温拌沥青混合料施工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温拌技术是一种新兴的绿色筑路技术。温拌沥青混合料(WMA)与传统的热拌沥青混合料(HMA)相比,其拌和与压实温度相对较低,能源消耗和废气排放相对较小,并具有较好的路用性能,具有十分广阔的应用前景。然而,温拌沥青混合料在我国的应用时间短,在实际使用中存在室内配合比设计指标和控制指标缺失、拌和与压实温度的确定缺少理论依据、低温环境中能否进行施工不等影响其正确应用的技术问题,本研究依托甘肃省交通科技建设项目“隧道温拌阻燃改性沥青路面施工技术研究”,针对温拌沥青混合料设计和施工中的一系列关键技术问题,在充分调研、理论分析和室内试验的基础上,对下述主要内容展开系统、深入的研究。
     分析对比了SBS改性沥青以及添加5%的Evotherm-DAT温拌剂的SBS改性沥青的5℃延度、RTFOT5℃延度并对两种沥青进行了SHRP PG(性能分级)试验,测试了添加DAT温拌剂的SBS改性沥青在不同温度下的布氏旋转粘度,探讨了Evotherm-DAT对沥青技术指标的影响。
     采用马歇尔击实法和旋转压实法成型试件,探讨了不同成型方式下两种混合料空隙率和密度随温度变化的关系,在此基础上选择了适合于温拌沥青混合料的成型方法。提出了压实能量指数CEI和交通密实指数TDI来反映由旋转压实机SGC得到的密实曲线的信息,得到了温拌沥青混合料旋转压实成型时的最佳温度。
     基于分形几何理论,推导了矿料分布分形模型,并利用定义的Fuzzy分形维数,研究了密级配沥青混合料矿料分形分布特征——分形维数和自相似性。探讨了Superpave分形维数与混合料设计参数、动稳定度、0℃弯曲应变能和疲劳性能等路用性能的关系。基于温拌沥青混合料体积参数特征和路用性能检验结果,提出了温拌混合料设计时的技术指标和沥青混合料路用性能控制指标。
     根据热传导规律,建立了沥青混合料运输过程中不同部位的温度场分析模型,并根据施工现场温度测定,验证了所建数学模型的可靠性。现场采集沥青路面摊铺时不同时间、不同空间的温度变化情况,研究了沥青混合料摊铺时路面周围温度场的时空分布特性。
     基于沥青路面导热过程——非稳态导热原理,推导出沥青混合料导温系数的计算公式。通过导温试验测试了所需导温系数参数;分析了不同温度、空隙率对温拌沥青混合料导热系数的影响。依据温度场有限元法建立温拌沥青混合料压实过程的温度场模型,利用ANSYS的热分析功能——瞬态热分析,对压实过程的沥青混合料的降温速率影响因素进行了计算分析;采用灰色关联度分析法对影响温拌沥青混合料的降温速率的各个因素的主次进行了对比分析。
     根据影响混合料有效压实时间诸因素的特性,提出了基于模糊数学的混合料有效压实时间的多因素模糊综合分析和预估方法。通过实测不同施工环境中温拌沥青混合料在各个时刻的表面温度和内部温度,验证了Pavecool软件预测沥青混合料降温特性的准确性;结合天水和定西两地环境气候特点,采用Pavecool计算得到了不同环境、不同层厚的温拌沥青混合料施工最低环境温度条件。
     依托天定高速公路沥青路面建设工程,进行了温拌沥青混合料施工工艺研究和节能减排效果的定量分析。结果表明,温拌沥青混合料可以获得较好的路面压实效果;与热拌沥青混合料相比,采用温拌沥青混合料可大大降低在拌和生产过程中所排放出的有害气体;温拌沥青混合料可比相应的热拌沥青混合料节约能耗20%左右。
Warm mix of asphalt is a new technology of green road construction. Compared with the traditional hot mix asphalt (HMA), the mixing and compaction temperatures are relatively low, energy consumption and emissions is relatively small and has good road performance for warm mix asphalt (WMA). And it is a new way of energy saving environmentally friendly materials, has very broad application prospects. However, as the time is short in the applications of construction, there are some problems about its application such as no design specifications, lack of theoretical basis for a reasonable mixing and compaction temperatures determined, wether can be constructed in the low-temperature environment. Relying on the transportation construction projects in Gansu Province—Research on pavement construction technology for the warm mix, fire retardant modified asphalt, a series of key technical issues in the design and construction was researched based on the extensive collection and analysis of warm mix asphalt at home and abroad.
