速生杨木质部细胞的分化成熟过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了弄清楚速生欧美杨107的木质部细胞分化模式以及在分化成熟过程中细胞形态比量、细胞壁层堆积、细胞壁化学成分分布和细胞壁力学性质的变化规律,本研究采用定量解剖学、计算机图形学、分形方法、偏光显微技术、激光共聚焦显微拉曼光谱技术和纳米压痕技术对活动期不同分化发育阶段木质部细胞的解剖特性、细胞壁壁层的堆积、细胞壁化学成分的分布、细胞壁力学性质和细胞形态比量及壁层的可视化进行了测定、分析和模拟。
     本研究得到以下主要成果和结论:
     1、从4月初到10月初,在整个活动期内欧美杨107形成层细胞和木质部细胞的解剖特征变化差异明显,各组织比量差异明显,木纤维的变化比导管分子显著,微纤丝角呈降低的趋势,结晶度呈增加的趋势,形成层解剖特征和木质部细胞的形态学相关性显著,外部气候因素和形成层及木质部细胞发育之间的相关性显著。
     2、在活动期内木质部细胞群图案的分形表征结果表明,横切面的分形维数呈增加的趋势,而弦切面的分形维数呈先降后增的趋势,横切面的分形维数大于弦切面的,横切面木质部细胞微观构造图案的分形维数与木质部细胞解剖特征的相关性显著。
     3、从偏光显微镜下细胞壁层出现明暗相间的分层图像判定,木纤维细胞次生壁在5月分化出了S1层和S2层,到了7月出现S3层,木纤维细胞次生壁S1层、S2层和S3层的厚度在活动期内都呈逐渐增加的趋势,晚材次生壁各壁层的厚度明显大于早材。
     4、在活动期内形成层和木质部细胞形态变化、细胞数量累积和木纤维细胞壁层堆积的可视化模拟,形象直观的展示了形成层和木质部细胞发育成熟过程中解剖特性的变化和细胞壁次生壁S层的堆积过程。
     5、在活动期内同一阶段木纤维细胞壁层不同部位化学成分分布结果表明,纤维素分布是S2>CML>CC,木素分布为CC>CML>S2;同一时期不同细胞次生壁木素和纤维素分布规律为导管分子>木纤维>薄壁组织;对活动期内不同阶段木纤维不同部位化学成分的分布发现,次生壁S2层、胞间层CML和细胞角隅CC的木素和纤维素分布规律为晚材>早材;导管分子次生壁木素和纤维素的分布规律也为晚材>早材。
     6、在活动期内木纤维细胞次生壁S2层、胞间层CML和细胞角隅CC处纵向弹性模量都呈增加的趋势;木纤维细胞次生壁S2层的纵向硬度呈增加的趋势,细胞角隅CC处呈下降趋势而胞间层CML纵向硬度变化不明显;木纤维细胞不同部位的纵向弹性模量大小为S2>CML>CC,硬度在早期大小为CC>CML>S2,在晚期的大小为S2>CML>CC;细胞壁纵向弹性模量与纤维索的浓度有着密切的关系,细胞壁的纵向硬度与木素的浓度有密切的关系。
In order to make clear of xylem cell differentiation model, cell shape and accumulation, cell wall accumulation, chemical composition distribution of cell walls and their mechanical property of fast-growing Populusxeuram ericana cv.'74/76' during the differentiation and mature process. The method of quantitative anatomy, computer graphics simulation technology, fractal method, polarized microscopic technology, confocal microscopy Raman spectra technology and nanoindentation technique were used to estimate and analyze and in different differentiation stage.
     The main achievements and conclusions were obtained as follows:
     1.From early April to early October, the changes of cambium and xylem cells anatomical characteristics were significantly of Populusxeuram ericana cv.'74176'during the active phase. The changes of tissue proportions were significantly, and the changes of wood fiber were more notable than that of vessel element. The microfibril angle presented a decrease trend and crystallinity showed an increase trend. The correlation of cambium anatomical characteristics and xylem cell morphology was notable. The correlations between external climatic factors and cambium and xylem cell were also significantly.
     2.The results of fractal characterization xylem cells group patterns showed that the fractal dimension of xylem cells cross section presented an increase trend and the changes of tangential section was first decreased then increased. The fractal dimension of cross section was large than that of tangential section. The fractal dimension of cross section xylem cells group has a remarkable correlation with xylem cells' anatomical characteristics.
     3.It was determined that secondary cell wall of xylem cells differentiated S1 layer and S2 layer in May and S3 in July from cell wall appearing layers images with light and shade in the polarization microscope. The thickness of S1 layer, S2 layer and S3 layer were gradually increased during the active phase. The thicknesses of late wood secondary cell wall were significantly greater than that of early wood.
     4.The visualization of morphology and quantity changes of cambium and xylem cells and cell wall layers accumulation intuitively shows the cambium and xylem cells anatomical characteristics and the accumulation process of secondary cell wall during the development and maturation process.
     5.The results of chemical composition distribution in different position of wood fiber cell wall layers in the same stage during the active phase showed that the cellulose distribution was S2>CML>CC and the lignin was CC>CML>S2. It was found that lignin and cellulose distribution was vessel element> wood fiber>parenchyma in the same stage. The lignin and cellulose concertration of late wood were larger than that of early wood in different position of wood fiber and vessel elemen.
     6.The longitudinal elastic modulus of secondary cell wall S2 layer, CML and CC were increased during the active phase. The longitudinal rigidity of secondary cell wall S2 layer was increased; however, the changes rigidities of CC and CML were not significantly. The longitudinal elastic modulus of xylem cells was S2>CML> CC, and the longitudinal hardness was CC> CML> S2. Cell wall longitudinal elastic modulus had a close relationship with cellulose concentration, and the longitudinal hardness had a close relationship with lignin concentration.
引文
1.程献宝,王小青,余雁等.纳米压痕技术在木质材料细胞壁力学研究中的应用[J].世界林业研究,2011,24(5):40-46.
