伤害诱导的白木香防御反应与沉香形成的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉香[Lignum Aquilariae Resinatum]为瑞香科(Thymelaeceae)沉香属(Aquilaria)或拟沉香属(Gyrinops)植物含树脂的木材,是树体受伤后分泌出来的油脂成分和木质成分的固态凝聚物。白木香(Aquilaria sinensis)为中国特有的珍贵药用植物,是我国生产名贵芳香类药材沉香的主要资源植物,也是中药沉香的正品来源。白木香所形成的沉香为中国药典(2010版)所收载,具有行气止痛、温中止呕、纳气平喘等功效。本文以白木香为研究对象,对其木质部结构及诱导形成沉香的结构防御、化学防御、不同来源的沉香的质量评价、信号分子及与防御反应相关的酶类进行了系统的研究,主要结果如下:
     1.白木香的木质部结构特征
     健康的3年生白木香的木质部由五部分组成:髓心、放射状木射线、岛型内涵韧皮部、纤维管胞、导管。髓心内分布着大量的淀粉粒,且易塌陷;木射线和内涵韧皮部的薄壁细胞内含有大量淀粉粒、还原糖和蛋白质等储藏物质;导管内未见任何形态的内含物。纤维管胞内存在串联十数个细胞的棒状径列条。各种细胞内壁上具有不同类型的纹孔:导管内壁上有附物纹孔,互列纹孔式,与相邻的射线薄壁细胞、导管分别形成半具缘纹孔对和具缘纹孔对。纤维管胞内壁上有单斜附物纹孔。导管和纤维管胞内存在栓塞。
     2.沉香的形成是对外界伤害的物理防御
     通过对半断干法诱导白木香形成的沉香进行解剖结构研究,发现在沉香形成过程中,木质部结构发生了明显的变化:导管内出现2种内含物:侵填体和树胶,堵塞了导管;在伤口下16-20mm侵填体和树胶所占百分比最大,树胶数量为侵填体的8倍,白木香是可被诱导产生侵填体与树胶而树胶占优势的树种;出现了明显的分层特征:从上至下依次为腐烂层、沉香层、过渡层、白木层;腐烂层的各种组织内都含有大量的菌丝,内涵韧皮部和木射线薄壁细胞内的淀粉粒消失,内涵韧皮部细胞破裂形成孔洞,导管内壁出现裂隙状纹孔口,可见导管内含物;沉香层内涵韧皮部和木射线薄壁细胞内的淀粉粒消失,大量油脂状物质出现,并充满内涵韧皮部的薄壁细胞,且有较多的草酸钙柱晶产生,导管内发现侵填体与树胶,此层内只在靠上的位置发现有少量菌丝。过渡层内木射线和内涵韧皮部的淀粉粒减少,夹杂有油脂状物质,内涵韧皮部内偶见结晶,未见菌丝;导管内常见内含物。白木层与健康的白木香结构特征一致。菌丝最密集的位置并不是导管内含物数量最多的地方。
     3.沉香的形成是对外界伤害的化学防御
     通过对不同处理时间的不同层的沉香样品进行GC/MS分析,共鉴定出65种化合物。化合物的相对含量和种类在每层中是不同的。在对照样品中仅有11种烷烃类成分,而伤害处理的样品中大部分化合物是倍半萜与芳香族成分;随着处理时间的延长,烷烃类物质的相对含量急剧减少,而倍半萜和芳香族成分的种类和相对含量迅速增加。在处理15d、30d和60d的样品中分别有20种(11种烷烃类和9种倍半萜和芳香族类物质)、28种化合物(14种烷烃类物质和14种倍半萜和芳香族化合物)和53种(17种烷烃类和36种倍半萜和芳香族类物质)化合物被鉴定出来。已知这些倍半萜和芳香族类化合物对真菌具有抑菌、抗菌活性,形成对外界伤害的化学防御。
     4.沉香的形成是代谢途径的改变
     通过对伤害处理不同时间的白木香的淀粉、糖和挥发性成分分析,结果发现随处理时间的增加,淀粉含量逐渐减少,而糖含量呈现先增加后减少的趋势,在对照白木中有12种烷烃类成分,伤害处理的样品中增加了8种倍半萜和芳香族化合物。随着处理时间的延长,烷烃类物质的相对含量急剧减少,而倍半萜和芳香族成分的相对含量迅速增加,反映了代谢方向发生了改变。
     5.沉香形成过程中信号分子的变化
     通过酶联免疫分析技术和生理生化分析测定等方法,检测伤害不同时间的白木香中信号分子(过氧化氢、水杨酸、茉莉酸、乙烯、一氧化氮)的浓度,揭示这些信号分子的变化规律,结果可知:伤害后信号分子的浓度短时间内发生了较大变化,达到峰值的时间依次为一氧化氮,乙烯,水杨酸,过氧化氢,茉莉酸。
     6.与防御反应有关的酶的变化
     通过试剂盒法和常规生理生化分析测定方法,检测处理不同时间的白木香样品中与防御反应有关的酶及脂质过氧化物的浓度变化,由结果可知:SOD,CAT,PAL,和NOs各酶的活力在极短的时间内达到峰值,酶活性到达峰值的时间顺序依次为:H202酶、NO合成酶、PAL、SOD:同时MDA浓度也发生极大的变化,并一直高于对照。
     7.通体结香法沉香的显微特征与质量评价
     对通体结香法、野生、半断干和接菌法产生的沉香进行感官评价和显微结构、醇提物、TLC、GC/MS分析,发现通体结香法处理白木香20个月所得沉香达到了中国药典(2010版)规定要求,且与野生沉香在化学成分种类、醇溶性浸出物以及挥发油得率方面均极为接近,优于半断干和接菌法产生的沉香。除此之外,通体结香法沉香的显微结构具有明显的区窒化特征,在沉香层的外圈分裂产生了一层细胞,阻断了沉香层与外面木质部的物质交流,限制了沉香层的扩大,影响了沉香的产量。
Lignum Aquilariae Resinatum (agarwood) is a solid-state condensate with mixed with resin and lignin that forms in Aquilaria and Gyrinops trees of the family Thymelaeaceae. Aquilaria sinensis is the most important plant resource which produces agarwood and peculiar precious medicinal plant in China. According to Chinese Pharmacopoeias (2010edition), agarwood have many therapeutic properties, such as anti-emetic, carminative, sedative and so on. In this article, we systematically investigated the change of microstructure, quality evaluation, and chemical compositions of the agarwood with increasing treatment time, Main findings are as follows:
     1Structure characteristic of xylem in A. sinensis
     The stem of A. sinensis was composed of five parts:piths, included phloems, xylem rays, vessels, and fibre tracheids; The included phloem, which was foraminate type, evenly distributed in the xylem on the transverse section; Xylem rays belonged to heterogeneous Ⅲ; Alignment of vessels pore were generally in radial pore cluster(two to four), pore multiple, pore chain (five to ten), and pore solitary; Vestured pits were alternately arranged in the vessels'lateral wall; Simple acclivitous vestured pits were present in the lateral wall of fibre tracheid; Trabeculas crossed through ten fibre tracheids neighboring pith. Embolisms were observed in the vessels and fibre tracheid. Trabeculas and embolisms were firstly observed in A. sinensis. The contents and storage tissues of the starch grains, reducing sugar, and volatile constituents existed significant difference in different aged stem.