     The agent at 5℃and softening point before and after aging was analyzed and comparised for the SBS modified asphalt and SBS modified asphalt adding 5% Evotherm-DAT. The SHRP PG (performance grade) test was done about two asphalt. At same time, brookfield viscosity was examined for the SBS modified asphalt adding 5% Evotherm-DAT.
     The relationship of voids and density with molding temperature was discussed using Marshall compaction method and rotary compaction molding specimens. Based on this, the molding method suitable for warm mix asphalt is determined. The densification energy index (CEI) and traffic densification index(TDI) in the construction process are introduced to refect inherent information of asphalt mixture. And the compaction molding temperature was obtained.
     Based on fractal geometry theory, the fractal characteristics of aggregate distribution composed with fractal dimension and self-similarity in dense-gradation asphalt mixture was researched based on the fractal model of aggregate distribution and fuzzy fractal dimension defined. And the relationship between the fractal dimension(D) and pavement performance was researched by testing volume parameter of mixtures, dynamic stability and bending strain energy at 0℃. The technical indicators in the process of design for the mixture and control indicators of asphalt pavement performance were proposed by the experiment of WMA road performance at the optimum asphalt content.
     The temperature field analysis model was established in different parts of transport vehicles during transport for asphalt mixture. And the reliability of the mathematical model built was verified by the temperature measurement in the construction site. Space- time Distribution Characteristics of Temperature Field During Asphalt Pavement Paving was researched by the collection of temperature measurement in the construction site.The primary and secondary each factor were compared about cooling rate of warm mix asphalt by the method of gray correlation analysis.
     Based on the principle of non-state heat conduction in the thermal process of asphalt pavement, thermal diffusivity of asphalt mixture formula was derived. The required parameters thermal conductivity coefficient was obtained by the thermal conductivity tests. Based on this, the effect of different temperature and void on the thermal conductivity coefficient was analyzed. According to finite element method of the temperature field, the temperature field model in the process of warm mix asphalt compaction was built. And the influence factors on cooling rate of warm asphalt mix in the the process of compaction of asphalt pavement was analyzed.
     Based on the effect of time available for asphalt mixture compaction, a kind of fuzzy analysis is provided by synthesizing all factors.The accuracy of cool features for asphalt mixture predicted was verified by the software of Pavecool through measuring the temperature at the surface and internal asphalt mixture at various times in different environments. Combined with the environmental and climatic characteristics in the Tianshui and Dingxi of Gansu province, the minimum ambient temperature conditions was determined for different thickness and environments of the asphalt mix construction.
     Relying on pavement construction from Tianshui to Dingxi, the construction engineering technology was studied and energy saving and emission reduction of warm mixed asphalt was quantitatively analyzed. The results showed that asphalt pavement compaction can get better by the warm mix asphalt. Comparing with the HMA, harmful gas emissions of WMA in mixing process can be greatly decreased, and WMA can reduce energy consumption 20% comparing with the corresponding HMA.
