栓皮栎软木膨化除杂工艺与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高我国软木制品的质量,改善我国软木的加工性能,为开发软木绝缘材料、软木隔音材料以及软木地板、软木装饰板等高档软木产品提供基础资料和依据,本文主要以陕西产栓皮栎软木为原材料,对软木的主要物理性能、软木的夹砂和夹杂、软木的膨化除杂工艺以及膨化机理展开研究。首先对国产栓皮栎商品软木的主要物理性能进行研究,为国产软木的合理利用提供基础数据;其次,对栓皮栎软木的夹砂和夹杂,从细胞结构和主要化学成分含量方面分析了二者与软木细胞的不同;第三,研究了软木的膨化除杂工艺,通过优化确定了较佳的膨化工艺条件;最后,通过膨化软木的性能、结构和主要化学成分含量的变化分析,进行了汽爆膨化工艺的机理探索。取得的主要研究结论如下:
     (1)通过研究国产栓皮栎软木的主要物理性能,与葡萄牙栓皮槠软木比较,结果显示栓皮栎软木的皮层厚度小,密度大,硬度大,导热系数大,抗压指数大,压缩回弹率稍低,含水率、吸湿率和吸水率二者相差不大,表明栓皮栎软木质地硬、导热性差、弹性差,因而栓皮栎软木质量较差。
     (2)对软木的夹砂和夹杂进行研究。发现夹砂(石细胞)的细胞壁较厚,为白色,细胞腔内也充有白色物质;夹砂的木栓脂含量少,纤维素、灰分含量多。夹杂(皮孔细胞和组织)整体上排列比较疏松,细胞间隙发达;皮孔细胞和组织的木栓脂含量也较少,纤维素含量较多。
     通过比较夹砂和夹杂与软木细胞的结构和主要化学成分含量,表明其细胞结构不同,主要化学成分含量不同,因此性能不同。夹砂和夹杂的木栓脂含量低,纤维素含量高,质硬,弹性小。软木中夹杂多,夹砂大,导致其密度大,导热性差、弹性差,因而质量差,影响软木的加工和利用。
     (3)对栓皮栎软木进行高温膨化除杂工艺处理,选取工艺参数进行正交试验。在试验范围内,试验因素对体积膨胀率和除杂率的影响基本一致:蒸煮方式影响最显著,其次是温度,软木块尺寸大小和加热时间2h以上影响不显著。在试验条件下,优化得到较佳的高温膨化工艺:对初生软木,为加压、加甲醇蒸煮1h、尺寸(长度×宽度×厚度)是(40-50)×(30-40)×(20-30)(mm)、温度是240℃、时间是2h,其膨化效果体积膨胀率是32.72%,除杂率是19.02%;对再生软木,为加压、加甲醇蒸煮1h、尺寸(长度×宽度×厚度)是35×35×20(mm)、温度是240℃、时间是3h,其膨化效果为体积膨胀率是29.77%,除杂率是21.54%。
     (4)软木汽爆膨化的工艺流程分为预处理、加热升压、保压、卸压和收集5个阶段。据此设计了软木汽爆膨化关键设备的主要参数,研制成整套软木汽爆膨化装置。采用二次正交旋转设计进行了软木汽爆膨化试验研究。在试验条件下,优化得到各因素的较佳组合为:压力0.92MPa,时间30min,含水率20%;其膨化效果为:体积膨胀率是41.12%,除杂率是32.26%。试验结果表明,该装置工作性能达到设计要求,可以满足试验条件;汽爆膨化方法使软木体积膨大明显,除杂效果好,是一种较好的软木除杂方法。
     (5)对汽爆膨化软木和未膨化软木的主要物理性能测试和分析。结果显示,膨化软木比未膨化软木,硬度减小了约27.8%~37.5%,密度减小了约31.8%~50%,抗压指数减小了约30%~50%,压缩回弹率在24h后提高了约2.0%~8.8%。因此汽爆膨化改善了软木的物理性能和加工性能。
     对汽爆膨化软木和未膨化软木的结构和主要化学成分含量分析,膨化软木的扫描电镜结构显示,膨化软木细胞壁未发现分层、断裂,明显可见细胞壁上的褶皱变少,细胞壁被拉直,细胞膨胀,体积增大;膨化软木的木栓脂、纤维素和木质素的含量相对提高。表明汽爆膨化没有破坏软木的细胞结构和基本化学组成。
     (6)软木汽爆膨化的机理是,软木细胞为一密闭结构,无细胞间隙,细胞壁无纹孔而存在大量褶皱,细胞壁主要由具有弹性和韧性的木栓脂组成,在高温、高压水蒸汽作用下,细胞壁软化,高压蒸汽迅速释放时,细胞腔内的水蒸汽分子迅速急剧膨胀,拉直了细胞壁上的褶皱,使软木细胞膨胀,软木体积增大。在试验的压力范围内,蒸汽膨胀所产生的膨胀力不足以破坏软木细胞壁的弹性和韧性。
This study researched the main physical properties, sclereids, lenticels, expansionimpurities removing technology and expansion mechanism of cork using Quercus variabiliscork from Shanxi province as test materials, in order to increase the products quality of cork,improve the processing properties and provide the base materials and evidences fordeveloping cork insulating material, cork sound insulation materials, cork floor board, corkdecorative material and the other slap-up cork products. Firstly, the main physical propertiesof domestic commercial cork were tested to provide the base materials for reasonableutilization of cork. Secondly, the sclereids and lenticels in Q. variabilis cork were researched.The differences of those and cork cells were studied form cell structure and main chemicalcomponents testing. Thirdly, the expansion impurities removing technology was studied andthe expansion process conditions were determined by optimization. Finally, the technologyand mechanism of steam-explosion expansion were analyzed from the properties, structureand main chemical components of Q. variabilis cork. The main research conclusions were asfollows:
