossow, M., Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain[J]. Nature.2004,428:198-202
    [30]Desbene, S., Giorgi-Renault, S., Drugs that inhibit tubulin polymerization:the particular case of podophyllotoxin and analogues. Curr. Med. Chem.2002,2:71-90.
    [31]Leander, K., Rosen, B. Medicinal used for podophyllotoxin[J]. US patent,1988,4:788,216
    [32]Bibby, M.C. Combretastatin anticancer drugs[J]. Drugs Future 27,2002:475-480
    [33]Leung D, Abbenante G, Fairlie DP Protease inhibitors:current status and future prospects [J]. J Med Chem.2000,43:305-341
    [34]Damayanthi, Y., and Lown, J. W. Podophyllotoxins:Current status and recent developments[J]. Curr. Med. Chem.1998,205-252.
    [35]Issell, B. F., Tihon, C., and Curry, M. E. Etoposide (VP16-213) and teniposide (VM26) comparative in vitro activities inhuman tumors[J]. Cancer Chemother. Pharmacol.1982,7: 113-115.
    [36]Gordaliza, M., Castro, M. A., Miguel J. M. et al, Antitumor properties of podophyllotoxin and related compounds [J]. Curr. Pharm. Des.2000,6:1811-1839
    [37]Kozawa M.,Baba K.,Matsuyma Y.et al.. Components of the root of Anthriscus sylvestris Hoffm Ⅱ. Insecticidal activity[J]. Chem.Pharm.Bull.,1982,30(8):2885-2888
    [38]Harmatha, J., Dinan, L. Biological activity of natural and synthetic ecdysteroids in the BII bioassay[J]. Arch. Insect Biochem. Physiol.1997,35:219-225
    [39]Tian, X., Rong, G., Zhang, X., Study on the relationshipbetween structure and insecticidal activity of podophyllotoxin analogues II. Analysis of structure-activity relationship and prediction of optimal structure. Acta universitatis agriculturalis Boreali-occidentalis 2000, 28:19-24.
    [40]高蓉,田喧,张兴.3种鬼臼毒素类物质杀虫活性测试.西北农林科技大学学报,2001,29(1):71一74.
    [41]Liu, Y.Q., Zhao, Y.L., Yang, L., Zhou, X.W. et al. Design, semisynthesis and insecticidal activity of novel podophyllotoxin derivatives against Brontispa longissima in vivo[J]. Pesticide Biochemistry and Physiology.2012,102:11-18
    [42]Harmatha, J., Dinan, L. Biological activities of lignans and stilbenoids associated with plant-insect chemical interactions[J]. Phytochemistry Reviews.2003,2:321-330
    [43]N.Y. Sekhar, R.S.M. Nayana, N. Sivakumari, M. Ravikumar, and S.K. Mahmood,3D-QSAR and molecular docking studies of 1,3,5-triazene-2,4-diamine derivatives against r-RNA: Novel bacterial translation inhibitors. J Mol Graphics Model.26 (2008), pp.1338-1352
    [44]Cramer-III, R.D,.Patterson. D.E,.Bunce, J.D. Comparative Molecular Field Analysis (CoMFA).1.Effect of Shape on Binding of Steroids to Carrier Proteins[J].J Am Chem SOC 1988,110:5959-5967
    [45]Wold, S., Ruhe, A., Wold, H.The collinearity problem in linear regression,the partial least squares approach to generalized inverses[J].SIAM J Sci Stat Comput 1984,5:735-743
    [46]Klebe G., A.U., Mietzner,T. Molecular Similarity Indices in a Comparative Analysis (CoMSIA)of Drug Molecules To Correlate and Predict Their Biological Activity[J].J Med Chem 1994;37:4130-4146
    [47]Klebe, G. Comparative Molecular Similarity Indices Analysis:CoMSIA[J].Perspectives in Drug Discovery and Design 1998,12:87-104
    [48]Bohm, H.J., The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure[J].J Comput Aided Mol Des 1994,8:243-256
    [49]徐筱杰,侯廷军.计算机辅助药物分子设计[M].北京:化学工业出版社;2004
    [50]Fiseher, E., Einfluss der configuration auf die wirkung der enzyme[J].Ber.Dtseh.Chem. Ges.1894,27:2985
    [51]Rueda, M., Bottegoni, G., Abagyan, R. Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normalmodes[J]. Journal of Chemical InformationalModeling.2009,49:716-725
    [52]Teodoro, M. L., Kavraki, L. E. Conformational flexibilitymodels for the receptor in structure based drug design[J]. CurrentPharmaceutical Design.2003,9:1635-1648
    [53]Baxter, C.A., Murray, C.W., Clark, D.E. et al. Flexible docking using Tabu search and an empirical estimate of binding affinity[J]. Proteins.1998,33(3):367-382
    [54]Pak,Y.W. Application of a molecular dynamics simulation method with a generalized effective potential to the flexible molecular docking problems[J].J Phys Chem 2000, 104(2):354-359.