引文
[1]Graham C.Hurley, Brian D.Prowell. EVALUATION OF EVOTHERMFOR USE IN WARM MIX ASPHALT [R]. MeadWestvaco:Asphalt Innovations,2006
    [2]Brian D.Prowell.FIELD PERFPR, AMCE OF WARM MIX ASPHALT AT THE NCAT TEST TRACK[R]. National Center for Asphalt Technology:MeadWestvaco Corporation, 2006
    [3]Takamura, K.Binder Charactenrization for Latex Polymer-Modified Evotherm Warm Mix Charlotte Technical Center[M]. North Carolina:BASF Corporation,2005
    [4]Wagoner, M.P., Buttlar, W.G., Paulino, G.H. Disk-Shaped Compact Tension Test for Asphalt Concrete Fracture[J], Society of Experimental Mechanics,2005(5):270-278
    [5]Buttlar, W.G., Apeagyei, A.K., Characterization of Asphalt Institute Mixture Specimens using the ASTM D7313-07 Fracture Energy Test[R].2008
    [6]Scullion.T., Zhou, f. A Rapid, Performance-Related, Crack-Resistance Test[R].2005
    [7]Zhuohui Tao, Fujian Ni, Jinhai Yan, and Wenyuan Huang, Evotherm Warm Mix Asphalt Technology Applied on Ultra-Thin Pavement in China[A]. Proceedings of Selected Papers from the 2009 GeoHunan International Conference
    [8]许菲菲,刘黎萍,唐海威,周和庆.温拌沥青混合料与热拌沥青混合料性能对比[J].公路工程,2009(03)
    [9]张镇,刘黎萍,汤文.Evotherm温拌沥青混合料性能研究[J].建筑材料学报,2009(4)
    [10]张海,李冬松,欧阳伟,杨扬.基于乳化平台的Evotherm温拌沥青混合料性能[J].沈阳建筑大学学报(自然科学版),2009(2)
    [11]付裕,柳浩,李宝生,苏玉昆,黄颂昌,秦咏春.温拌沥青混合料在奥运工程中的应用[J].市政技术,2009(5)
    [12]马卫民, 曹亚东,严军,黄文元.朱金华.Evotherm温拌沥青混合料技术在中国的应用[A].2006ISSA全球大会暨国际沥青路面维修养护技术研讨会
    [13]王文达,顾兴宇,陆佳颖.公路交通科技(应用技术版)[J].2009(4)
    [14]胡宗文,王兆星,王林,马士杰.基于表面活性技术的温拌沥青胶结料性能试 验研究[J].公路,2009(9)
    [15]秦永春,黄颂昌,苏玉昆,孙立军.温拌沥青混合料中沥青在施工阶段的老化程度[J]同济大学学报(自然科学版),2009(9)
    [16]王鹏,黄卫东.采用DAT添加剂的温拌沥青拌合温度[J].2010,7(6):12-18
    [17]Steven Manolis, P.Eng.Cold Weather Paving Using Warm Mix Asphalt Technology [A].2008 Annual Conference of the Transportation Assiociation of Canada[C]. Toronto,2008
    [18]程亮,周伟.温拌沥青混合料压实性能研究[J].现代交通技术,2009(6):
    [19]张镇,周和庆,花付南,刘黎萍.EVOTHERM温拌混合料温度控制研究[J].上海公路,2009(1)
    [20]秦永春,黄颂昌,徐剑,李峰,孙立军.基于表面活性剂的温拌SMA混合料性能[J].建筑材料学报,2010年(1)
    [21]欧阳伟,王连广,杨彦海.基于乳化技术的温拌沥青混合料应用研究[J].中外公路,2008(4)
    [22]叶奋,王宝松,贾晓阳,左锋.成型温度对温拌沥青混合料水稳定性的影响建筑材料学报,2009(3)
    [23]韩海红,徐世法,刘盈,孔祥杰.热拌与温拌沥青混合料的压实特性对比分析[J].公路交通科技(应用技术版),2008(S1)
    [24]周燕,陈拴发,郑木莲,张凯.温拌沥青混合料拌合压实特性研究[J].武汉理工大学学报,2010(1)
    [25]张斌.沥青混凝土路面低温施工技术[J].筑路机械与施工机械化,2002(3)
    [26]陶卓辉,黄文元.沥青温拌技术改善碾压原理及其在低温季节应用[J].2008,29(5):106-109
    [27]张秀华,陶家朴.路面材料的热学性质及其影响因素[J].西安公路学院学报,1984:15-19
    [28]资建民,王海军,李福宝,周伟.大粒径沥青混合料基层缓解反射裂缝应力分析[J].华中科技大学学报,2006,23(S1):8-12
    [29]逯彦秋.刚桥桥面铺装层温度场的研究[D].哈尔滨:哈尔滨工业大学博士论文, 2007
    [30]Barber, E.S.Calculation of Maximum Pavement Temperatures from Weather Reports[R].Highway Research Board, Bulletin 168, National Research Council, Washington DC,1957.