     2Agarwood formation is physical blocks to damages
     In the process of agarwood formation from A. sinensis with partial-stem-breaking method, gels and tyloses in vessels both originated from xylem ray parenchyma cells and neighboring paratracheal parenchyma cells. Tyloses are outgrowths of parenchyma cells into the neighboring vessels, while gels are amorphous substances into the vessel from the parenchyma cells. Obvious four distinct layers including decomposed layer, agarwood layer, transition layer, and white-timber layer were observed below the wound surface days after wounded. The typical agarwood chemical components were detected on days after wounded. Among chemicals assayed, previous notable wound inducible constituents in other plant species were detected in different zones at different time points after wounded. Every layer has unique structural features and layer depth depended on the different treatment time. The stratified structure characteristics from wound surface to agarwood layer and gradual transition to normal layer showed formation of agarwood layer was to defense against expansion of microorganisms and external damage. Distribution of each region in the vertical axis was not horizontal, presented mutual interleaving phenomenon.
     3Agarwood formation is chemical defenses to damage
     Chemical composition of A. sinensis being injured compared with that of healthy A. sinensis, the type and relative content of alkaness harply decline, while the type and relative content of aromatics and sesquiterpene compounds rapidly increased with the increasing wounding time, especially in the agarwood layer, and these substances generally have antibacterial and antimicrobial effect, agarwood layer prevented from the expansion of damage from the other side. A total of sixty-five compounds were identified from the three wood samples with different wounding time. Types of constituents were different in each layer of sample, the major constituents being alkanes, scsquiterpenes and aromatics in wounded sample, while all eleven components being alkanes in control samples. This suggested agarwood formation was chemical defenses to damage.
     4Chang of metabolic pathways in in the process of agarwood formation
     Content of starch, sugar content, and volatile component were examined through anthrone-sulfuric acid methods, I2-KI colorimetry and GC-MS analysis, respectively. The starch content decreased, while the sugar content increased gradually with the different treatment time. Twelve kinds alkane component were identified in the control and eight kinds sesquiterpene and aromatic compounds were identified in the treated sample. The relative content of alkanes was drastically reduced and the relative content of sesquitcrpene and aromatic component.was rapidly increased. This suggested metabolic pathway has took changes
     5Content change of signal molecules in the process of agarwood formation
     Methods such as antibody enzyme-linked immunosorbent assay (ELISA), physiological and biochemical analysis were used to examine the content of signal molecules such as H2O2, SA, JA, NO, etliylene, variations in physiological indexes, and interaction between signal molecules in the samples of A. sinensis with different treatment time. Response time of NO, ethylene, SA, H2O2, NO, and JA increased in turns.
     6Changes of protective Enzymes activity in the process of agarwood formation
     Methods such as assay kit, conventional methods of physiological and biochemical analysis were used to examine the protective Enzymes activity, such as SOD, CAT, PAL, and NOs in the samples of A. sinensis with different treatment time. The main results were shown as follows:Enzymes activity of CAT, NOs, PAL, and SOD reached peak value in a short period in turns, and activated defence response. While content of MDA changed greatly in a short period, keep high level all the while.
     7Value investigation of agarwood with different induction methods
     Agarwood characteristics through Agar-wit were similar to those of high-grade wild agarwood in terms of texture, chemical constituents, essential oil and ethanol-soluble extract content, and superior to that of agarwood with partly-breaking stem method and inoculated-fungus method, with the lattermost quality far surpassing the requirement of traditional Chinese medicine agarwood, as indicated in Chinese Pharmacopoeia2010. The obvious boundary divided stem into some different compartments at the transverse section. Boundary layer and the area on both side of boundary have significant different characteristics. The area inside boundary characterized by decay of tissues where hyphae were observed in the vessels and parenchyma cell of included phloem, while the area outside boundary characterized by living tissues where a large number of starch grains were observed in the parenchyma cell of included phloem and xylem ray and occlusions was not in the vessels. Boundary layer, which formed an obvious barrier and separated the decay area and white wood, was filled with oily substance in the vessels, fiber tracheids, and parenchyma cell of included phloem and xylem ray at the cross and longitudinal section. At the mean time, boundary layer limited the development of agarwood layer and influenced the output of agarwood.
引文
[1].陈怀琼.白木香通体结香技术的初步评价[D]:北京协和医学院中国医学科学院,2011.
    [2].陈俊伟,张上隆,张良诚.糖对源库关系的调控与植物糖信号转导途径[J].细胞生物学杂志,2002,24(5):266-270.
    [3].陈树思.人心果次生木质部导管分子的观察研究[J].园艺学报,2007,34(1):7-10.
    [4].陈树思,马瑞君,唐为萍.白木香茎次生木质部结构的研究[J].韩山师范学院学报,2005,(6):11-14.
    [5].陈树思,张君诚,唐为萍,等.沉香(Aquilaria agallocha Roxb.)茎次生木质部结构的研究[J].三明学院学报,2005,22(4):416-419.
    [6].程水源,陈昆松,刘卫红,等.植物苯丙氨酸解氨酶基因的表达调控与研究展望[J].果树学报,2003,20(5):351-357.