    2.崔克明,利特尔CHA宗德贝格B.欧洲赤松茎部形成层活动和外源IAA对它的影响[J].植物学报,1992,34(7):515-522.
    3.崔克明,王雅清.木质部细胞分化和脱分化的机理[J].西北植物学报,2000,20(6):907-921.
    4.崔克明,魏令波,李举怀等.构树形成层的活动周期及其淀粉储量的变化[J].植物学报,1995,37(1):53-57.
    5.邓旭阳,周淑秋,郭新宇等.基于Cardinal样条插值和三角面片的叶片静态建模[J].计算机工程与应用,2004,25:199-204.
    6.樊汝坟,尹增芳,周坚.植物木质部发育生物学研究[J].植物学通报,1999,16(4):387-397.
    7.高隽.智能信息处理[M].北京:机械工业出版社,2004.
    8.江泽慧,余雁,费本华等.纳米压入技术测量管胞次生壁S2层的纵向弹性模量和硬度[J].林业科学,2004,4(2):113-118.
    9.姜笑梅,张立非,周圭.国产重要阔叶树纹孔的超微构造研究[J].林业科学,1996,32(1):62-68.
    10.孔凡美,李国华,彭捍东.偏光显微镜中偏正态的理论分析[J].应用光学,2008:29(5):821-824.
    11.雷蕾,郭新宇,周淑秋.黄瓜果实的几何造型及可视化研究[J].计算机应用与软件,2006,23(5):24-25.
    12.雷蕾.黄瓜生长和模拟的可视化研究[D].首都师范大学,硕士学位论文,北京,2005.
    13.刘波.毛竹发育过程中细胞壁形成的研究[D].中国林业科学研究院,博士学位论文,北京,2008.
    14.刘骥.植物生长模拟与可视化研究[D].重庆火学博士学位论文,重庆,2009.
    15.刘晓东,罗轶先,郭新宇等.基于NURBS曲面的玉米叶生长过程中的形态建模[J].计算机工程与应用,2004,14:201-203.
    16.楼宏铭,邱学青,杨东杰等.华南理工大学学报,2002,30(1),48.
    17.陆玲,周书民.植物果实的儿何造型及可视化研究[J].系统仿真学报,2007,19(8):1739-1741.
    18.任宁,于海鹏,刘一星等.木材纹理的分形特征与计算[J].东北林业大学学报,2007,35(2):9-11.
    19.阮锡根,江泽慧,陶灵虎.用结晶学的观点研究纤维植物细胞壁的结构及形成机理[J].东北林业大学学报,2001,20(2):l-3.
    20.宋莎莎.木材细胞堆砌构造图案的分形表征与情感表达[D].北京林业大学博十论文,北京,2010.
    21.王晗,王克奇,白雪冰等.基于分形分维木材表面粗糙度的研究[J].森林工程,2007,23(3):13-15.
    22.王雅清,曹静,崔克明.木质部细胞分化的研究进展[J].植物学通报.2001,18(4):402-410.
    23.王雅清,柴晶晶,崔克明.杜仲次生木质部分化和脱分化过程中酸性磷酸酶的超微细胞化学定位[J].植物学报,1999,41:1155-1159.
    24.王雅清,崔克明.杜仲次生木质部导管分子分化中的程序化死亡[J].植物学报,1998,40:1102-1107.
    25.王雅清.杜仲次生木质部细胞分化和脱分化超微结构和生物化学研究[D].北京大学博士论文,北京,2000.
    26.许凤,钟新春,孙润仓等.沙柳的超微结构及其木素微区分布的研究[J].中国造纸学报2005,20(1):6-9.
    27.杨娟.计算机工程与应用[J].基于NURBS曲面的棉花器官建模,2005,185-188.
    28.殷亚方,姜笑梅,瞿超.人工林毛白杨次生木质部细胞分化过程中木质素沉积的动态变化[J].电子显微学报,2004,23(6):663-669.
    29.殷亚方,姜笑梅,魏令波.毛白杨形成层的活动周期及其POD同工酶的变化[J].林业科学,2002,38(1):32-36
    30.余雁,费本华,张波等.针叶材管胞细胞壁不同壁层的纵向弹性模量和硬度[J].北京林业大学学报,2006,28(5):114-118.
    31.张双燕.化学成分对木材细胞壁力学性能影响的研究[D].中国林业科学研究院,博士学位论文,北京,2011.
    32.张智衡,马建锋,许凤.结香纤维素与木素分布的显微激光拉曼光谱研究.2012,32(4),1002-1006.
    33.赵荣军,费本华,张波.杨树木材细胞腔径分布的分形表征[J].南京林业大学学报(自然科学版),2008,32(1):133-135.
    34.赵西平,郭明辉,闫丽等.人工林落叶松木材早材宽度径向变异的分形分析[J].东北林业大学学报,2005,33(6):47-51.
    35. Abe H, Funada R, Ohtani J, et al. Changes in arrangement of microtubulcs and microfibrils in difeerntiating Conifer tracheids during the expansion of cells [J]. Annals of Botany,1995a,75:305-310.
    36. Abe H, Ohtani J, Fukazawa K. A scanting electron microscopic study of changes in microtubule distributions during secondary wall formation in tracheids [J]. IAWA Journal,1994,115(2):185-189.
    37. Abe H, Ohtani J, Fukazawa K. FE-SEM observation on the microfibrillar orientation in the secondary wall of tracheids [J]. IAWA Bulletin n.s,1991,12 (4):431-438.
    38. Agarwal U P, Ralph S A. FT-Raman spectroscopy of wood:Identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana) [J]. Appl. Spectrosc.,1997,51 (11):1648-1655.
    39. Agarwal U P. Planta,1986,169(3),325
    40. Agarwal U P. Raman imagingto investigateultrastructureand composition of plant cell walls: distribution of lignin and cellulose in black sprucewood (Picea mariana) [J]. Planta,2006,224(5): 1141-1153.