     (1) The main physical properties of domestic Q. variabilis cork were studied. Comparedto Portuguese Quercus surber cork, the domestic cork has lower thickness, higher density,higher hardness, higher thermal conductive and higher anti-pressure index, little lowercompression spring rate. The moisture content, hygroscopic rate and water absorption rate ofdomestic Q. variabilis cork are almost equal to Portuguese Q. surber cork. The results showedthat the hardness, thermal conductive, elasticity and qualities were worse than Portuguese Q.surber cork.
     (2) The sclereids and lenticels in Q. variabilis cork were studied in this paper. The cellwall of sclereids was thick and white with whiteness in the cell lumen. The suberin ofsclereids was low and the cellulose and ash content of that were high. The cells and tissue oflenticels arranged loosely with large intercellular space. The suberin of lenticels cells andtissue were low and the cellulose was high.
     The structure and main chemical components of sclereids and lenticels were compared tocork cell, and the results showed that the structure, main chemical components of the there were difference, so that the there differed from the properties. The suberin of sclereids andlenticels were low and the cellulose of those was high. So sclereids and lenticels were hardwith low elasticity. The cork with more lenticels and larger sclereids has higher density, lowerthermal conductive, lower qualities effecting the processing and utilization of cork.
     (3) Q. variabilis cork was treated by high-temperature extrusion impurities removingprocess and the parameters were chose for orthogonal test. In the test, the effect of test factorson volume expansion ratio was basically identical with impurities removing ratio. The effectof boiling methods was the most significant, and the effect of temperature was the second one.The effect of the size of cork and the heating time more than2h were not significant. Underthe condition of the present experiment, the optimum processing was as follows: the primarycork were boiled adding methanol in high pressure for1h size(length×wideth×thickness)(40-50)×(30-40)×(20-30)(mm). The treatment temperature was240℃and the treatmenttime was2h. The volume expansion ratio was32.72%, the impurities removing ratio was19.02%. The regenerative cork were boiled adding methanol in high pressure for1h size(length×wideth×thickness)(35×35×20)(mm). The treatment temperature was240℃andthe treatment time was3h. The volume expansion ratio was29.77%, the impurities removingratio was21.54%.