    [31]Williamson, R.H.Effects of Environment on Pavement Temperatures [A]. Proceeding of the 3rd International Conference on Structural Design of Asphalt Pavements,1972.
    [32]Christison, J.M., K.O.Anderson, The Response of Asphalt Pavements to Low Temperature Climatic Environments [A].Proceeding of the 3rd International Conference on the Structural Design of Asphalt Pavements,1972.
    [33]Hermansson, A.A Simulation Model for Calculating Pavement Temperature, Including the Maximum Temperature[A].Transportation Research Board 79th Annual Meeting, Washington DC,2000.
    [34]Hermansson, A.A Mathematical Model for Calculating Pavement Temperature, Comparisons between Calculated and Measured Temperature[A].Transportation Research Board 80th Annual Meeting, Washington DC,2001
    [35]Diefenderfer, B.K., Al-Qadi, I.L., and Diefenderfer, S.D. A Model to Predict Pavement Temperature Profile:Development and Validation. Journal of Transportation Engineering,2005,1 (132):162-167.
    [36]JORDAN P G, THOMAS M E. Prediction of cooling curves for hot-mix paving materials by a computer program[R].TRRL Report LR 729,1976.
    [37]BROWN J R.The cooling effects of temperature and wind on rolled asphalt surfacing[R].TRRL Report SR 624,1980.
    [38]DAINES M E. Cooling of bituminous layers and time available for their compaction[R]. TRRL Research Report 4,1985.
    [39]HENSLEY Jal. Establishing hot mix asphalt mixing and compaction temperature at the project level[R]. ASPHALT,1998.
    [40]胡长顺,黄辉华.高等级公路路基路面施工技术[M].北京:人民交通出版社,1994.
    [41]吴赣昌.半刚性路面温度应力分析[M].北京:科学出版社,1995.
    [42]贾璐.沥青路面高温温度场数值分析和实验研究[D].长沙:湖南大学土木工程学院硕士学位论文,2003.
    [43]秦健.沥青路面温度场预估方法[D].上海:同济大学交通运输工程学院硕士学位论文,2003.
    [44]李长来.高等级公路沥青路面铺筑与压实高技术研究[].西安:长安大学硕士学位论文,1997.
    [45]尹如军,李玉亭,张占军.沥青混合料有效压实时间的实测与分析[J].公路,2001(2):37-40
    [46]刘荣辉,钱国平.周期性气候条件下沥青路面温度场计算方法研究[J].长沙交通学院学报,2002,18(2):71-75
    [47]钱国平,郭忠印,郑健龙,周志刚.环境条件下沥青路面热粘弹性温度应力计算[J].同济大学学报,2003,31(2):150-155
    [48]郑钟名.转运车沥青混合料温度变化规律研究[D].长沙:长沙理工大学硕士学位论文,2005
    [49]陈骁.热态沥青混合料压实过程变形特性研究[].长沙:长沙理工大学硕士学位论文,2006
    [50]王辉,吴亮,张起森.沥青路面实测温度场的分析[A].中国公路学会2007年学术年会
    [51]朱梦良,陆国斌.自然环境下改性沥青混合料的温度下降规律[J].中外公路,2004
    [52]JTJ 052—-2000公路工程沥青及沥青混合料试验规程[S].北京:人民交通出版社,2000
    [53]JTG F40-2004公路沥青路面施工技术规范[S].北京:人民交通出版社,2004
    [54]郭平,祁峰,弥海晨.温拌沥青混合料的路用性能[J].长安大学学报,2010,30(2):11-33
    [55]张争奇,袁迎捷,王秉纲.沥青混合料旋转压实密实曲线信息及其应用[J].中国公路学报,2005,18(3):1-6
    [56]刘适大,刘适式.分形和分形引论[M].北京:气象出版社,1993.