    41. Ajmal S, Iqbal M. Annual rhythm of cambial activity in Streblus asper [J]. IAWA Bull,1987,8: 275-283.
    42. Antonova G F, Cherkashin V P, Stasova V V. Daily dynamics in xylem cell radial growth of Scotspine (Pinus sylvesfris L.) [J]. Trees,1995,10:24-30.
    43. Atalla R H, Ranua J, Malcolm E W. Raman-spectroscopic studies of the structure of cellulose-a comparison of Kraft and sulfite pulps [J]. TAPPI J.,1984,67 (2):96-99.
    44. Atalla R H, Whitmore R E, Heimbach C J. Raman spectral evidence for molecular-orientation in native cellulosic fibers [J]. Macromolecules,1980,13 (6):1717-1719.
    45. Baker S P. Between nanoindentation and scanning force microscopy:measuring mechanical properties in the nanometer regime [J]. Thin Solid Films,1997,308/309:289-96.
    46. Baley C. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase [J]. Composites A,2003,33:939-48.
    47. Barnett J R. Seasonal variation in the ultrastructure of the cambium in New Zealand grown Pinus radiata D [J]. Don. Ann Bot.,1973,37:1005-1115.
    48. Bengough G, Mackenzie C J, Diggle A J. Relations between root length densities and root intersections with horizontal and vertical planes using root growth modelling in 3-dimensions[J]. Plant
    and Soil,1992,145:245-252. 49. Bland D E, Foater R C, Logan A F. Themechanismo permanganateand osmium tetroxide fixation and the distribution of the lignin in the cell wall of Pinus radiate [J]. Holzforschung,1971,25(5): 137-143.
    50. Bledzki A K, Gassan J. Composites reinforced with cellulose based fibres [J]. Prog Polym Sci., 1999,24:221-74.
    51. Bloomenthal, J. Modeling the mighty maple[C]. ACM Transactions on Graphics (SIGGRAPH 1985 Conference Proceedings),1985,19:305-311.
    52. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis [J]. Annu. Rev. Plant Biol.,2003,54, 519-546.
    53. Borodich F M. Some fractal models of fracture [J]. J. Mech. Phys. Solids.,1997,45(2):239-259.
    54. Boutelje J B. Calculation of lignin concentration and porosity of cell wall region by interference microscopy [J]. Svensk Papperstidn,1972,75(16):683-686.
    55. Brett C, Waldron K. Physiology and Biochemistry of Plant Cell Walls [M]. London:Unwin Hyman,1995,4-43.
    56. Burgert I, Keckes J, Fruhmann K, et al. A comparison of two techniques for wood fibre isolation—evaluation by tensile tests on single fibres with different microfibril angle [J]. Plant Biol., 2002,4:9-12.
    57. Cao J Z, Kamdem D P. Moisture adsorption thermodynamics of wood form fractal geometry approach [J]. Holzforschung,2004,58(3):274-279.
    58. Carpita N C, Gibeaut D M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth [J]. Plant J, 1993,3:1-30.
    59. Catesson A M, Bonnemain J L, Eschrich W, et al. The cambium and its derivative tissues: biochemical changes In relation to cell differentiation and seasonal activity. In:Sandermann H Jr, Bonnet-Masimbert M, (ed). E urosilva-contribution to forest tree physiology. Versailles:INRA,1995, 57-77.
    60. Catesson A M. Cambial ultrastructure and biochemistry:changes in relation to vascular tissue differentiation and the seasonal cycle [J]. Int. J Plant Sci.,1994,155:251-261.
    61. Cave I D. The anisotropic elasticity of the plant cell wall [J]. Wood Sci Technol,1968,24:268-278.
    62. Cave I D. The longitudinal modulus of Pinus radiate [J].Wood Sci Technol,1969,3:40-48.
    63. Chaffey N J, Bamet J R, Barlow P W. Endomembranes, cytoskeleton and cell walls:aspects of the ultra structure of the vascular cambium of taproots of Aesculush ippocmranum L.(Hippocastanaceae). Int J.Plant Sci,1997b,158:97-109.
    64. Chaffey N J, Barlow P W, Bamet J R. Cortical microtubules rearrange during differentiation of vascular cambial derivatives, microfilaments do not [J]. Trees,1997a,11:333-341.
    65. Chaudhuri B B, Sarker N. Texture segmentation using fractal dimension [J]. J.IEEE,1995,17(1): 72-77.
    66. Chen H M. Modification of cambial cell wall architecture during cambium periodicity in Populus tomentosa Carr [J]. Trees,2010,24:533-540.
    67. Cote W A, Day J A C, Timell T E. Distribution of lignin in normal and compression wood of tamarack [J]. Wood Sci. Technol,1968,2:13-37.
    68. Cown D J, Herbert J, Ball R D. Modelling Pinus radiate lumber characteristics. Part 1:Mechanical properties of small clears. N Z J Sci,1999,29:203-213.
    69. Dave Y S, Rao K S. Seasonal activity of the vascular cambium in Gmelina arborea Roxb [J]. IAWA Bull,1982,3:59-65.
    70. David N S H, Shiraishi N. Wood and cellulosic chemistry. Second edition. New York:Marcel Dekker Inc.,2000,1-81.
    71. Delhaye M, Dhamelincourt P. Raman microprobe and microscope with laser excitation [J]. Journal of Raman Spec-troscopy,1975,3(1):33-43.
    72. Denne M P, Dodd R S. The environmental control of xylem differentiation. In:Barnett JR (ed) Xylem cell development [M]. Castle House, Kent,1981,236-255.
    73. Deshpande B P, Rajendrababu T. Seasonal changes in the structure of the secondary phloem of Grewia tiliaefolia a deciduous tree from India [J]. Ann Bot.,1985,56:61-71.