     (4) The technological process of steam-explosion expansion of Q. variabilis cork couldbe divided into five phases which were pretreatment, heating and g pressure increasing,pressure keeping and pressure releasing. The main parameters of the steam-explosionexpansion of cork were designed according to the technological process, the equipment wasdeveloped and the steam--explosion expansion was researched by quadratic rotating design.Under the condition of the present experiment, the more optimum processing are pressure at0.92MPa, time at30min, moisture content at20%. The result of the expansion was that thevolume expansion ratio was41.12%, the impurities removing ratio was32.26%. The testingresults showed that the equipment could reach design requirement and meat test conditions.The volume was expansed significantly and the impurities removed well by steam-explosionexpansion which was a good method for impurities removing.
     (5) The physical properties of steam-explosion expanded cork and unexpanded cork wereresearched. It was showed that compared to unexpanded cork, the hardness of expanded corkdecreased27.8%~37.5%, the density of expanded cork decreased31.8%~50%, the antipressure index decreased30%~50%and the compression spring rate after24h increased2.0%~8.8%. So the physical and processing properties were improved by steam-explosionexpansion.
     The structure and main chemical components of steam-explosion expanded cork and unexpanded cork were researched. The structure of expanded cork observed by scanningelectron microscope (SEM) showed that there were no layering and break on cork cell wall.The wrinkles on cell wall were decreased and the cell wall was stretched. The cell wasexpanded and the volume of cell was increased. The suberin, cellulose and lignin of expandedcork were increased relatively. The result showed that the cell structure and basic chemicalcomponents were not destroyed by steam-explosion expansion.
     (6) The mechanisms of steam-explosion expansion of cork were that the cork cell was anairtight structure with no intercellular space. There were no pits but a lot of wrinkles on thecell wall which mainly composed of suberin with reach elasticity and tenacity. The cork cellwall was softening in high temperature and high pressure gas. The wrinkles were stretched,the cork cell was expanded and the volume of cell was increased by the rapid expansion ofsteam in the cell lumen when the high pressure was released rapidly. The elasticity andtenacity of cork cell could not be destroyed by the expansion force produced bysteam--explosion under the pressure of the present experiment.