    [55]Simonson,T., Archontis, G., Karplus, M. Free energy simulations come of age: Protein-ligand recognition[J]. Accounts of Chemical Research.2002,35(6):430-437.
    [56]Woo,H.J., B.Roux. Calculation of absolute protein-ligand binding free energy from computer simulations[J]. Proc Natl Acad Sci U S A,2005,102(19):6825-30.
    [57]Swanson,J.M.J., Henchman, R.H., McCammon, J.A. Revisiting Free Energy Calculations:A Theoretical Connection to MM/PBSA and Direct Calculation of the Association Free Energy[J]. Biophysical Journal.2004,86:.67-74.
    [58]Hansson,T., Oostenbrink, C. W.F.van Gunsteren. Molecular dynamics simulations[J]. Current Opinion in Structural Biology.2002,12(2):190-196.
    [59]Clark, P.I., Slevin, M.L. The clinical pharmacology of etoposide and teniposide[J].Clin Pharmacokinet[J].1987,12(4):223-52.
    [60]Castro, A., Corral, J.M.M. Del, Gordaliza, M. et al. Synthesis and cytotoxicity of podophyllotoxin analogues modified in the A ring[J]. European Journal of Medicinal Chemistry.2003,38:65-74.
    [61]Laxman, E., Kamal, A. et al. Design, synthesis, biological evaluation and QSAR studies of novel bisepipodophyllotoxins as cytotoxic agents[J]. Bioorganic & Medicinal Chemistry 2004,12:4197-4209.
    [62]Alam, M.A., Naik, P. K. Molecular modelling evaluation of the cytotoxic activity of podophyllotoxin analogues[J]. J Comput Aided Mol Des.2009,23:209-225.
    [63]Reddy, D.M., Srinivas, J., Chashoo, G., Saxena, A.K., Kumar, H.M.S. 4b-[(4-Alkyl)-1,2,3-triazol-1-yl] podophyllotoxins as anticancer compounds:Design, synthesis and biological evaluation [J]. European Journal of Medicinal Chemistry.2011, 46:1983-1991.
    [64]Gao, R., Gao, C.F. et al. Insecticidal activity of deoxypodophyllotoxin, isolated from Juniperus sabina L, and related lignans against larvae of Pieris rapae L[J]. Pest Management Science.2004,60:1131-1136.
    [65]Di, X.D., Liu,,Y.Q. et al. Synthesis and insecticidal activities of pyridine ring derivatives of podophyllotoxin[J]. Pesticide Biochemistry and Physiology 2007,89:81-87.
    [66]Liu, Y.Q., Zhao, Y.L., Yang, L., Zhou, X.W. et al. Design, semisynthesis and insecticidal activity of novel podophyllotoxin derivatives against Brontispa longissima in vivo[J]. Pesticide Biochemistry and Physiology.2012,102:11-18.
    [67]Zhou, R., Zeng, L., Liang, G.W., Lu, Y.Y., Cui, Z.X. Life history of the laboratory population of the palm leaf beetle Brontispa longissima. Entomol. Knowledge.2004,41:336-341.