    [7].陈晓颖,高英,李卫民.不同结香方法与国产沉香挥发性化学成分的相关性研究[J].中国药房,2012,24(11):1017-1020.
    [8].陈亚.沉香化学成分和质量评价研究[D]:广州中医药大学,2005.
    [9].崔建东,李艳,牟德华.苯丙氨酸解氨酶(PAL)的研究进展[J].食品工业科技,2008,29(7):306-308.
    [10].邓红梅,童汉清,周如金.沉香中精油的超临界CO2萃取及其GC-MS分析[J].华西药学杂志,2008,(6):633-635.
    [11].杜丽娜,张存莉,朱玮,等.植物次生代谢合成途径及生物学意义[J].西北林学院学报,2005,20(3):150-155.
    [12].杜勤,王振华,刘书芬,等.白木香组织培养的初步研究[J].中国中药杂志,2001,26(10):31-32.
    [13].傅立国.中国植物红皮书[M].北京:科学出版社,1992:464-465.
    [15]].高晓霞,周伟平,钟兆健,等.沉香中苄基丙酮与浸出物含量相关性研究[J].中药材,2012,35(6):919-924.
    [16].高薪.茉莉酸甲酯(MJ)对植物抗性信号转导的诱导[J].江西农业学报,2007,19(10):84-86.
    [17].广东省植物研究所.初步揭开沉香结香的秘密[J].植物学报,1976:18(4):287-291.
    [18].郭晓玲,田佳佳,高晓霞,等.不同产区沉香药材挥发油成分GC-MS分析[J].中药材,2009,32(9):1354-1358.
    [19].国家林业局.国家重点保护野生植物名录[Z].1999.
    [20].国家药典委员会.中华人民共和国药典(第二部)[M].北京:中国医药科技出版社,2010:172.
    [21].何梦玲,戚树源,胡兰娟.白木香悬浮培养细胞中2-(2-苯乙基)色酮化合物的诱导形成[J].广西植物,2007,27(4):627-632.
    [22].姜笑梅,张立非,周崟.国产阔叶树材导管中侵填体和树胶的研究[J].林业科学,1995,31(2):155-159.
    [23].兰芹英,方春妍,何惠英,等.土沉香成熟胚的组织培养及植株再生[J].广西农业生物科学,2001,20(3):231-232.
    [24].李戈,段立胜,杨春勇,等.白木香结香技术研究进展[J].安徽农业科学,2009,37(25):12012-12013.
    [25].李坚.木材科学[M]:高等教育出版社,2002:68-79.
    [26].李正理.植物组织制片学[M].北京:北京大学出版社,1996a:91-92.
    [27].李正理.植物组织制片学[M].北京:北京大学出版社,1996b:96.
    [28].梁永枢,刘军民,魏刚,等.沉香药材挥发油成分的气相色谱-质谱联用分析[J].时珍国医国药,2006,17(12):2518.
    [29].林立东,戚树源.国产沉香中的三萜成分[J].中草药,2000,31(2):11-12.
    [30].刘军民.沉香(白木香)药材规范化种植(GAP)研究[D]:广州中医药大学,2005.
    [31].刘军民,高幼衡,徐鸿华,等.沉香的化学成分研究(Ⅰ)[J].中草药,2006,37(3):325-327.
    [32].刘军民,高幼衡,徐鸿华,等.沉香化学成分研究(Ⅱ)[J].中草药,2007,38(8):1138-1140.
    [33].刘军民,徐鸿华.国产沉香研究进展[J].中草药,中草药,2005,28(7):627-631
    [34].刘新,张蜀秋.茉莉酸类在伤信号转导中的作用机制[J].植物生理学通讯,2000,36(1):76-81.
    [35].刘艳,蔡贵芳,成宇.茉莉酸类物质在植物伤反应用的信号功能[J].内蒙古农业大学学报(自然科学版),2011,32(4):354-359.
    [36]刘艳艳,萧凤回.JAs、SAs介导的植物防御反应及在药用植物中的应用[J].中国农学通报,2010,26(14):98-100.
    [37].梅文莉,曾艳波,刘俊,等.五批国产沉香挥发性成分的GC-MS分析[J].中药材,2007,30(5):551-555.
    [38]梅文莉,曾艳波,吴娇,等.中国沉香挥发油的化学成分与抗耐甲氧西林金葡菌活性(英文)[J]Journal of Chinese Pharmaceutical Sciences,2008,(3):225-229.
    [39].潘瑞炽,王小菁,李娘辉.植物生理学[M].北京:高等教育出版社,2008:163-164.
    [40].彭金英,黄勇平.植物防御反应的两种信号转导途径及其相互作用[J].植物生理与分子生物学学报,2005,31(4):347-353.
    [41].戚树源,胡厚才.激素对白木香悬浮培养细胞中苄基丙酮形成的影响[J].中药材,2001,24(5):318-319.
    [42].单守明,董晓颖,王永章,等.植物体中的栅信号及其转导机制[J].中国农学通报,2004,20(3):12-16
    [43].寿海洋.土沉香(瑞香科)的分布和生物学特性研究[D].北京:北京林业大学,2010.
    [44].田佳佳,郭晓玲,章卫民,等.国产沉香醇浸膏挥发汕成分分析.药用植物化学与中药有效成 分分析研讨会,中国广东深圳,2008.
    [45].田耀华,原慧芳,倪书邦,等.沉香属植物研究进展[J].热带亚热带植物学报,2009,17(1):98-104.
    [46].王根轩,杨成德.蚕豆叶片发育与衰老过程中超氧物歧化酶活性与丙二醛含量变化[J].植物生理学报,1989,15(001):13-17.
    [47].王莉,史玲玲,张艳霞,等.植物次生代谢物途径及其研究进展[J].武汉植物学研究,2007,25(5):500-508.
    [48].王瑞刚.植物防御反应的生化调控[J].生物技术,2002,(5):41-44.
    [49].魏建和,杨云,张争,等.输液法在白木香树上生产沉香,201010104119.5[P].
    [50].吴德鄰.广东珍稀濒危植物图谱[M].13,图39,北京:环境科学出版社,1988
    [51].谢祝捷,姜东,戴廷波,等.植物的糖信号及其对碳氮代谢基因的调控[J].植物生理学通讯,2002,38(4):399-404.