引文
陈琳.2007.农作物秸秆资源综合利用的战略研究[博士学位论文].南京:南京林业大学
    陈金法.2007.树皮的利用[J].中国林副特产.3:93~94
    陈洪章,李佐虎.2003.木质纤维原料组分分离的研究[J].纤维素科学与技术.11(4):31~40
    陈洪章,陈继贞,刘健,李佐虎等.1999.麦草蒸汽爆碎处理的研究I.影响麦草蒸汽爆碎处理因素及其过程分析[J].纤维素科学与技术.7(2):60~67
    陈瑞英,刘景宏,魏萍.2005.杉木间伐材压缩密化与回复变定的研究[J].福建林学院学报.25(4):294~298
    成俊卿.1985.木材学[M].北京:中国林业出版社:39~53;1071~1072
    成俊卿,杨家驹,刘鹏.1992.中国木材志[M].北京:中国林业出版社:291~294
    杜子伟.1989.软木制品及其应用[M].北京:中国林业出版社:1;5;8;14~19;28~29
    端木炘.1994.我国栎属资源的综合利用[J].河北林学院学报.9(2):177~181
    傅焕光,于光明等.1986.栓皮栎栽培与利用[M].北京:中国林业出版社:10~11;20~21;100
    高根虎,卢从祥.2002.陕西省软木工业的优势及对策[J].陕西林业科技.1:63~65
    官湉.2003.软木(栓皮)材料的漂白和染色技术研究[硕士学位论文].北京:中国林业科学研究院
    韩作黎.2001.新华词典[M].北京:商务印书馆.第3版:745
    贺学礼.2009.植物学[M].北京:科学出版社:9;136~137
    黄干强,B.V.Kokta,A.Ahmed,J.J.Garceau,陈小蓉.1991a.软木爆破法制浆的研究[J].造纸科学与技术.(4):15~18
    黄干强,B.V.Kokta,A.Ahmed,J.J.Garceau,陈小蓉.1991b.硬木爆破法制浆的研究[J].中国造纸.(6):22~28
    黄律先.1996.木材热解工艺学(第二版)[M].北京.中国林业出版社:6~11
    胡仁华.1992.具有经济价值与观赏价值的栓皮槠及其种子繁殖[J].湖北林业科技.3:31~33
    寇文正.2004.在科学发展观指导下建立现代软木林业产业[J].中国林业产业.(8):16~19
    赖文衡,樊永明,殷宁,潘定如.1995.爆破法制浆技术研究[J].北京林业大学学报.17(1):72~82
    雷亚芳,刘艳贞,周伟,赵泾峰等.2009.栓皮栎软木的微观构造[J].林业科学.45(1):167~170
    李彬,高翔,陈坤.2009.秸秆膨化技术的研究现状及发展展望[J].江西农业学报.21(12):178~181
    李长友,钱东平.2004.工程热力学与传热学[M].北京:中国农业大学出版社:126~127
    李龙,宋蕾.2006.软木复合材料及其应用[J].纺织科技进展.(4):36;39
    李坚.2002.木材科学(第二版)[M].北京:高等教育出版社:85~126
    李天笃,薛七存,建忠心.1958.栓皮物理性质的初步试验[J].西北农林科技大学学报(自然科学版).01
    林勉,芮汉明,刘通讯.1999.食品膨化技术及其应用[J].食品与发酵工业.25(3):65~68
    林业部软木生产考察组.1985.关于葡萄牙软木生产的考察报告[J].生物质化学工程.05:334~341
    罗学刚,陶杨,廖俊和,周健,杨娟.2003.植物(秸杆)纤维助膨化改性技术研究与应用进展[J].纤维素科学与技术.11(4):46~50
    梁月华,赵小矛,张双保.2005.树皮的综合利用[J].林产工业.32(3):50~52
    刘国信.2008.葡萄牙的软木加工颇具产业优势[J].中国包装.28(4):58
    刘艳贞.2008.栓皮栎软木构造及主要化学成分的分析[硕士学位论文].杨凌:西北农林科技大学
    刘红玲.2009.软木膨化工艺与软木地板挥发性成分的研究[硕士学位论文].杨凌:西北农林科技大学
    刘金涛.1990.爆破法制浆工艺(简介)[J].纸和造纸.(2):36~37
    刘一星,赵广杰.2006.木质资源材料学[M].中国林业出版社:91~120
    刘自强.1997.食品膨化机理的理论探析[J].食品工业科技.(6):52~53,79
    罗伟祥,张文辉,黄一钊等.2009.中国栓皮栎[M].北京:中国林业出版社:1~17;34;255~257;260~270;278~302
    罗伟祥,张文辉.2007.栎林在我国森林植被建设和社会生态安全中的重要地位和保障作用.第七届全国森林培育学术研讨会论文集.华南农业大学学报.28(增刊):162~173
    罗鹏,刘忠.2005.蒸汽爆破法预处理木质纤维原料的研究[J].林业科技.30(3):53~56
    罗社宏.2008.探索软木行业发展之路[J].陕西林业.(6):14~15
    卢建航,孙宏,尹海山.2001.用准稳态法测定橡胶及橡胶基复合材料的导热系数和比热容[J].轮胎工业.21(5):305~309
    吕秉峰,邵自强,严利芳.2002.纤维素高压蒸汽闪爆改性前后结构表征研究[J].华北工学院学报.23(4):253~256