    [68]Su, Z., Deng, L.H., Yi, X.P., Xiao, S.S., Zhang, C.F. The biocontrol of Brontispa longissima. Genomics Appl Biol.2009,28:405-407.
    [69]Gao, R., Gao, C.F., Tian, X., Yu, X.Y., Di, X.D., Xiao, H., Zhang, X. Insecticidal activity of deoxypodophyllotoxin, isolated from Juniperus sabina, and related ligands against larvae of Pieris rapae. Pest Manag Sci.2004,60:1131-1136
    [70]Liu, Y.Q., Yang, L., Liu, Y.Q., Di, X.D., Xiao, H., Tian, X., Gao, R. Synthesis and insecticidal activities of novel derivatives of podophyllotoxin. Nat Prod Res.2007,21:967-974
    [71]Liu, Y.Q., Zhao, C.Y., Yang, L., Zhao, Y.L., Liu, T.T. Evaluation of insecticidal activity of podophyllotoxin derivatives against Brontispa longissima. Pestic Biochem Physiol.2011,99: 39-44
    [72]Frackenpohla, J., Adeltb, I., Antonicekb, H., Arnoldb, C., Behrmannb, P., Blahaa, N., Bohmerb, J., Gutbrodb, O., Hankeb, R., Hohmanna, S., Houtdreveb, M.V., Loselb, P. Malsamb, O., Melchersb, M., Neufertb, V., Peschela, E., Reckmannb, U., Schenkeb, T., Thiesenb, H.P., Veltenb, R., Vogelsangb, K., Weissc, H.C. Insecticidal heterolignans--tubuline polymerization inhibitors with activity against chewing pests. Bioorg Med Chem.2009,17: 4160-4184
    [73]Ducki, S., Mackenziec, G, Greedye, B., Armitagee, S., Chabert, J.F., Bennettc, E. Nettlesf, J., Snyderf, J.P., Lawrencea, N. Combretastatin-like chalcones as inhibitors of microtubule polymerisation. Part 2:Structure-based discovery of alpha-aryl chalcones. Bioorg Med Chem. 2009,17:7711-7722
    [74]Bibby, A.C., Litchfield, D.W. The multiple personalities of the regulatory subunit of protein kinase CK2:CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta. Int J Biol Sci.2005,1:67-79
    [75]He, Y.Z., Li, Y.X., Zhu, X.L., Xi, Z., Niu, C., Wan, J., Zhang, L., Yang, G.F. Rational design based on bioactive conformation analysis of pyrimidinylbenzoates as acetohydroxyacid synthase inhibitors by integrating molecular docking, CoMFA, CoMSIA, and DFT calculations. J Chem Inf Model.2007,47:2335-2344
    [76]AbdulHameed, M.D., Hamza, A., Liu, J.J., Zhan, C.G Combined 3D-QSAR modeling and molecular docking study on indolinone derivatives as inhibitors of 3-phosphoinositide-dependent protein kinase-1.J Chem Inf Model.2008,48:1760-1772
    [77]Crammer, R.D., Patterson, D.E., Bunce, J.D.3D-QSAR of human immunodeficiency virus (I) protease inhibitors. Ⅲ. Interpretation of CoMFA results. J Am Chem Soc.1988, 110:5959-5967
    [78]Klebe, G, Abraham, U., Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem. 1994,37:4130-4146
    [79]Zhang, N., Zhong, R. Docking and 3D-QSAR studies of 7-hydroxycoumarin derivatives as CK2 inhibitors. Eur J Med Chem.2010,45:292-297
    [80]SYBYL7.3, Tripos International St Louis, MO, USA.