    [52].徐茂军.一氧化氮:植物细胞次生代谢信号转导网络可能的关键节点[J].自然科学进展,2007,17(12):1622-1630.
    [53].徐茂军.药用植物细胞次生代谢产物合成信号转导机制研究进展[J].细胞生物学杂志,2009,31(5):651-657.
    [54].徐维娜.真菌侵染诱导沉香形成关键技术效果评价及结香机制初步研究[D]:广东药学院,2011.
    [55].徐妍青,方洪钜,刘倩,等.沉香呋喃类立体异构体的气相色谱及气-质联用分析研究[J].药学学报,1992,27(10):773-778.
    [56].许兴,杨涓,郑国琦,等.盐胁迫对枸杞叶片糖代谢及相关酶活性的影响研究[J].中国生态农业学报,2006,14(2):46-48.
    [57].杨东歌,张晓东.茉莉酸类化合物及其信号通路研究进展[J].生物技术通报,2009,(2):43-49.
    [58].杨峻山.沉香化学成分的研究概况[J].天然产物研究与开发,1998,10(1):99-103.
    [59].杨峻山,陈玉武.国产沉香化学成分的研究Ⅱ.白木香醇和去氢白木香醇的分离和结构[J].药学学报,1986,21(7):516-520.
    [60].杨峻山,陈玉武.国产沉香化学成分的研究—Ⅰ.白木香酸和白木香醛的分离和结构测定[J].药学学报,1983,18(3):191-198.
    [61].杨峻山,王玉兰,苏亚伦,等.国产沉香化学成分的研究—Ⅲ.异白木香醇的结构测定和低沸点成分的分离与鉴定[J].药学学报,1989,24(4):264-268.
    [62].杨峻山,王玉兰,苏亚伦.国产沉香化学成分研究Ⅳ.2-(2-苯乙基)色酮类化合物的分离与鉴定[J].药学学报,1989,24(9):678-683.
    [63].杨峻山,王玉兰,苏亚伦.国产沉香化学成分的研究—V.三个2-(2-苯乙基)色酮衍生物的分离和鉴定[J].药学学报,1990,(3):186-190.
    [64].杨友宝,宁德山.中药沉香挥发油成分分析[J].湖南中医杂志,2004,20(5):48-49.
    [65].余晓丽,王正德,刘慧娟,等.白木香离体培养及高频率植株的再生[J].浙江林学院学报,2005,22(4):410-413.
    [66].曾幻添,董文忠,吴质朴.沉香的人工结香[J].中草药通讯,1978,(12):38-42.
    [67].张翘,郑希龙,潘超美.不同培养体系对白木香成熟胚从芽诱导的影响研究[J].时珍国医国药,2009,20(10):2566-2567.
    [68].张兴丽,刘洋洋,陈宏降,等.白木香[Aquilaria sinensis(Lour.) Gilg]的木质部结构及组织化学研究[J].山东大学学报(理学版),2012,47(7).1-6
    [69].张绪成,上官周平,高节铭.NO对植物生长发育的调控机制[J].西北植物学报,2005,25(4):812-818.
    [70].张争,高志晖,魏建和,等.三年生白木香机械伤害转录组学研究[J].药学学报,2012,47(008):1106-1110.
    [71].张争,杨云,魏建和,等.白木香结香机制研究进展及其防御反应诱导结香假说[J].中草药,2010,41(1):156-159.
    [72]张争,杨云,魏建和,等.环境因子导致的植物防御反应与药用次生代谢物的合成和积累[J].植物生理学通讯,2009,45(9):919-924.
    [73].赵晓刚,徐张红,何奕昆,等.NO在植物中的调控作用[J].植物学通报,2004,(1):44-51.
    [74].中国科学院中国植物志编辑委员会主编.中国植物志[M].北京:科学出版社,1999,52(1):290
    [75]. Adams D O, Yang S F. Ethylene biosynthesis:identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene[J]. Proceedings of the National Academy of Sciences,1979,76(1):170-174.
    [76]. Alkhathlan H Z, AI-Hazimi H M, Al-Dhalaan F S, et al. Three 2-(2-phenylethyl) chromones and two terpenes from agarwood[J]. Natural Product Research,2005,19(4):367-372.
    [77].Arasimowicz M, Floryszak-Wieczorek J. Nitric oxide as a bioactive signalling molecule in plant stress responses[J]. Plant Science,2007,172(5):876-887.
    [78]. Barden A, Anak N A, Mulliken T, et al. Heart of the matter:agarwood use and trade and CITES implementation for Aquilaria malaccensis[M]:Traffic International Cambridge,2000.
    [79]. Bhattacharya. On the formation and development of agar in Aquilaria agalocha[J]. Sci Cul,1952: 240-242.
    [80]. Bhuiyan M N I, Begum·J, Bhuiyan M N H. Analysis of essential oil of eaglewood tree (Aquilaria agallocha Roxb.) by gas chromatography mass spectrometry[J]. Bangladesh Journal of Pharmacology,2008,4(1):24-28.
    [81]. Blanchette, R.A. and Heuveling, V.B.H. Cultivated agarwood [P]. US 7,638,145 B2,2009.-12-29
    [82]. Blanchette R A, Heuveling V B H-Cultivated agarwood [P]·EU:WO02094002,2001-11-28
    [83]. Bohlmann J, Crock J, Jetter R, Croteau R.Terpenoid-based defenses in conifers:cDNAcloning, characterization, and functional expression of wound-inducible (E)-bisabolcne synthase from Grand fir (Abies grandis). Proc Natl Acad Sci USA 1998,95:6756-6761
    [84]. Bohlmann J, Meyer-Gauen G, Croteau R, Plant terpenoid synthases:molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 1998,95:4126-4133
    [85]. Bolwell G P. Role of active oxygen species and NO in plant defence responses[J]. Current opinion in plant biology,1999,2(4):287-294.
    [86]. Bose S R. The nature of agar formation[J]. Sci Cult,1934:89-91.
    [87]. Bowler C, Montagu M, Inze D. Superoxide dismutase and stress tolerance[J]. Annual review of plant biology,1992,43(1):83-116.