    马心.1989.软木橡胶[M].北京:中国林业出版社:1~2;10~15
    马召亮,雷亚芳,赵泾峰.2010.软木膨化处理现状与发展趋势[J].西北林学院学报.25(1):154~156
    南京林产工业学院.1981.林产化学工业手册(下册)[M].北京:中国林业出版社:1589~1591
    齐新杰,宋先军,胡建,詹怀宇.2003.汽蒸爆破法制桉木高得浆率及其配抄胶印书刊纸的研究[J].造纸科学与技术.22(6):22~25,41
    曲格平.2001.发展循环经济是21世纪的大趋势[J].机电产品开发与创新.(6):10~13
    任露泉.2003.试验优化设计与分析(第二版)[M].高等教育出版社.北京:246~278
    日尧.2004.软木及软木地板[J].吉林建材.(5):58~59
    邵自强,廖双泉,马凤国,吕秉峰,谭惠民.2002.软木纤维蒸汽闪爆改性及其形态结构表征[J].高分子材料科学与工程.18(24):120~122
    申宗圻.1993.木材学(第二版)[M].北京:中国林业出版社:9
    沈文浩,刘焕彬.1998.爆破法高得率纸浆控制系统的研制[J].纸和造纸.73(3):41~42
    石磊,赵由才,柴晓利.2005.我国农作物秸秆的综合利用技术进展[J].中国沼气.23(2):12~14,19
    宋先亮,殷宁,潘定如.2003.爆破法制浆技术的研究现状[J].北京林业大学学报.25(4):75~79
    宋先亮,蒋建新.2007.蒸汽爆破法制浆的研究进展[J].湖南造纸.4:17~19
    孙志军.2006.软木塞—永远的时尚—世界软木塞产业的现状和趋势[J].中国葡萄酒信息网
    孙培鑫,董鹰隼,吴凤英.2009.膨化技术应用及前景展望[J].饲料工业.30(23):1~5
    谭东.1994.木质素的提取及应用[J].广西化工.23(4):6~14
    王联结,陈建华.2007.木质纤维原料预处理技术的研究现状[J].农业工程技术.02:54~59
    王良民,任宪威,刘一樵.1985.我国落叶栎的地理分布[J].北京林学院学报.(2):57~69
    王明庥.1960.国产栓皮性质的初步研究[J].林业科学技术丛刊.林学10号
    王明庥.1963.我国栓皮栎树种的改良[J].见:吴明作.栓皮栎研究进展.陕西林业科技.65~69
    汪师孟,夏美君.1983.中国栎属木材的构造及物理—力学性质(一)[J].北京林业大学学报.3:64~72
    魏新莉,向仕龙,周蔚红.2007.3种栓皮化学成分对其性能的影响[J].木材工业.21(6):17~18
    闻天声.1991.栓皮栎的培育与用途[J].中国林福特产.2:29
    吴征镒.1980.中国植被[M].北京:中国林业出版社:261~262
    吴明作.1998.栓皮栎研究进展[J].陕西林业科技.4:65~69
    吴孝任.1990.加拿大爆破法制浆发展情况[J].国外造纸.9(5):32~35
    谢拥群,陈彦,张璧光.2004.植物纤维膨化材料的研究[J].木材工业.18(2):30~32
    谢拥群.2007.网状植物纤维材料结构形成机理的研究[C].第一届全国生物质材料科学与技术学术研讨会论文集.北京
    杨礼旦,陈应平.1999.初论森林可持续经营的概念、内涵和特征[J].林业科学.35(2):118~123
    杨柳.1996.新型软木原料栓皮槠的采剥、再生试验及理化性能研究[J].湖北林业科技.(1):20~23
    叶红,李家璜,陈彪,欧阳平凯.2001.蒸爆技术及其在植物纤维素资源中的应用简介[J].化工生产与技术.8(1):19~20
    衣乌.2003.影响绝热材料导热系数的主要因数[J].保温材料与节能技术.(3):14~18
    殷肇君,郑艳平.2001.膨化技术在农产品深加工中的应用[J].渔业现代化.3:23~24
    袁志发,周静芋.2000.试验设计与分析[M].高等教育出版社.北京:329~387
    曾新德.1994.别具一格的软木装饰材料[J].室内设计与装修.5:38~40
    曾新德.2001.我国软木工业的现状及发展策略[J].林业科技管理.(4):46~51
    张文辉,卢志军.2002.栓皮栎种群的生物学生态学特性和地理分布研究[J].西北植物学报.22(5):1093~1101
    张文辉,卢志军,李景侠,刘国彬.2002.陕西不同林区栓皮栎种群的空间分布格局及动态的比较研究[J].西北植物学报.22(3):476~483
    张存旭,张瑞娥,张文辉,周建云.2003.不同群体栓皮栎栓皮性状变异分析[J].西北林学院学报.18(3):34~36
    张丽丛,雷亚芳,常玉婷.2009.栓皮栎软木主要化学成分的分析[J].西北林学院学报.24(2):163~165
    张璧光,乔启宇.1992.热工学.第2版[M].北京:中国林业出版社:112~113
    张桂梅,廖双泉,廖建和.2005.木质素的提取方法及综合利用研究进展[J].热带农业科学.25(1):66~76
    郑志方.1988.树皮化学与利用[M].北京:中国林业出版社:1~2;34~36;60~61;142~152
    郑志峰.2005.软木资源及其利用[J].云南林业.26(3):23~24
    郑林义.1994.天然环保高档的室内装饰材料[J].室内设计.(4):37-38
    郑万钧.1985.中国树木志(2卷)[M].北京:中国林业出版社:23~30