    [57]唐明,巴恒静.混凝土材料的拓扑学特征及分形特征的评价[J].哈尔滨建筑大 学学报,2002,35(1):86-89
    [58]LOGSDON S.D., GIMENEZ D., ALLMARAS R.R.. Fractal characterization of aggregate-size distribution:The question of scale invariance[J]. Soil Science Society of America Journal,1996,60(5):1327-1330.
    [59]李波,李涛,滕旭秋,等.基于矿料分形特征的沥青混合料配合比设计[J].武汉理工大学学报,2008,30(12):50-53
    [60]谢和平,高峰,周宏伟,等.岩石断裂和破碎的分形研究[J].防灾减灾工程学报,2003,23(4):1-9.
    [61]Zedeh LA. Fuzzy sets[J]. Information and Control,1965(8):338-353
    [62]许志鸿,陈兴伟,刘红,等.Superpave级配范围明.交通运输工程学报,2003,3(3):1-6
    [63]刘建勋,李波.基于级配分形的SUPERPAVE混合料设计参数预估[J].郑州大学学报(工学版),2010,31(1):26-29
    [64]郑钟名,李岳林,吴敬静.沥青混合料在运输过程中温度变化规律的研究[J].交通科技,2004(6):103-135
    [65]吴明,杨慧达,邓秋远.热油管道停输过程中土壤温度变化规律研究.西安石油学院学报.2002(7):51-55
    [66]于承训.工程传热学[M].成都:西南交通大学出版社.1989
    [67]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998
    [68]吴赣昌.半刚性路面温度应力分析[M].北京:科学出版社,1995.
    [69]鲁正兰,杨春兰,董瑞琨,孙立军.沥青路面摊铺时温度场时空分布特性[J].重庆建筑大学学报,2004,26(6):50-52
    [70]李兴海.沥青混合料的热物理特性研究[D].哈尔滨:哈尔滨工业大学硕士学位论文
    [71]冯德成,李兴海,郭大进,郝中海.基于热物理特性的沥青混合料的研究[J].公路交通科技,2010,27(3):28-33
    [72]孙洁.热拌沥青混合料施工压实过程中温度场变化规律研究[D].长沙:长沙理工大学硕士学位论文,2009
    [73]张朝晖.ANSYS热分析教程与实例解析[M].北京:中国铁道出版社,2007
    [74]邓聚龙.灰预测与灰决策(修订版)[M].武汉:华中科技大学出版社,2002
    [75]徐邱彬,高英.沥青路面摊铺碾压温度场分析[J].中外公路,2008,28(4):49-52
    [76]尹如军.沥青混合料有效压实时间的模糊分析与预测[J].西安公路交通大学学报,2001,21(4):17-21
    [73]DAINES M E.Cooling of bituminous layers and time available for their compaction[R].TRRL Research Report 4,1985
    [78]李长来.高等级公路沥青路面铺筑与压实高技术研究[D].西安:长安大学,1997.
    [79]李士勇.模糊控制、神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1996
    [80]Asphalt Pavement Cooling Tool[EO/OL]. http://www.dot.state.mn.us/app/pavecool
    [81]庄传仪,王林,申爱琴,付建村.沥青路面路表温度预估模型研究[J].公路交通科技,2010,27(3):39-43
    [82]秦健,孙立军口沥青路面温度场的分布规律[J].公路交通科技,2006,23(8):18-21
    [83]李德超.沥青混合料生产配合比调整中的几个问题[J].公路,2006(1):160-163
    [84]易守森, 高彦芝, 胡小国.温拌和半温拌沥青混合料的能耗计算和环境评价[J].石油沥青,2009,23(5):68-71
    [85]HARDER G A, LEGOFF Y, LOUSTAU A, et al. Energy andEnvironmental Gains of Warm and Half-warm Asphalt Mix:Quantitative Approach [A]□ Transportation Research Board 87th Annual MeetingWashington D C:Transportation Research Board, 2008
    [86]秦永春,黄颂昌,徐剑,李,峰.温拌沥青混合料节能减排效果的测试与分析[J].公路交通科技,2009,29(8):33-37