    [88]. Butterfield B G, Meylan B A. Observations of trabeculae in New Zealand hardwoods[J]. Wood Science and Technology,1979,13(1):59-65.
    [89]. Camm E L, Towers G H. Phenylalanine ammonia lyase[J]. Phytochemistry,1973,12(5):961-973.
    [90]. Chakrabarti K, Kumar A, Menon V, et al. Trade in agarwood[M]:TRAFFIC-India, WWF, India, New Delhi,1994.51
    [91]. Chen H Q, Wei J H, Yang J S, et al. Chemical constituents of agarwood originating from the endemic genus Aquilaria plants[J]. Chemistry & Biodiversity,2012,9(2):236-250.
    [92]. Chen H, Yang Y, Xue J, et al. Comparison of Compositions and Antimicrobial Activities of Essential Oils from Chemically Stimulated Agarwood, Wild Agarwood and Healthy Aquilaria sinensis (Lour.) Gilg Trees[J]. Molecules,2011,16(6):4884-4896.
    [93]. Cheng G W, Breen P J. Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit[J]. Journal of the American Society for Horticultural Science,1991,116(5):865-869.
    [94].Chen Y, Etheridge N, Schaller G E. Ethylene Signal Transduction[J]. Ann. Bot.,2005,95(6): 901-915.
    [95]. Cites. Amendments to Appendices Ⅰ, Ⅱ and III of CITES[R],2004.
    [96]. Creelman R A, Tierney M L, Mullet J E. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression[J], Proceedings of the National Academy of Sciences,1992,89(11):4938-4941.
    [97]. Culotta E. NO news is good news[J]. Science,1992,258:1862-1865.
    [98], Dai H F, Liu J, Zeng Y B, et al. A new 2-(2-phenylethyl) chromone from Chinese eaglewood[J], Molecules,2009,14(12):5165-5168.
    [99], Delledonne M, Xia Y, Dixon R A, et al. Nitric oxide functions as a signal in plant disease resistance[J]. Nature,1998,394(6693):585-588.
    [100]. Delledonne M, Zeier J, Marocco A, et al. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response[J]. Proceedings of the National Academy of Sciences,2001,98(23):13454-13459.
    [101]. Den Outer R W, Van Veenendaal W. Development of included phloem in the stem of Combretum nigricans (Combretaceae)[J]. IAWA journal,1995,16(2):151-158.
    [102]Dong Chen, Yue-Lin Song, Chun-Xiao Nie, et al, Chemical constituents from Aquilaria sinensis(Lour) Gilg [J] Journal of Chinese Pharmarcutical sciences,2012 (21):88-92
    [103]. Durner J, Klessig D F. Nitric oxide as a signal in plants[J]. Current opinion in plant biology,1999, 2(5):369-374.
    [104]. Ecker J R. The ethylene signal transduction pathway in plants.[J]. Science (New York, NY), 1995,268(5211):667.
    [105]. Elgersma, D. M.Tyloses formation in elms after inoculation with Ceratocystis ulmi:A possible resistance mechanism[J]. Netherlands Journal of Plant Pathology,1973,79:218-220.
    [106]. Enns, L. C., Canny, M. J., and McCully M. E. An investigation of the role of solutes in the xylem sap and in the xylem parenchyma as the source of root pressure[J]. Protoplasma.2000,211:183-197
    [107]. Eurlings M, Heuveling Van Beek H, Gravendeel B. Polymorphic microsatellites for forensic identification of agarwood (Aquilaria crassna)[J]. Forensic science international,2010,197(1): 30-34.
    [108]. Faldt J. Martin D, Miller B, et al., Traumatic resin defense in Norway spruce (Picea abies):methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol Biol 2003,51:119-133
    [109]. Finkel T, Holbrook N J., Oxidants, oxidative stress and the biology of ageing [J]. Nature-London, 2000:239-247.
    [110]. Gao Z H, Wei J H, Yang Y, et al. Selection and validation of reference genes for studying stress-related agarwood formation of Aquilaria sinensis[J], Plant cell reports,2012:1-10
    [111]Gibson S I. Control of plant development and gene expression by sugar signaling[J]. Current opinion in plant biology,2005,8(1):93-102.
    [112]. Gibson I. The role of fungi in the origin of oleoresin deposits (agaru) in the wood of Aquilaria agalhcha Roxb[J], Bano Biggyan Patrika,1977,6(1):16-26.
    [113]. Gottwald H P J. Tyloses in fibre tracheids[J]. Wood Science and Technology,1972,6(2): 121-127.
    [114]. Groves J T, Wang C C. Nitric oxide synthase:models and mechanisms[J]. Current opinion in chemical biology,2000,4(6):687-695.
    [115]. Gutteridge J. The use of standards for malonyldialdehyde[J]. Analytical Biochemistry,1975, 69(2):518-526.
    [116]. Gudrun Weiner, Walter Licse, Wound response the stem of the royal palm[J]. IAWA Journal.1995, Vol.16 (4):433-442
    [117]. Guo H., Ecker J R. The ethylene signaling pathway:new insights.[J]. Current opinion in plant biology,2004,7(1):40.
    [118]. Hammerschmidt R. Induced disease resistance:how do induced plants stop pathogens? [J] Physiol Mol Plant Pathol,1999,55:77-84
    [119]. Hashimoto K, Nakahara S, Inoue T, et at., A new chromone from agarwood and pyrolysis products of chromone derivatives. Chem Pharm Bull 1985,33:5088-5091
    [120]. Heil M, Bostock R M. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences[J]. Annals of Botany,2002,89(5):503-512.
    [121]. Hilton-Taylor C, Mittermeier R A.2000 IUCN red list of threatened species[M]:Iucn,2000.
    [122]. Huang X, Stettmaier K, Michel C, Hutzler P, Mueller MJ,Durner J. Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana.Planta,2004,218:938-946
    [123]. lijima Y, Davidovich-Rikanati R, Fridman E. et al., The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil [J]. Plant Physiol 2004,136:3724-3736
    [124]. International association of wood anatomists (IAWA) committee. IAWA lists of microscopic features for hardwood identification[J]. International Association of Wood Anatomists Bulletin.1989,10: 219-332.
