基于压缩感知的无线信道估计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压缩感知(CS:Compressed Sensing)理论作为一种新的信号采样理论框架,一经提出就受到各领域专家学者的广泛关注。该理论指出,如果信号是可压缩的,那么就可以以远低于奈奎斯特采样速率对信号进行采样并在接收端无失真的恢复,它实现了信号采样和压缩的同步进行,避免了大量冗余的采样数据。这一巨大优势,使得压缩感知理论有着广阔的应用前景。
     本文从信号的稀疏表示、观测矩阵的设计、信号重构算法三个方面详细阐述了压缩感知理论。着重研究了信号的重构算法,对经典的算法进行了具体的描述和仿真对比。最后,结合无线信道的稀疏性,研究了压缩感知理论在信道估计中的应用。本文的贡献主要有以下两点:
     (1)对光滑l0算法(SLO:Smoothed l0norm algorithm)进行了详细的推导,并从数学的角度分析了该算法在求解中存在的“锯齿现象”,此外,该算法求解过程中的步长选取是由人为经验确定的。这些因素导致目标函数逼近的最小值并不是最优的。针对此问题,文中提出一种基于步长优化和共轭梯度法的改进算法,并与原算法进行了仿真对比,比较两种算法的重构概率、精确度以及算法运行时间。
     (2)对压缩感知的稀疏信道模型进行推导和分析,利用文中提出的改进算法对无线信道进行估计仿真,并与正交匹配追踪算法、正则化的正交匹配追踪算法、SLO算法以及传统的最小二乘估计法进行对比,分析了不同算法信道重构的精确度。从而说明压缩感知技术在信道估计中的优势和研究价值。
Compressed Sensing theory is a newly signal sampling framework, it has attracted a lot of experts and scholars from many fields. If the signal is compressible, the signal can be sampled with the rate far below the Nyquist frequency and reconstructed without distortion at the receiver. This new theory unites the signal sampling and compression and avoids the large number of redundant sampling data. This great advantage makes the Compressed Sensing theory has a great prospect in the future.
     This thesis introduces the Compressed Sensing theory from the aspects of sparse representation of signal, the design of measurement matrix and reconstructed algorithms. It focuses on the signal recovery algorithms and has a detail description of several classical algorithms. Next, some simulation experiments carry out. Finally, combining with the sparse characteristics of the wireless channel, the thesis introduces the application of Compressed Sensing techniques to the problem of channel estimation. The main contribution of the thesis is as following two points.
     (1) The thesis has a detail description of SLO (Smoothed l0norm algorithm) and analysis the "notched effect" in this method. In addition, the step in the process of solving is determined by experience. Which results in the approximation result is not optimal. In order to solve this problem, the thesis presents a new algorithm based on step optimization and the conjugate gradient method. Computer simulations confirm the effectiveness of the introduced algorithm comparisons with the existing methods in terms of run time, reconstructive probability and accuracy.
     (2) The research includes analyzing the sparsity of the multipath wireless channel and deducing the system model. Providing some experimental results of the algorithm proposed in this thesis and its comparison with conventional SLO, orthogonal matching pursuit, regularized orthogonal matching pursuit, least square. From the results, we can see the advantages of the compressed channel sensing over tradition LS-based methods and the reconstructed quality of the proposed algorithm is better than other methods.
引文
[1]Donoho D L. Compressed sensing[J]. Information Theory, IEEE Transactions on,2006,52(4): 1289-1306.
    [2]Mallat S. A wavelet tour of signal processing[M]. Academic press,1999.
    [3]Sun Y B, Xiao L, WEI Z H, et al. Sparse representations of images by a multi-component gabor perception dictionary[J]. Acta Automatica Sinica,2008,34(11):1379-1386.
    [4]Aharon M, Elad M, Bruckstein A M. The K-SVD:An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representations [J]. IEEE Transactions on Signal Processing,2006,54(11): 4311-4322.
    [5]Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries[J]. Information Theory, IEEE Transactions on,2008,54(5):2210-2219.
    [6]Candes E, Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse problems, 2007,23(3):969.
    [7]Schnelle S R, Laska J N, Hegde C, et al. Texas Hold'Em algorithms for distributed compressive sensing[C] Acoustics Speech and Signal Processing (ICASSP),2010 IEEE International Conference on. IEEE,2010:2886-2889.
    [8]Boufounos P T, Baraniuk R G. 1-bit compressive sensing[C] Information Sciences and Systems, 2008. CISS 2008.42nd Annual Conference on. IEEE,2008:16-21.
    [9]Ji S, Xue Y, Carin L. Bayesian compressive sensing[J]. Signal Processing, IEEE Transactions on, 2008,56(6):2346-2356.
    [10]Lustig M, Donoho D, Pauly J M. Sparse MRI:The application of compressed sensing for rapid MR imaging[J]. Magnetic resonance in medicine,2007,58(6):1182-1195.
    [11]Duarte M F, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. Signal Processing Magazine, IEEE,2008,25(2):83-91.
    [12]Bhattacharya S, Blumensath T, Mulgrew B, et al. Fast encoding of synthetic aperture radar raw data using compressed sensing[C] Statistical Signal Processing,2007. SSP'07. IEEE/SP 14th Workshop on. IEEE,2007:448-452.