    [81]Clark, M., Cramer, R.D., Opdenbosch, N.V. Validation of the general purpose tripos 5.2 force field. J Comput Chem.1989,10:982-1012
    [82]Bush, B.L., Nachbar, Jr R.B. Sample-distance partial least squares:PLS optimized for many variables, with application to CoMFA. J Comput Aided Mol Des.1993,7:587-619
    [83]Stahle, L., Wold, S. Partial least squares analysis with cross-validation for the two-class problem:A Monte Carlo study. J Chemom.1987,1:185-196
    [84]Cramer, R.D., Bunce, J.D., Patterson, D.E. Crossvalidation, Bootstrapping, and Partial Least Squares Compared with Multiple Regression in Conventional QSAR Studies. Quant Struct Act Relat.1988,7:18-25
    [85]Wold, S., Cross-validatory estimation of the number of components in factor and principal components models. Technometrics.1978,4:397
    [86]Ravelli, R.B., Gigant B., Curmi P.A., Jourdain I., Lachkar S., Sobel A., and Knossow M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain, Nature.2004,428:198-202
    [87]DeLano, W.L. The PyMOL Molecular Graphics System DeLano Scientific LLC, San Carlos, CA, USA.
    [88]Kim, D. Y.; Kim, K. H.; Kim, N. D.; Lee, K. Y.; Han, C. K.; Yoon, J. H.; Moon, S. K.; Lee, S. S.; Seong, B. L. Design and Biological Evaluation of Novel Tubulin Inhibitors as Antimitotic Agents Using a Pharmacophore Binding Model with Tubulin. J. Med. Chem. 2006,49:5664-5670
    [89]Chou, K. C.; Zhang, C. T.; Maggiora, G. M. Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth. Biopolymers.1994,34:143-153
    [90]Pichichero, M. E.; Avers, C. J. The evolution of cellular movement in eukaryotes:the role of microfilaments and microtubules. Subcell. Biochem.1973,2:97-105
    [91]Ahmed, A. A., Goldsmith, J., Fokt, I., Le, X. F., Krzysko, K. A., Lesyng, B., Bast, R. C., Priebe, W. A genistein derivative, ITB-301, induces microtubule depolymerization and mitotic arrest in multidrug-resistant ovarian cancer. Cancer Chemotherapy and Pharmacology. 2011,21:1-12.
    [92]Gourley, M.; Williamson, J. S. Angiogenesis:new targets for the development of anticancer chemotherapies. Curr. Pharm. Des.2000,6,417-439.
    [93]Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McGown, A. T. Tubulin as a target for anticancer drugs:agents which interact with the mitotic spindle. Med. Res. ReV.1998,18,259-296.
    [94]Romeo, R., Pier, G. B., Maria, G,. Pavani, M. A. T., Delia, P., Francesca, F., Laura, P., Katherine Jung, M., Ernest, H., Monica, B., Roberto, G, Synthesis and Biological Evaluation of 2-Amino-3-(3,4,5-trimethoxybenzoyl)-5-aryl Thiophenes as a New Class of Potent Antitubulin Agents. J. Med. Chem.2006,49:3906-3915.
    [95]Perez, E. A. Microtubule inhibitors:differentiating tubulininhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol Cancer Ther.2009,8:2086-2095
    [96]Nogales, E., Wolf, S. G, Downing, K. H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature.1998,391:199-203.
    [97]Liou, J. P., Chang, C. W., Song, J. W., Yang, Y. N., Yeh, C. F., Tseng, H. Y, Lo, Y. K., Chang, Y. L., Chang, C. M., Hsieh, H. P. Synthesis and structure-activity relationship of 2-aminobenzophenone derivatives as antimitotic agents. J. Med:Chem.2002,45:2556-2562.
    [98]Hsieh, H. P., Liou, J. P., Lin, Y. T, Mahindroo, N., Chang, Y. L., Yang, Y. N., Chem, S. S., Tan, U. K., Chang, C. W., Chen, T. W., Lin, C. H., Chang, Y. Y., Wang, C. C. Structureactivity and crystallographic analysis of benzophenone derivatives the potential anticancer agents. Bioorg. Med. Chem. Lett.2003,13:101-105.
    [99]Liou, J. P., Chang, J. Y, Chang, C. W., Chang, C. Y, Maindroo, N., Kuo, F. M., Hsieh, H. P. Synthesis and structure-activity relationship of 3-aminobenzophenones as antimitotic agents. J. Med. Chem.2004,47:2897-2905.