    [125]. Ishihara M, Tsuneya T, and Uneyama K., Fragrant sesquiterpenes from agarwood [J]. Phytochemistry. 1993,33:1147-1155
    [126]. Ito M, Okimoto K, Yagura T, and Honda G., Induction of sesquiterpenoid production by methyl jasmonate in Aquilaria sinensis cell suspension culture[J], J Essent Oil Res.2005,17:175-180
    [127]. Ito M, and Honda G. Agarwood-its sedative effect on mice and current state in the production sites [J]. Aroma Research.2008,34:122-127
    [128]. Jain S K. The accumulation of malonyldialdehyde, a product of fatty acid peroxidation, can disturb aminophospholipid organization in the membrane bilayer of human erythrocytes.[J], Journal of Biological Chemistry,1984,259(6):3391-3394.
    [129]. Jalaluddin M. A useful pathological condition of wood [Aquilaria agallocha infected by the fungus Cytosphaera mangiferae, perfume].[J]. Economic Botany,1977,31(2):222-224.
    [130]Jain S K. The accumulation of malonyldialdehyde, a product of fatty acid peroxidation, can disturb aminophospholipid organization in the membrane bilayer of human erythrocytes.[J]. Journal of Biological Chemistry,3984,259(6):3391-3394.
    [131]. Jansen S, Baas P, Gasson P, et al. Vestured pits:Do they promote safer water transport?[J]. International journal of plant sciences,2003,164(3):405-413.
    [132]. Jansen S, Baas P, Smets E. Vestured pits:their occurrence and systematic importance in eudicots[J]. Taxon,2001:135-167.
    [133]. Jansen S, Piesschaert F, Smets E. Wood anatomy of Elaeagnaceae, with comments on vestured pits, helical thickenings, and systematic relationships[J]. American journal of botany,2000,87(1): 20-28.
    [134]. Jones D H. Phenylalanine ammonia-lyase:regulation of its induction, and its role in plant development[J]. Phytochemistry,1984,23(7):1349-1359.
    [135]John S. Sperry, Melvin T. Tyree. Mechanism of water stress-induced xylem embolism [J]. Plant Physi, 1988,88(3):581-587
    [136]. Kawano T. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction[J]. Plant cell reports,2003,21(9):829-837.
    [137].Klessig D F, Durner J, Noad R, et al. Nitric oxide and salicylic acid signaling in plant defense[J]. Proceedings of the National Academy of Sciences,2000,97(16):8849-8855.
    [138]. Konishi T, Konoshima T, Shimada Y, et al. Six new 2-(2-phenylethyl) chromones from Agarwood.[J]. Chemical and pharmaceutical bulletin,2002,50(3):419-422.
    [139]. Kribs D A. Salient lines of structural specialization in the wood rays of dicotyledons[J]. Botanical Gazette,1935:547-557.
    [140]. Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense [J]. Curr Opin Plant Biol.2002,5:325-331
    [141]. Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D. Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein[J]. Plant Physiol,2004,135:516-529
    [142]. Leitch M A, Hudson I L. Induction of tyloses in Eucalyptus Globulus' chips[J]. IAWA Journal, 1999,20(2):193-201.
    [143]. Leon J, Rojo E, Sanchez-Serrano J J. Wound signalling in plants[J]. J. Exp. Bot.,2001,52(354): 1-9.
    [144]. Lewinsohn E, Gijzen M, and Croteau R., Defense-mechanisms of conifers:differences in constitutive and wound-induced monoterpene biosynthesis among species [J]. Plant Physiol.1991,96:44-49
    [145]. Liechti R, Farmer EE. The jasmonate pathway [J]. Science,2002,296:1649-1650
    [146]. Maleck K, Dietrich R A. Defense on multiple fronts:how do plants cope with diverse enemies?[J]. Trends in plant science,1999,4(6):215-219.
    [147]. Mamat M F. Costs and Benefits Analysis of Aquilaria Species on Plantation for Agarwood Production in Malaysia[J]. International Journal of Business and Social Science,2010,1(2): 162-174.
    [148]. Martin D, Tholl D, Gershenzon J, el al., Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems[J]. Plant Physiol.2002,129:1003-1018
    [149]. Mattiacci L, Rocca BA, Scascighini N, et al., Systemically induced plant volatiles emitted at the time of danger[J]. J Chem Ecol 2001,27:2233-2252
    [150]. Mauch-Mani B, Slusarenko A J. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica.[J]. The Plant Cell Online,1996,8(2):203-212.
    [151]. Mccord J M, Fridovich I. Superoxide dismutase[J]. Journal of Biological Chemistry,1969, 244(22):6049-6055.
    [152]. McEIrone, A.J., Grant J.A.and Kluepfel D.A. The role of tyloses in crown hydraulic failure of mature walnut trees afflicted by apoplexy disorder [J]. Tree Physiol.2010.30(6):761-72.
    [153]. Mei W.L., Zeng Y,B, Liu Wu J, et al. Chemical composition and anti-MRSA activity of the essential oil from Chinese eaglewood[J]. J Chin Pharma Sci,2008,17:225-229.
    [154], Mittler R, Oxidative stress, antioxidants and stress tolerance[J]. Trends in plant science,2002, 7(9):405-410.
    [155]. Mohd FM, Mohd RY, Lim HF, Alias R. Costs and benefits analysis of Aquilaria species on plantation for agarwood production in Malaysia[J].International Journal of Business and Social Science.2010, I,162-174.
    [156]. Murmanis L. Formation of tyloses in felled Quercus rubra L.[J]. Wood Science and Technology, 1975,9(1):3-14.