    74. Diggle A J. ROOTMAP-a model in three-dimensional coordinates of the growth andstructure of fibrous root systems [J]. Plant and Soil,1988,105:169-178.
    75. Dolan L, Linstead P, Roberts K. Developmental regulation of pcctic polysaccharides in the root meristem of Arabidapsis J [J]. Exp Bot,1997,48:713-720.
    76. Donaldson L A, Crouche R M, Uprichard J M. Clonal variation of wood chemistry variables in radiata pine (Pinus radiate D. Don.) wood[J]. Holzforschung,1997,51(6):537-542.
    77. Donaldson L A, Ryan K G. A comparison of relative lignin concentration as determined by interference microscopy and bromination/EDXA [J]. Wood Science and Technology,1987,21(4): 303-309.
    78. Donaldson L A, Hague J, Snell R. Lignin distribution in coppice poplar, linseed and wheat straw [J]. Holzforschung,2001,55:379-385.
    79. Eckstein D. Growth periodicity in tropical trees. In:Proceedings of internal meeting, Kuala Lumpur, Malaysia, November 1994. IAWA J 16,120
    80. Edelstein-Keshet L, Ermentrout B. Models for branching networks in two dimensions [J]. SIAM J. Appl. Math.,1989,49(4),1136-1157.
    81. Edwards H G M, Farwell D W, Webster D. FT Raman microscopy of untreated natural plant fibres [J]. Spectroc. ActaPt. A-Molec. Biomolec. Spectr.,1997,53 (13):2383-2392.
    82. Eichhorn S J, Baillie C A, Zafeiropoulos N, et al. Current international research into cellulosic fibres and composites [J]. J Mater Sci.,2001,36(21):7-31.
    83. Evans R, Ilic J. Rapid prediction of wood stiffness from microfibril angle and density [J]. Forest Prod J,2001,51(3):53-57.
    84. Fahn A. Plant anatomy [M]. Oxford:Pcrgamon Perss,1982.
    85. Fahn A, Werker E. Seasonal cambial activity [M]. In:lqbal, M. The Vascular Cambium, New York 1990,57-138.
    86. Fan Z, Swadener J G, Rho J Y, et al. An isotropic property of humantibial bone as measured by nanoindentation [J]. J Orthop Res.,2002,20(8):6-10.
    87. Fan K, Hatzikiriakos S G, Avramidis S. Determination of the surface fractal dimension from sorption isotherms of five softwoods [J]. J. Wood Science and Technology,1999,33(2):139-149.
    88. Farrar J J, Evert R F. Seasonal changes in the ultrastructure of the vascular cambium of Robinia pseudoacacia [J]. Trees,1997,11:191-202.
    89. Federl P, Prusinkiewicz P. Finite element model of fracture formation on growing surfaces[C]. Presented at Proceedings of Computational Science,2004.
    90. Fei B H. Application of fractal theory on wood science [J]. J. China Wood Industry,1999,13(4): 27-28.
    91. Fei B H, Zhao Y, Qin D C, et al. Applying computerized tomography (CT) to study the feature of wood fracture [J]. J. Scientia Silvae Sinicae,2007,43(4):137-140.
    92. Fengel D, Stoll M. Uber die Vera" nderung des Zellquerschnitts, der Dicke der Zellwand und der Wandschichten von Fichtenholz-Tracheiden innerhalb eines Jahrrings [J]. Holzforschung,1973,27:1-7.
    93. Fergus B J, Goring D A I. The distribution of lignin in birch wood as determined by ultraviolet microscope [J]. Holzforschung,1970,24(4):118-124.
    94. Fergus B J, Procter A R, Scottj A N, et al. The distribution of lignin in sprucewood as determined by ultraviolet microscopy [J]. Wood Science and Technology,1969,3(2):117-138.
    95. Fernando D, Daniel G. Exploring Scots pine fibre development mechanisms during TMP processing:Impact of cell wall ultrastructure (morphological and topochemical) on negative behavior [J]. Holzforschung,2008,62:597-607.
    96. Fischer S, Schenzel K, Fischer K, et al. Applications of FT Raman spectroscopy and micro spectroscopy characterizing cellulose and cellulosic biomaterials [J]. Macromolecular Symposia,2005, 223,41-56.
    97. Follrich J, Stockel F, Konnerth J. Macro-and micromechanical characterization of wood-adhesive bonds exposed to alternating climate conditions [J]. Holzforschung,2010,64:705-711.
    98. Ford E D, Avery A, Ford R. Simulation of branch growth in the Pinaceae:Interaction of morphology, phenology, foliage productivity and the requirement for structural support on the export carbon [J]. J. Theor. Biol.,1990,146:1-13.
    99. Fromm J, Rockel B, Lautner S, et al. Lignin distribution in wood cellwalls determined by TEM and backscattered SEM techniques [J]. Journal of StructuralBiology,2003,143(1):77-84.
    100. Gangenpain J J, Roques-Carmes C. Fractal approach to two dimensional and three dimensional surface roughnesses [J]. J. Wear,1986,109(1-4):119-126.
    101. Gao J, Zhang J S, Meng P. Fractal theory and its applications in forestry [J]. J. World Forestry Research,2004,17(6):11-17.
    102. Ghouse A K M, Hashmi S. Impact of extension growth and flowering on the cambial activity of Delonixregla Rafin [J]. Proc Ind Acad Sci (Plant Sci),1982,91:201-209.
    103. Ghouse A K M, Hashmi S. Periodicity of cambium and the formation of xylem and phloem in Mimusops elongi L [J]. An evertgeren member of tropical India Flora,1983,197:479-487.
    104. Ghouse A K M, Hashmi S. Cambium periodicity in Polyalthia longifolia [J]. Phytomorphology, 1979,29:64-67.
    105. Ghouse A K M, Hashmi S. Seasonal production of secondary phloem and its longevity in Mimusops elengi L [J]. Flora,1980a,170:175-179.