    [100]Thorpe, P. E., Chaplin, D. J., Blakey, D. C. The first international conference on vascular targeting:meeting overview. Cancer Res.2003,63:1144-1147.
    [101]Tozer, G. M., Kanthou, C., Parkins, C. S., Hill, S. A. The biology of the combretastatins as tumor vascular targeting agents.Int. J. Exp. Pathol.2002,83:21-38.
    [102]Nogales, E., Whittaker, M., Milligan, R. A. Kenneth H. Downing. High-resolution model of the microtubule. Cell.1999,96(1):79-88.
    [103]Nettles, J.H., Li, H., Cornett, B., Krahn, J.M., Snyder, J.P., Downing, K.H. The Binding Mode of Epothilone A on α,β-Tubulin by Electron Crystallography. Science 2004,305: 866-869.
    [104]Jazirehi, A.R., Bonavida, B. Resveratrol modifies the expression of apoptotic regulatory proteins and sensitizes non-Hodgkin's lymphoma and multiple myeloma cell lines to paclitaxel-induced apoptosis. Mol. Cancer Ther.2004,3:71-84.
    [105]Zoberi, I., Bradbury, C. M., Curry, H. A., Bisht, K. S., Goswami, P. C., Roti, J. L., Gius, D. Radiosensitizing and anti-proliferative effects of resveratrol in two human cervical tumor cell lines. Cancer Lett.2002,175:165-173.
    [106]Anand, S., Penrhyn-Lowe, S., Venkitaraman, A. R. Aurora-a amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to taxol. Cancer Cell,3:51-62
    [107]Honess, D. J., Stratford, M. R., Wilson, J., Tozer, G. M. The Vascular Response of Tumor and Normal Tissues in the Rat to the Vascular Targeting Agent. Combretastatin A-4-Phosphate at Clinically Relevant Doses. Int. J. Oncol.2003,21:717-726.
    [108]Che, C., Yang, G, Thiot, C., Lacoste, M.-C., Currie, J.-C., Demeule, M., Re'gina, A., Be'liveau, R., Castaigne, J.-P. New Angiopep-Modified Doxorubicin (ANG1007) and Etoposide (ANG1009) Chemotherapeutics with increased brain penetration. J. Med. Chem. 2010,53:2814-2824.
    [109]Ettinger, D. S., Finkelstein, Di. M., Ritch, P. S., Lincoln, S. T., Blum, R. H. Study of either ifosfamide or teniposide compared to a standard chemotherapy for extensive disease small cell lung cancer:an Eastern Cooperative Oncology Group randomized study (E1588). Lung Cancer.2002,37:311-318.
    [110]Hamel, E., Lin, Chii. M., Separation of active tubulin and microtubule-associated proteins by ultracentrifugation and isolation of a component causing the formation of microtubule bundles. Biochemistry.1984,23:4173-4184.
    [111]Duan, J. X., Cai, X., Meng, F., Lan, L., Hart, C., Matteucci, M. Potent Antitubulin Tumor Cell Cytotoxins Based on 3-Aroyl Indazoles. J. Med. Chem.2007,50:1001.
    [112]Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R.., Hart, W. E., Belew, R. K., Olson, A. J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem.1998,19:1639-1662.
    [113]Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Walker, R. C., Zhang, W., Merz, K. M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, G, Kolossvai, I., Wong, K. F., Paesani, F., Vanicek, J., Liu, J., Wu, X., Brozell, S. R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G, Roe, D. R., Mathews, D. H., Seetin, M. G., Sagui, C., Babin, V, Luchko, T., Gusarov, S., Kovalenko, A., Kollman, P. A. AMBER 11. University of California. San Francisco.2010.
    [114]Kollman, P. A., Massova, I.; Reyes, C., Kuhn, B., Huo, S. H., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., Cheatham, T. E. Calculating structures and free energies of complex molecules:combining molecular mechanics and continuum models. Acc. Chem. Res.2000,33:889-897.