    [157]. Nakanishi T, Yamagata E, Yoneda K, Miura I., Jinkohol, a prezizane sesquiterpene alcohol from agarwood[J]. Phytochemistry.1981,20:1597-1599
    [158]. Ng L T, Chang Y S, Azizol L K.,A review on agar (gaharu) producing Aquilaria species [J]. Journal of Tropical Forest Products,1997,2(2):272-285-
    [159], Nobuchi T, Siripatanadilok S. Preliminary observation of Aquilaria crassna wood associate with the formation of aloeswood[J]. Bulletin of the Kyoto University Forests,1991.9:226-235
    [160]. Nobuchi T, Akamatsu, Y., Sato. K. et al., Early response of ray parenchyma cells following wounding in sugi (Cryptomeria japonica D. Don) wood. Seasonal changes of discoloration and cytological structure [J]. Bulletin of the Kyoto University Forests.1986,57:90-299
    [161]. Nobuchi T, Tokuchi N., and Harada. H. Variability of heartwood formation and cytological features in broad-leaved trees. Mokuzai Gakkaishi [J].1987,33:596-604
    [162]. Nobuchi, T., Nagashima, K. and Saiki, H., Cytological study of biosynthetic process of phenolic substance following wounding in Japanese cedar (Jap.) Proc[J]. the Japanese Wood Research Soc.1991, 458
    [163]. Nobuchi, T. Siripatanadilok, S.. Preliminary observation of Aquilaria crassana wood associated with the formation of aloeswood[J]. Bulletin of the Kyoto University Forests.1991,9:226-235
    [164]. Okudera Y, Ito M. Production of agarwood fragrant constituents in Aquilaria calli and cell suspension cultures[J]. Plant Biotechnology,2009,26(3):307-315.
    [165]. Persoon G A. Agarwood the life of a wounded tree[J]. HAS Newsletter,2007,45:24-25.
    [166]. Persoon G A, Beek H H. Growing'the wood of the Gods':Agarwood production in Southeast Asia[J]. Smallholder Tree Growing for Rural Development and Environmental Services,2008: 245-262.
    [167]. Petri L. Observations on grapevine wood alterations following wounding [J]. Le Stazioni Sperimentali Agrarie Italiane,1912,45:501-547.
    [168]. Pieterse C M J, Ton J, Van Loon L C. Cross-talk between plant defence signalling pathways: boost or burden?[J]. AgBiotechNet,2001,3(6):1-8.
    [169]Pheeraphan Wijitphan, Method to stimulate resin formation by wounding on the aquilaria's trunk [P], United States, US 7485309B1, Feb.3,2009
    [170]. Pojanagaroon S. Kaewrak C., Mechanical methods to stimulate aloes wood formation in Aquilaria crassna Pierre ex H. Lec. (Kritsana) trees. WOCMAP Ⅲ:Conservation, Cultivation and Sustainable Use of MAPs.2005,676:161-166
    [171]. Qi, S. Y, Lu B Y, Zhu L F, et al., Formation of oxo-agarospirol in Aquliaria sinensis [J]·Plant Phys Commun.1992,28:336-339-
    [172]. Qi, S.Y. Aquilaria species:in vitro culture and the production of eaglewood (agarwood) (Medicinal and Aromatic Plants Ⅲ). Biotechnology in Agriculture and Forestry[J]; Bajaj, Y. P. S., Ed.; Springer Verlag:Berlin, Germany,1995, (8) 36-44.
    [173]. Quick W P, Chaves M M, Wendler R, et al. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions[J]. Plant, Cell & Environment,1992, 15(1):25-35.
    [174]. Rahman M A, Basak A C. Agar production in agar tree by artificial inoculation and wounding[J]. Bano Biggyan Patrika,1980,9(1):87-93.
    [175], Rahman M A, Khisa S K. Agar production in agar tree by artificial inoculation and wounding, part-Ⅱ, further evidences in favor of agar formation[J]. Bono Biggyan Patrika,1984,9(1-2):57-63.
    [176]. Rajput K S, Patil V S, Rao K S. Development of included phloem of Calycopteris floribunda Lamk.(Combretaceae)[J]. The Journal of the Torrey Botanical Society,2009,136(3):302-312.
    [177]. Rao K R, Dayal R. The secondary xylem of Aquilaria agallocha (Thymelaeaceae) and the formation ofagar'[J]. IAWA Bull.(NS),1992,13:163-172.
    [178]. Romero-Puertas M C, Perazzolli M, Zago E D, et al. Nitric oxide signalling functions in plant梡athogen interactions^]. Cellular microbiology,2004,6(9):795-803.
    [179]. Ryan C A. Protease inhibitors in plants:genes for improving defenses against insects and pathogens[J]. Annual review of phytopathology,1990,28(1):425-449.
    [180]. Saitoh T, Ohtani J, Fukazawa K. The occurrence and morphology of tyloses and gums in the vessels of Japanese hardwoods[J]. IAWA J,1993,14:359-371.
    [181]Sano Y, Fukazawa K. Structural differences tyloses Fraxinus mandshurica var. japonica and Kalopanax pictus[J].IAWA.1990,11(4)
    [182]. Sano Y, Fukazawa K. Structural variations and secondary changes in pit membranes in Fraxinus mandshurica var. japonica[J]. International Association of Wood Anatomists Journal,1994,15: 283-291.
    [183].Schmitt U, Liese W. Wound tyloses in Robinia pseudoacacia L[J]. International Association of Wood Anatomists Journal,1994,15:157-160.
    [184].Shapiro A D. Nitric oxide signaling in plants[J]. Vitamins\ & Hormones,2005,72:339-398.
    [185]. Shigo A L. Compartmentalization of decay in trees[J]. Scientific American,1985,252(4): 96-103.
    [186]. Shigo A, Shortle W. Compartmentalization of discolored wood in heartwood of red oak[J]. Phytopathology,1979,69:710-711.
    [187]. Shortle W C. Compartmentalization of decay in red maple and hybrid poplar trees[J]. Phytopathology,1979,69(4):410-413.
    [188]. Smeekens S. Sugar-induced signal transduction in plants[J]. Annual review of plant biology, 2000,51(1):49-81.
    [189]. Soukup A, Votrubova O. Wound-induced vascular occlusions in tissues of the reed Phragmites australis:their development and chemical nature[J]. New phytologist,2005,167(2):415-424.
    [190]Sperry J. S., N. M. Holbrook, and Zimmerman M. H., et al., Spring filling of xylem vessels in wild grapevine [J]. Plant Physiology.1987,83:414-417
    [191]. Sperry J S, Tyree M T. Mechanism of water stress-induced xylem embolism[J]. Plant Physiology, 1988,88(3):581-587.
    [192]. Sufa T. Gaharu:Indonesia's endangered fragrant wood[N]. The Jakarta Post. Bogor.2010,2th February.