    赵戈,段新芳,管湉,黄洛华.2004.世界软木加工利用现状和我国软木工业发展对策[J].世界林业研究.17(5):25~28
    赵泾峰,雷亚芳,马召亮.2009.软木的膨化处理工艺研究[J].木材工业.23(6):31~33
    赵泾峰,冯德君,雷亚芳.2007.陕西壳斗科栎属与青冈属主要木材研究[J].西北农林科技大学学报(自然版).35(10):196~202
    朱寿涛,王爱全,张玉泉.1994.木质素的提取及应用[J].河南职技师院学报.22(4):24~26
    中国林业科学研究院木材工业研究所.1982.中国主要树种的木材物理力学性质[M].北京:中国林业出版社:70~72
    周建云,林军,何景峰,张文辉.2010.栓皮栎研究进展与未来展望[J].西北林学院学报.25(3):43~49
    国际标准. ISO633:2007.Cork Vocabulary[S].软木术语
    国际标准. ISO1215:1986. Commercially dry virgin cork, ramassage, gleanings, corkwood refuse andcorkwaste--Definitions and packaging[S].商品干燥的初生软木、不合格软木、软木废弃物等的定义和包装
    国际标准. ISO1216:1998. Commercially dry corkwood in planks--Definitions, classification andpackaging[S].商品干燥的软木板的定义、等级划分和包装
    中华人民共和国林业行业标准. LY/T1317-1999.栓皮[S].1999.10.01实施
    中华人民共和国国家标准.GB/T2677·1-93.造纸原料分析用试样的采取[S].1993.10.01实施
    中华人民共和国国家标准.GB/T2677·2-93.造纸原料水分的测定[S].1993.10.01实施
    中华人民共和国国家标准.GB/T2677·3-93.造纸原料灰分的测定[S].1993.10.01实施
    中华人民共和国国家标准.GB/T2677·4-93.造纸原料水抽出物含量的测定[S].1993.10.01实施
    中华人民共和国国家标准.GB/T2677·6-94.造纸原料有机溶剂抽出物含量的测定[S].1995.03.01实施
    中华人民共和国国家标准.GB/T2677·8-94.造纸原料酸不溶木质素含量的测定[S].1995.03.01实施
    K·伊稍.1953.植物解剖学[M].李正理,张景鉞,沈靄如等合译.1962.北京:科学出版社:14~166;246~255
    A M Gil,M H Lopes,C Pascoal neto and P T Callaghan.2000. An NMR microscopy study of waterabsorption in cork [J].Journal of materials science,35:1891~1900
    Alisa Rudnitskaya,Ivonne Delgadillo,Silvia M Rocha,Ana-Maria Costa and Andrey Legin.2006. Qualityevaluation of cork from Quercus suber L. by the electronic tongue[J]. Analytica Chimica Acta,563:315~318
    C P Gameiro,J Cirne and G Gary.2007. Experimental study of the quasi-static and dynamic behaviour ofcork under compressive loading [J].J.Mater.Sci.,42:4316~4324
    Elvira Conde,Estrella Cadahia, Maria Concepcion,Garcia-Vallejo and Jose Ramon Gonzalez-Adrados.1998.Chemical characterization of reproduction cork from Spanish Quercus Suber[J]. Journal of woodchemistry and technology,18(4):447~469
    Garcia Vallejo M.C., E Conde and E Cadahia.1997. Suberin composition of reproduction cork fromQuercus suber[J]. Holzforschung,51:219~224
    H Pereira,M Emilia Rosa and M A Fortes.1987. The cellular structure of cork from Quercus suber L.[J].IAWA Bulletin n s,8(3):213~217
    H Pereira.1988a. Chemical composition and variability of cork from Quercus suber L.[J].Wood Sci.Technol.,22:211~218
    H Pereira.1988b. Structure and chemical composition of cork from calotropis procera (AIT.) R.BR.[J].IAWA Bulletin n s,9(1):53-58.