    [13]Bajwa W, Haupt J, Sayeed A, et al. Compressive wireless sensing[C] Proceedings of the 5th international conference on Information processing in sensor networks. ACM,2006:134-142.
    [14]Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2009,31(2):210-227.
    [15]Carbonelli C, Vedantam S, Mitra U. Sparse channel estimation with zero tap detection[J]. Wireless Communications, IEEE Transactions on,2007,6(5):1743-1763.
    [16]Cotter S F, Rao B D. The adaptive matching pursuit algorithm for estimation and equalization of sparse time-varying channels[C] Signals, Systems and Computers,2000. Conference Record of the Thirty-Fourth Asilomar Conference on. IEEE,2000,2:1772-1776.
    [17]Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. Signal Processing, IEEE Transactions on,1993,41(12):3397-3415.
    [18]Dongming W, Bing H, Junhui Z, et al. Channel estimation algorithms for broadband MIMO-OFDM sparse channel[C] Personal, Indoor and Mobile Radio Communications,2003. PIMRC 2003.14th IEEE Proceedings on. IEEE,2003,2:1929-1933.
    [19]Karabulut G Z, Yongacoglu A. Sparse channel estimation using orthogonal matching pursuit algorithm[C] Vehicular Technology Conference,2004. VTC2004-Fall.2004 IEEE 60th. IEEE, 2004,6:3880-3884.
    [20]Bajwa W U, Haupt J, Raz G, et al. Compressed channel sensing[C] Information Sciences and Systems,2008. CISS 2008.42nd Annual Conference on. IEEE,2008:5-10.
    [21]张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示和稀疏分解[J].科学通报,2006,51(6):628-633
    [22]Peyre G. Best basis compressed sensing[J]. Signal Processing, IEEE Transactions on,2010, 58(5):2613-2622.
    [23]Baraniuk R G. Compressive sensing [lecture notes][J]. Signal Processing Magazine, IEEE, 2007,24(4):118-121.
    [24]Candes E J, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. Information Theory, IEEE Transactions on,2006, 52(2):489-509.
    [25]Bajwa W U, Haupt J D, Raz G M, et al. Toeplitz-structured compressed sensing matrices[C] Statistical Signal Processing,2007. SSP'07. IEEE/SP 14th Workshop on. IEEE,2007:294-298.
    [26]Sebert F, Zou Y M, Ying L. Toeplitz block matrices in compressed sensing and their applications in imaging[C] Information Technology and Applications in Biomedicine,2008. ITAB 2008. International Conference on. IEEE,2008:47-50.
    [27]Candes E J, Romberg J K. Signal recovery from random projections[C] Electronic Imaging 2005. International Society for Optics and Photonics,2005:76-86.
    [28]Candes E J. Compressive sampling[C] Proceedings oh the International Congress of Mathematicians:Madrid, August 22-30,2006:invited lectures.2006:1433-1452.
    [29]石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展.电子学报.2009;37(5):1070-81.
    [30]Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Foundations of computational mathematics,2009,9(3):317-334.
    [31]Wakin M, Laska J, Duarte M, et al. Compressive imaging for video representation and coding[C] Picture Coding Symposium.2006.
    [32]Wakin M B, Laska J N, Duarte M F, et al. An architecture for compressive imaging[C] Image Processing,2006 IEEE International Conference on. IEEE,2006:1273-1276.
    [33]Bajwa W U, Haupt J, Sayeed A M, et al. Compressed channel sensing:A new approach to estimating sparse multipath channels[J]. Proceedings of the IEEE,2010,98(6):1058-1076.
    [34]Bajwa W U, Sayeed A, Nowak R. Sparse multipath channels:Modeling and estimation[C] Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop,2009. DSP/SPE 2009. IEEE 13th. IEEE,2009:320-325.
    [35]于向楠.压缩感知理论及其在无线信道信道估计中的应用[D],南京:南京邮电大学2012
    [36]Bobin J, Starck J L, Ottensamer R. Compressed sensing in astronomy[J]. Selected Topics in Signal Processing, IEEE Journal of,2008,2(5):718-726.
    [37]Mohimani G H, Babaie-Zadeh M, Jutten C. Fast Sparse Representation based on Smoothed (?)O Norm[M] Independent Component Analysis and Signal Separation. Springer Berlin Heidelberg, 2007:389-396.
    [38]郑丽.几种共轭梯度法的研究[D],重庆:重庆大学2009
    [39]Sklar B. Rayleigh fading channels in mobile digital communication systems. Ⅰ. Characterization[J]. Communications Magazine, IEEE,1997,35(7):90-100.
    [40]孙晶明,王殊,董燕.托普利兹矩阵在压缩多径信道估计中的应用[J].信号处理,2012,28(6):879-885.
    [41]Mohimani H, Babaie-Zadeh M, Gorodnitsky I, et al. Sparse Recovery using Smoothed 10 (SLO):Convergence Analysis[J]. arXiv preprint arXiv:1001.5073,2010.
    [42]袁亚湘.非线性共轭梯度法[M].上海科学技术出版社,2000.