    106. Ghouse A K M, Hashmi S. Longevity of secondary phloem in Delonix regia Rafin. Proc Indian Acad. Sci.,1980b,89:67-72.
    107. Gierlinger N, Luss S, Konnerth J, et al. Cellulose microfibril orientation of Picea abies at the micron-level determined by Raman imaging [J]. J. Exp. Bot.,2010,61:587-595.
    108. Gierlinger N, Schwanninger M, Reinecke A, et al. Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy [J]. Biomacromolecules,2006,7(7):2077-2081.
    109. Gierlinger N, Schwanninger M. The potential of Raman microscopy and Raman imaging in plant research [J]. Spectroscopy,2007,21:69-89.
    110. Gindl W, Gupta HS, Gunwald C. Lignification of spruce tracheid secondary cell walls related to longitudinal hardness and modulus of elasticity using nano-indentation [J]. Can J Bot.,2002a,80 (10):29-33.
    111. Gindl W, Gupta H S. Cell-wall hardness and Young's modulus of melamine-modified spruce wood by nano-indentation [J]. Composites A,2002b,33:1141-1145.
    112. Gindl W, Schoberl T, Keckes J. Structure and properties of pulp fiber-reinforced composite with regenerated cellulose matrix [J]. Appl. Phys. A,2006,83:19-22.
    113. Gordon J E, Jeronimidis G. Composites with high work of fracture [J]. Phil Trans Res Soc London,1980,294:545-550.
    114. Grabarnik P, Pages L. Anthony Glyn Bengough. Geometrical properties of simulatedmaize root systems:consequences for length density and intersection density [J].Plant and Soil,1998,200:157-167.
    115. Groom L, Mott L, Shaler S. Mechanical properties of individual southern pine fibers. Part 1. Determination and variability of stress strain curves with respect to tree height and juvenility. Wood Fiber Sci.,2002,34:14-27.
    116. Hahn M G, et al. Roles of cell wall constituents in plant-pathogen interactions. In:Kosuge T, Nesdter E W, (eds).
    117. Hao B, Avramidis S. Wood sorption fractality in the hygroscopic range. Part I. Evaluation of a modified classic BET model. J. Wood and Fiber Sci.,2001,33(1):119-125.
    118. Hao B, Avramidis S. Wood sorption fractality in the hygroscopic range. Part II. New model development and validation [J]. J. Wood and Fiber Sci.,2003,35(4):601-608.
    119. Hatzikiriakos S G, Avramidis S. Fractal dimension of wood surfaces from sorption isotherms [J]. J.Wood Science and Technology,1994,28(4):275-284.
    120. Himmelsbach D S, Khahili S, Akin D E. Near-infrared-Fourier-transform-Raman microspectroscopic imaging of flax stems [J].Vib. Spectrosc.,1999,19:361-367.
    121. Holmberg H. Influence of grain angle on Brinell hardness of Scots pine (Pinus sylvestris L.) [J]. Holz Roh Werkst,2000,58:91-95.
    122. Huong P V. New possibilities of Raman micro-spectroscopy [J].Vib. Spectrosc.,1996,11 (1): 17-28.
    123. Iiyama K, Lam T B T, Stone B A. Covalent cross-links in cell wall [J]. Plant Physiol.,1994,104, 315-320.
    124. Imomata F, et al. Cell wall formation of conifer tracheid as revealed by rapid-freeze and substitution method [J]. J Electron Micorsc.,1992,41:360-374.
    125. Iqbal M. The cambial derivatives [M]. Gebruder Borntracger, Berlin,1995.
    126. Iqbal M, Ghouse A K M. Anatomy of the vascular cambium of Acacia nilotica (L.) Del. var. telia Troup (Mimosaccac) in relation to age and season [J]. Bot. J Linn Soc.,1987,94:385-397.
    127. Iqbal M, Ghouse A K M. Cambial concept and organization [M]. In:Iqbal M (ed) The vascular cambium. Research Studies Press, Somerset,1990.
    128. Jacoby G C. Overview of tree-ring analysis in tropical regions. In:Baas P, Vetter RE (eds) Increment zones in tropical woods. IAWA Bull,1989,10:99-108.
    129. Jahn A, Schroder M W, Futing M, et al. Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy, Spectroc [J]. Acta Pt. A-Molec. Biomolec. Spectr.,2002,58:2271-2279.
    130. Jarvis M C, McCann M C. Macromolccular biophysics of the plant cell wall:Concepts and methodology [J]. Plant Physiol. Biochcm.,2000,38 (1-2):1-13.
    131. Jcntzen C A. The effect of stress applied during drying on some of the properties of individual pulp fibers [J]. Tappi J,1964,47:412-418.
    132. Jiang Z H, Yu Y, Qin D C, et al. Pilot investigation of the mechanical properties of wood flooring paint films by in situ imaging nanoindentation [J]. Holzforschung,2006,60:698-701.
    133. Jose A R, Paulo R C G The fractal nature of wood revealed by water absorption [J]. J. Wood and Fiber Science,1997,29(4):333-339.
    134. Kawaguchi K. A morphological study of the form of nature[C]. ACM Transactions on Graphics (SIGGRAPH 1982 Conference Proceedings),1982,223-232.
    135. Keller J M, Crownover R M, Chen S. Texture description and segmentation through fractal geometry [J]. J. Comput. Anal, of Images and Image Processing,1989,45(2):150-166.
    136. Kollman F F P, Cote W A. Principles of wood science and technology [M]. Springer-Verlag, New York,1968.
    137. Konas P, Buchar J, Severa L. Study of correlation between the fractal dimension of wood anatomy structure and impact energy [J]. European Journal of Mechanics ASolids,2009,28,545-550.
    138. Konnerth J, Eiser M, Jager A, et al. Macroand micro-mechanical properties of red oak wood (Quercusrubra L.) treated with hemicellulases [J]. Holzforschung,2010,64:447-453.