    [193]. Subeham, Junya U, Fujino H, et al., A field survey of agarwood in Indonesia[J]. J. Trad Med.2005, 22(4):244-251
    [194]. Suga T, Ohta S, Munesada K, Ide N, Kurokawa M, Shimizu M, Ohta E (1993) Endogenous pine wood nematicidal substance in pines, Pinus massioniana, P. strobus and P. palustris [J]. Phytochemistry. 1993,33:1395-1401
    [195]. Sulaiman M R, Zakaria Z A, Daud I A, et al. Antinociceptive and anti-inflammatory activities of the aqueous extract of Kaempferia galanga leaves in animal models[J]. Journal of Natural Medicines,2007,(2).
    [196]. Sun Q, Rost T L, Matthews M A. Pruning-induced tylose development in stems of current-year shoots of Vitis vinifera (Vitaceae)[J]. American journal of botany,2006,93(11):1567-1576.
    [197]. Sun Q, Rost T L, Matthews M A. Wound-induced vascular occlusions in Vitis vinifera (Vitaceae): Tyloses in summer and gels in winter [J]. American Journal of Botany,2008,95(12):1498-1505.
    [198]. Sun Q, Rost T L, Reid M S, et al. Ethylene and not embolism is required for wound-induced tylose development in stems of grapevines[J]. Plant Physiology,2007,145(4):1629-1636.
    [199].Tabata Y, Widjaja E, Mulyaningsih T, et al. Structural survey and artificial induction of aloeswood[J]. Wood research:bulletin of the Wood Research Institute Kyoto University,2003,90: 11-12.
    [200]Talboys, P. W. Association of tylosis and hyperplasia of the xylem with vascular invasion of the hop by Verticillium alboatrum [J], Transactions of the British Mycological Society 1958,41:249-260.
    [201]. Takemoto H, Ito M, Shiraki T, Yagura T, Honda G. Sedative effects of vapor inhalation of agawood oil and spikenard extract and identification of their active components [J]. J Nat Med.2008,62:41-46
    [202]. Tamuli P, Boruah P, Samanta R. Biochemical changes in agarwood tree (Aquilaria malaccensis Lamk) during pathogenesis[J]. J Spices and Aromat Crops.2004,13:87-91·
    [203]. Tamuli P, Boruah P, Nath S C, et al. Essential oil of eaglewood tree:a product of pathogenesis[J]. Journal of Essential Oil Research,2005,17(6):601-604.
    [204], Titarenko E, Rojo E, Leon J, et al. Jasmonic acid-dependent and-independent signaling pathways control wound-induced gene activation in Arabidopsis thaliana[J]. Plant Physiology,1997,115(2): 817-826.
    [205]Tret'yakov, K.V. Retention Data. NIST Mass Spectrometry Data Center. NIST Mass Spectrometry Data Center.2008. Available online:http://chemdata.nist.gov/mass-spc/pubs/pittcon-2000/index.htm (accessed on 6 May 2011).
    [206]. Ueda J, Fujino H, Attamimi F, et al. A field survey of agarwood in Indonesia[J]. Journal of Traditional Medicines,2005,22(4):244-251.
    [207]. Vallad G E, Goodman R M. Systemic acquired resistance and induced systemic resistance in conventional agriculture[J]. Crop Science,2004,44(6):1920-1934.
    [208]Vander Molen, G. E., J. M. Labavitch, L. L. Strand, et al., Pathogen-induced vascular gels:Ethylene as a host intermediate [J]. Physiologia Plantarum.1983,59:573-580.
    [209]. Wei J.H., Zhang Z., Yang Y., et al. P. CN101755629A (2011)
    [210]. Wei J.H., Zhang Z., Yang Y., et al. PCT/CN2012/071599 (2012)
    [211], Wendehenne D, Pugin A, Klessig D F, et al. Nitric oxide:comparative synthesis and signaling in animal and plant cells[J]. Trends in plant science,2001,6(4):177-183.
    [212]. Wheeler E A, Baas P, Gasson P E. IAWA list of microscopic features for hardwood identification[J]. IAWA Bull.(ns),1989,10:219-332.
    [213]. Wijitphan P. Method to stimulate resin formation by wounding on the Aqularia's trunk:Feb.3, 2009,US7485309B1[P].url.
    [214]Wititsuwannakul R, Wititsuwannakul D, Suwanmanee P.3-hydroxy-3-methylglutaryl coenzymeA reductase from the latex of Hevea brasiliensis[J]. Phytochemistry.1990,29(4):1401-1403
    [215]. Wojtaszek P. Oxidative burst:an early plant response to pathogen infection.[J]. Biochemical Journal,1997,322(3):681-692.
    [216]. Xia Y, Dixon RA, Lamb C. Nitric oxide functions as a signal in plant disease resistance[J]. Nature, 1998,394:585-588
    [217]. Xu Y.H, Zhang Z, Wang M.X, et al. Identification of genes related to agarwood formation: transcriptome analysis of healthy and wounded tissues of Aquilaria sinensis[J]. BMC genomics, 2013,14(1):227.
    [218]. Yaacob S. Agarwood:Trade and CITES Implementation in Malaysia[J]. Unpublished report prepared for TRAFFIC Southeast Asia, Malaysia,1999.
    [219]. Yagura T, Ito M, Kiuchi F, et al. Four new 2-(2-phenylethyl) chromone derivatives from withered wood of Aquilaria sinensis[J]. Chemical and pharmaceutical bulletin,2003,51(5):560-564
    [220]. Yanagisawa S, Yoo S D, Sheen J. Differential regulation of EIN3 stability by glucose and ethylene signalling in plants[J]. Nature,2003,425(6957):521-525.
    [221]. Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants[J]. Annual Review of Plant Physiology,1984,35(1):155-189.
    [222]. Zhang X L, Liu Y Y, Wei J H, et al. Production of high-quality agarwood in Aquilaria sinensis trees via whole-tree agarwood-induction techno logy [J]. Chinese Chemical Letters,2012,23(6): 727-730.
    [223]. Zhao FY, Wang YX. Important Signal Molecule in Plant H2O2[J]. Acta Botanica Boreali-Occidentalia Sinica,2006,26(2):427-434.
    [224], Zeng, Y.X., Zhao, C.X., and Liang Y.Z.; et al., Comparative analysis of volatile components from Clematis species growing in China[J]. Anal. Chim. Acta.2007,595:328-339.