    H Pereira.1992. The thermochemical degradation of cork[J]. Wood Sci.Technol,26(4):259~269
    J F Mano.2002. The viscoelastic properties of cork[J]. Journal of Materials Science,37:257~263
    Jose Da Silva Carvalho.1993.Thermochemical process for the expansion of cork bark.Portugal.PT101215
    K E Esau.1965. Plant anatomy[M]. New York: Wiley:340
    L J Gibson,K E Easterling and M F Ashby.1981. The structure and mechanics of cork[J]. Proc. R.Soc.London,A(377):99~117
    L J Gibson.2005. Biomechanics of cellular solids[J].J. biomech. Eng.,38:377~399
    L J Gibson and M F Ashby.1997. Cellular solids: structure and properties [C]. Cambridge, CambridgeUniversity Press,453–467
    M C Dionisio,N T Correia and J F Mano.1995. Absorbed water in the cork structure. A study by thermallystimulated currents, dielectric relaxation spectroscopy, isothermal depolarization experimentsanddifferential scanning calorimetry [J]. Journal of Materials Science,30:4394~4400
    M F Vaz and M A Fortes.1998. Friction properties of cork [J]. Journal of Materials Science,33:2087~2093
    M E Rosa and M A Fortes.1988a. Thermogravimetric analysis of cork [J]. Journal of Materials Science,7:1064~1065
    M E Rosa and M A Fortes.1988b. Stress relaxation and creep of cork [J].Journal of Materials Science,23:35~42
    M E Rosa and M A Fortes.1989. Thermogravimetric analysis of cork [J].Wood Sci. Technol,23:27~34
    M E Rosa and M A Fortes.1991. Deformation and fracture of cork in tension [J].J.Mater.Sci.,26:341~348
    M A Fortes and M E Rosa.1992. Growth stresses and strains in cork [J].Wood Sci. Technol,26:241~258
    M E Rosa and M A Fortes.1998. Rate effects on the compression and recovery of dimensions ofcork[J].Journal of Materials Science,23:879~885
    N Cordeiro.1998a. Cork suberin as a new source of chemicals. I. Isolation and chemical characterization ofits composition[J]. International Journal of Biological Macromolecules,22:71~80
    N Cordeiro.1998b. Cork suberin as a new source of chemicals.2. Crystallinity, thermal and rheologicalproperties [J]. Bioresource Technology,63:153~158
    O Anjos,H Pereira and M E Rosa.2008. Effect of quality, porosity and density on the compressionproperties of cork [J].Holz Roh Werkst,66:295~301
    Peter J. Holloway.1983. Some variations in the composition of suberin from the cork layers of HigherPlants [J]. Holzforschung,22:495-502.
    P Pinay and M A Fortes.1996. Characterization of cells in cork [J]. J. Phys. D: Appl. Phys,29:2507–2514
    R Hooke.1664. Micrographia [M]. London:The Royal Society:112~121
    Silvia M. Rocha,Brian J. Goodfellow,Ivonne Delgadillo,Carlos P. Neto and Ana M.Gil.2001. Enzymaticisolation and structural characterization of polymeric suberin of cork from Quercus Suber L.[J].International Journal of Biological Macromolecules,28:107~119
    S P Silva,M A Sabino,E M Fernandes,V M Correlo,L F Boesel and R L Reis.2005. Cork: properties,capabilities and applications [J]. International Materials Reviews,50(6):345~365