    139. Konnerth J, Gindl W. Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation [J]. Holzforschung,2006,60:429-433.
    140. Konnerth J, Gindl W. Observation of the influence of temperature on the mechanical properties of wood adhesives by nanoindentation [J]. Holzforschung,2008,62:714-717.
    141. Konnerth J, Valla A, Gindl W. Nanoindentation mapping of a wood-adhesive bond [J]. Appl. Phys. A.,2007,88:371-375.
    142. Koponen S, Toratti T, Kanerva P et al. Modeling elastic and shrinkage properties of wood based on cell structure. Wood Science and Technology,1991,25(1):25-32.
    143. Kozlowski T T, et al. The physiological ecology of woody plants [M]. Harcourt Brace Jovanovich, London,1991.
    144. Lange P W. The distribution of lignin in the cell wall of normal and reaction wood from spruce and a few hardwoods [J]. Svensk Papperstidn,1954,57(15):525-532.
    145. Larson P R. The vascular cambium:development and structure [M]. Berlin, Heidelberg, New York:Springer-Verlag,1994.
    146. Lee S H, Wang S Q, Pharr G M, et al. Mechanical properties and creep behavior of lyocell fibers by nanoindentation and nano-tensile testing [J]. Holzforschung,2007b,61:254-260.
    147. Lee S H, Wang S Q, Pharr G M,et al. Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis[J]. Composites A,2007a,38:1517-1524.
    148. Li X, Bhushan B. A review of nanoindentation continuous stiffness measurement technique and its applications [J]. Mater Characterisation,2002,48:11-36.
    149. Lichtenegger H C, Schoberl T, Bartl M H, et al. High abrasion resistance with sparse mineralization:Copper biomineral in worm jaws [J]. Science,2002,289(3):89-92.
    150. Liu Y L, Kokot S, Sambi T J. Vibrational spectroscopic investigation of Australian cotton cellulose fibres-Part 1. A Fourier transforms Raman study [J]. Analyst,1998,123(4):633-636.
    151. Machadoae H, Nicodemd E, Ruggiero R, et al. The use of fluorescent probes in the characterization of lignin:the distribution, by energy, of fluorophores in Eucalyptus grandis lignin [J]. Journal of Photochemistry and Photobiology A:Chemistry,2001,138(3):253-259.
    152. Malzbender J, Tonder J M J, Balkenende A R. With G Measuring mechanical properties of coatings:a methodology applied to nano-particle-filled sol-gel coatings on glass [J]. Mater Sci Eng R., 2002,36:47-103.
    153. Mandelbort B B. Fractal, form, chance, and dimension [M]. M. San Francisco:Freeman,1977.
    154. Mandelbort B B. The fractal geometry of nature [M]. M. San Francisco:Freeman,1982.
    155. Mandelbort B B, Passoja D E, Paullay A J. Fractal character of fracture surfaces of metals [J]. J. Nature,1984,308:721-722.
    156. Marcati C R, et al. Seasonal variation in wood formation of Cedrela fissilis (Meliaceae) [J]. IAWA J,2006,27:199-211.
    157. Marcati C R, et al. Seasonal development of secondary xylem and phloem in Schizolobium parahyba (Vell.) Blake (Leguminosae:Caesalpinioideae). Trees,2008,22:3-12.
    158. Marton J, Adler E. Carbonyl groups in lignin Ⅲ. Mild catalytic hydrogenation of Bjorkman lignin [J]. Acta Chem. Scand.,1961,15:370-383.
    159. McCreery R L. Raman Spectroscopy for Chemical Analysis [M]. Wiley-Interscience, New York, 2000.
    160. Mellerowicz E J, et al. Unravelling cell wall formation in the woody dicot stem [J]. Plant Molecular Biology,2001,47:239-274.
    161. Meylan B A, Butterfield B G. Helical orientation of the microfibril in tracheids, fibres and vessels [J]. Wood Sci Technol,1978,12:219-222.
    162. Miler R, Lam E. In situ detection of Ndna fragementation during the diferentiation of tracheary elementson higher plants. Plant Physiol,1995,108:489-493
    163. Miyajima H. Studies in the indentation hardness of wood [J]. Res Bull For Hokkaido University, 1963,22(2):539-607.
    164. Morel S, Valentin G. Roughness of wood fractured surfaces and fracture toughness. In:1st RILEM Symposium on Timber Engineering,13-15 September, Stockholm, Sweden,1999,171-180.
    165. Morrison W H, Himmelsbach D S, Akin D E, et al. Chemical and spectroscopic analysis of lignin in isolated flax fibers [J].J. Agric. Food Chem.,2003,51 (9):2565-2568.
    166. Musel G, et al. Structure and distribution of lignin in primary and secondary call walls of maize coleoptiles analyzed by chemical and immunological porbes [J]. Planta,1997,201:146-159.
    167. Max N. Cone-sphere[C]. ACM Transactions on Graphics (SIGGRAPH 1990 Conference Proceedings),1990,24(2).
    168. Niklas K J. Computer-simulated plant evolution [J]. J. Sci. Am.,1986,254:78-86.
    169. Nishitani K.The role of endoxyloglucan transferase in the organization of plant cell walls [J].
    Annu Rev Cytol,1997,173:157-206.
    170. Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Material Research,1992,7 (6):1564-1583.
    171. Page D H, El-Hosseiny F, Winkler K, et al. Elastic modulus of single wood pulp fibers.Tappi, 1977,60(4):114-117.
    172. Page D H, El-Hosseiny F. The mechanical properties of single wood pulpfibcrs. PartVl. Fibri langle and the shape of the stress-strain curve. Journal of pulp and paper Science,1983,99-100.
    173. Page D H, El-Hosseiny F, Winkler K, et al. Elastic modulus of single wood pulp fibres [J]. Tappi, 1977,60:114-7.
    174. Page D H, El-Hosseiny F, Winkler K. Behaviour of single wood fibres under axial tensile strain [J]. Nature,1971,229 (25):2-3.
    175. Pages L, Jordan M O, Picard D. A simulation model of the three-dimensional architecture ofthe maize root system [J].Plant and Soil,1989,119:147-154.
    176. Peetla P, Schenzel K C, Diepenbrock W. Determination of mechanical strength properties of hemp fibers using near-infrared Fourier transform Raman microspectroscopy [J]. Appl. Spectrosc.,2006, 60 (6):682-691.
    177. Peleg S, Naor J, Hartley R, et al. Multiple resolution texture analysis and classification [J]. IEEE Trans. Pattern Anal. Machine Intell.,1984,6(4):518-523.
    178. Peng F, Westermark U. Distribution of conifer alcohol and coniferaldehyde groups in the cell wall of spruce fibres [J]. Holzforschung,1997,51:531-536.
    179. Pentland A P. Fractal based description of natural scenes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):661-674.
    180. Pentland A P. Shaping into texture [J]. J. Artificial Intell.,1986,29:147-170.
    181. Plomion C, Leprovost G, Stokes A. Wood formation in trees [J]. Plant Physiol.,2001,127: 1513-1523.
    182. Priya P B, Bhat K M. Influence of rainfall, irrigation and age on the growth periodicity and wood structure in teak (Tectona grandis) [J]. IAWA J,1999,20:181-192.
    183. Prusinkiewicz P, Lindenmayer A. The Algorithmic Beauty of Plants [M]. Lecture Notes in Biomathematics, Springer, Berlin,1990.
    184. Rajput K S, Rao K S. Cambial activity and development of xylem in Tamarindus indica L. growing in different forests of Gujarat State [J]. Acta Bot. Hung,2001,43:379-390.
    185. Rao K S, Rajput K S. Seasonal behavior of vascular cambium in teak (Tectona grandis) growing in moist deciduous and dry deciduous forests [J]. IAWA J,1999,20:85-93.
    186. Rao K S, Rajput K S. Cambial activity and development of wood in Acacia nilotica (L.) Del. growing in different forest of Gujarat State. Flora,2000,165-171.
    187. Rao K S, Rajput K S. Relationship between seasonal cambial activity, development of xylem and phenology in Azadirachta indica growing in different forests of Gujarat State [J]. Ann For Sci.,2001, 58:691-698.
    188. Rensing K H, Samuels A L. Cellular changes associated with rest and quiescence in winter-dormant vascular cambium of Pinus contorta [J]. Trees,2004,18:373-380.
    189. Ridoutt B G, Sands R. Within-tree variation in cambial anatomy and xylem cell differentiation in Eucalyptus globules [J]. Trees,1993,8:18-22.
    190. Rigaut J P. Automated image segmentation by mathematical morphology and fractal geometry [J]. J. Microscopy,1988,150(1):21-30.
    191. Ritter G J. Distribution of lignin in wood [J]. J. Ind. Eng. Chem.,1925,17:1194-1197.
    192. Saitok, Mitsutanit, Imait, et al. Chemical differences between sapwood and heartwood of Chamaecyparis obtuse detected by ToF-SIMS [J]. Applied Surface Science,2008,255(4):1088-1091.
    193. Saka S, Whiting P, Fukazaw A K, et al. Comparative studies on lignin distribution by UV microscopy and bromination combined with EDXA [J]. Wood Science and Technology,1982,16(4): 269-277.
    194. Saks S, Goring D A I. The distribution of lignin inwhite birchwoodasdeterminedby brominationwith TEM-EDXA [J]. Holzforschung,1988,42(3):149-153.
    195. Salmen L, Alf de Ruvo. A model for the prediction of fiber elasticity.Wbod and Fiber Science, 1985,17(3):336-350.
    196. Sarker N, Chaudhuri B B. An efficient differential box-counting approach to compute fractal dimension of image [J]. J. Pattern Recognition,1992,25(9):1035-1041.
    197. Sarker N, Chaudhuri B B. An efficient approach to estimate fractal dimension of texture image [J]. IEEE Transactions on Systems, Man, and Cybernetics,1994,24(1),115-120.
    198. Savidge R.A. The tracheid-differentiation fractor of conifer needles [J]. International Journal of Plant Science,1994,155:272-290.
    199. Schindler T M, et al. Distribution of pectins in cell walls of maize coleoptiles and evidence growth [J]. Portoplasma,1995,188:213-220.
    200. Schmidt M, Schwartzberg A M, Perera P N, et al. Label-free in situ imaging of lignifications in the cell wall flow lignin transgenic Populus trichocarpa [J]. Planta,2009,230:589-597.
    201. Schmitt M, Popp J. Journal of Raman Spectroscopy,2006,37(1-3):20.
    202. Schmitt M, Popp J. Raman spectroscopy at the beginning of the twenty-first century [J]. J. Raman Spectrosc,2006,37 (1-3):20-28.
    203. Schrader B. Infrared and Raman Spectroscopy:Methods and Applications [M]. VCH, Weinheim, Germany,1995.
    204. Schulz H, Baranska M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy [J].Vib. Spectrosc.,2007,43:13-25.
    205. Scurfield G. Histochemistry of reaction wood differentiation in Pinus radiate D[J]. Don. Aust. J. Bot.,1967,18,377-392.
    206. Smith E, Dent G. Modern Raman Spectroscopy:A Practical Approach [M]. Chicester, England, 2005.
    207. Sorvari J, Sjostrom E, Klemola A, et al. Chemical characterization of wood constituents, especially lignin, in fractions separated from middle lamella and secondary cell wall of Norway spruce (Picea abies) [J]. Wood Sci. Technol.,1986,20:35-51.
    208. Stanzl-Tschegg S, Beikircher W, Loidl D. Comparison of mechanical properties of thermally modified wood at growth ring and cell wall level by means of instrumented indentation tcsts[J]. Holzforschung,2009,63:443-448.
    209. Stockel F, Konnerth J, Kantner W, et al. Tensile shear strength of UF-and MUF-bonded veneer related to data of adhesives and cell walls measured by nanoindentation [J]. Holzforschung,2010,64:337-342.
    210. Strnadel B, Severa L, Buchar J. On the use of fractal analysis in description of fracture surface of wood [J]. Acta Universitatis Agriculturaeet Silviculturae Mendelianae Brunensis,2001,4:25-32.
    211. Sundberg A, Sundberg K, Lillandt C, et al. Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography[J]. Nord. Pulp Pap. Res. J.,2002,4: 216-226.
    212. Sundberg B, et al. Auxin gradients and cambial growth [M]. In:R. Savidge, J. Barnett and R. Napier (Eds.) Cell and Molecular Biology of Wood Formation (SEB Experimental Biology Reviews). BIOS, Oxford,2000,169-188.
    213. Takabe K,et al. Autoradiographic investigation of lignification in the cell wall of cryptomcria (crypiomeria ja ponicas) [J]. Mokuzai Gakkaishi,1985,31:613-619.
    214. Tekleyohannes A T, Avramidis S. Two-level self-organization of wood properties:A new paradigm for dimensional analysis and scaling [J]. J. Wood Sci Technol,2010,44(2):253-268.
    215. Tcrashima N, Kitano K, Kojima M, et al. Nanostructural assembly of cellulose, hemicellulosc, and lignin in the middle layer of secondary wall of ginkgo trachcid[J]. J. Wood Sci.,2009,55:409-416.
    216. Turrcll G, Corset J. Raman Microscopy:Developments and Applications [M]. Academic Press, London,1996.
    217. Tze W T, Wang S, Rials T G, et al. Nanoindentation of wood cell wall:Continuous stiffness and hardness measurements [J]. Compos Part A-Appl S,2007,38:945-953.
    218. Venugopal N, Krishnamurthy K V. Seasonal patenr of cell division in the vascular cambium of some tropical timber trees [J]. Cytologia,1994,59:323-332.
    219. Venugopal N, Krishnamurthy K V. Seasonal production of secondary xylem in the twigs of certain tropical trees [J]. IAWA Bull,1987,8:31-40.
    220. Venugopal N, Liangkuwang M G. Cambial activity and annual rhythm of xylem production of elephant apple tree (Dillenia indica Linn.) in relation to phenology and climatic factor growing in sub-tropical wet forest of northeast India [J]. Trees,2007,21:101-110.
    221. Walsel Y, Fahn A. The effects of environment on wood formation and cambial activity in Robmia pseudacacia [J]. The new phytologist,1965,64(3):436-442.
    222. Wardrop A B. Cellular differentiation in xylem [M]. In:cote, W.A. (Ed.), Cellular Ultrastructure of Woody Plants. Syracuse University Press, New York,1965,61-97.
    223. Wardrop A B, Dadswellh E, Daviesg W. Aspects of wood structure influencing thepreparation of semichemical pulps [J]. Appita,1961,14(5):185-202.
    224. Whetten R, Sederoff R. Genetic engineering of wood [J]. For Ecol Manage,1991,43:301-316.
    225. Whiting P, Goring D A I. The composition of the carbohydrates in the middle lamella and secondary wall of tracheids from black spruce wood [J]. Can. J. Chem.,1983,61:506-508.
    226. Wiley J H, Atalla R H. Band assignments in the Raman-spectra of celluloses [J]. Carbohydr. Res., 1987,160:113-129.
    227. Wimmer R, Lucas B N, Tsui T Y, et al. Longitudinal hardness and Young's modulus of spruce tracheid secondary walls using nanoindentation technique [J]. Wood SciTechnol.,1997,31:131-41.
    228. Wimmer R, Lucas B N. Comparing mechanical properties of secondary cell wall and cell corner middle lamella in spruce wood [J]. IAWA J.,1997,18:77-88.
    229. Wu J, Fukazaw A K, Ohtan I J. Distribution of syringyl and guaiacyl lignins in hardwoods in relation to habitat and porosity form in wood [J]. Holzforschung,1992,46(3):181-185.
    230. Wu Y, Wang S Q, Zhou D G, et al. Use of nanoindentation and silviscan to determine the mechanical properties of 10 hardwood species [J]. Wood and Fiber Science,2009,41(1):64-73.
    231. Wu Yan, Wang S Q, Zhou D G, et al. Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation [J]. Bioresource Technology,2010,101(8):2867-2871.
    232. Xu F, Sun R C, Lu Q, et al. Comparative study of anatomy and lignin distribution in normal and tension wood of Salix gordejecii [J]. Wood Science and Technology,2006,40(5):358-370.
    233. Yin S. Wood science [M]. China Forestry Publishing Company, Beijing, China.1996.176
    234. Yin Y F, et al. Dynamic changes in cambial anatomy and xylem cell differentiation of shoots in Populus tomentosa [J]. Scientia Silvae Sinicae,2004,40(2):119-125.
    235. Ylinen A. Uberden EinfluB der Rohwichte und des Spa'tholzanteils auf die Brinellha'rte des Holzes. Holz Roh Werkst,1943,6(4):125-127.
    236. Yoshinaga A, Fujita M, Saiki H. Cellular disrtibution of guaiacyl and syringyl lignins within an annual ring in oak wood [J]. Mokuzai Gakkaishi,1997,43 (5):384-390.
    237. Yoshizawa N, et al. Anatomy and lignin distribution of reaction wood in two Magnolia species [J]. Wood Sci Technol.,2000,34:183-196.
    238. Yu Yan, Fei Benhua, Zhang Bo. Cell wall mechanical properties of bamboo in investigated by in situ imaging nanoindentation [J].Wood and Fiber Science,2007,39 (4):535-538.
    239. Zickler G A, Schoberl T, Paris O. Mechanical properties of pyrolysed wood:a nanoindentation study [J]. Philosophical Magazine,2006,86 (10):1373-138.