针叶树材细胞裂解机理及超细木粉制备方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木粉在建材、农业、塑胶、化工、冶金和环保等多个领域都广泛应用。木粉的加工原料大都是不同树种的锯屑,而且取材方便、价廉、原料充足,将其超细化后适量添加于复合材料、高分子材料等,会产生各种多功能材料。
     本文试验加工原料是兴安落叶松锯屑。用显微镜观测锯屑颗粒,其断口形态极不规则,在一些颗粒内存在显著裂纹,而一些锯屑用高倍显微镜观测,会看到微裂纹。这些裂纹出现的原因有,首先锯屑颗粒己受外力作用其内部已存在微裂纹;其次是由于兴安落叶松属于急变材在生长过程中就可能出现微裂纹。根据显微观测结果可将干燥后锯屑假设为脆性板层材料,在受外力作用时木纤维的断裂可分为纵向断裂和横向断裂两种类型。横向受力使管胞间分离直至断裂,破坏针叶材的蜂窝结构;纵向受力则使管胞在长度方向上断裂,减小管胞的长径比。超细木粉的粒径范围小于兴安落叶松管胞的平均弦向直径,所以在进行木粉超细加工时必须进行细胞破壁。用蜂窝结构模拟兴安落叶松的横向管胞结构,模拟兴安落叶松早材管胞径向受力时的拉伸变形直至断裂的过程,应用断裂力学中J积分知识计算出这一过程中细胞壁结构变形直至破坏所需应力大小。将理论计算结果与国内外的不同树种细胞壁断裂实验研究结果相比较,得出早材纤维断裂强度范围。并应用结构力学和有限元的相关知识将兴安落叶松的细胞壁结构模拟成线弹性桁架结构,依据桁架结构特点对杆单元施以压应力进行微观力学模型计算,并将计算结果与传统切削理论相比较,得出细胞壁断裂所需的切削力,为超细木粉机加工刀具、主轴的设计提供了理论参考依据。
     超细木粉的加工属于纤维类材料的超细化加工,它是超细粉体制备技术的难点,纤维类材料具有很强的韧性,仅靠简单的冲击、挤压、研磨作用力很难将其进行超细化。对于纤维类材料需要施加强剪切力与强研磨力相结合的复合力场才有可能使其达到微米或亚微米尺寸。超细木粉机的设计以机械作用力为粉碎力场,突出剪切和研磨的作用,并与冲击、搅拌、摩擦作用力共同对物料进行粉碎。在超细木粉机的设计上参照国内外粉体制造的先进技术,同时根据纤维类材料加工特点在设计中注重冷却装置的设计,研发的超细木粉机能够实现对较高目数木粉的分离、分级。通过对实验制备出的不同目数木粉的形态尺寸研究,得出加工木粉的目数与时间、刀具、刀片间距之间的关系。
     对目前的分离、分级设备比较分析并结合木粉自身特点,在分离设备上选择旋风分离器。在旋风分离器的结构设计上依据旋风分离器的经典模型进行设计,依据“平衡轨道”模型对旋风分离器的分离性能进行了理论计算,将计算结果与粉体形状尺寸定义进行比较,所设计的分离设备能够达到预期要求。用经验模型和耗散损失模型对旋风分离器内的压降进行了计算。用计算流体力学软件对旋风分离器内的气体流场和不同粒径的木粉颗粒的运动状态进行了模拟。在木粉的分级上采用干式的气动分级,采用射流预分散离心风机的高速喷射气流使木粉在收集箱中的螺旋分离器中以层流流动,达到木粉的分级。
     试验制备的不同目数的木粉对其进行粉体物性实验研究后,可得出随着木粉目数的逐渐增加,则木粉的颜色也就逐步加深。这是由于目数越高的木粉其相应的加工时间也就逐渐延长,在加工过程中木粉所受热就越多,碳化现象也就越显著。在加工过程中锯屑颗粒随着加工时间逐渐延长、刀片间距离逐渐减小以及电机转速的增大,颗粒由层状、片状、棒状、针状、丝状直至最后取样观测可以看到球形度较好的木粉颗粒。对不同目数木粉进行试验测定,随着目数的增高密度变大,粉体颗粒间的空隙率变小,颗粒间的配位数增多,粉体的可压缩性变小。在常态下粉体间的主要作用力是范德华力,根据其值大小可计算出木粉的团聚数大小,木粉的目数越高其团聚数也就越大,但在超细木粉定义的目数范围内常态下木粉的性质稳定不易团聚。
Wood flour is widely used in a number of areas such as building materials, agriculture, plastics, chemical, metallurgical and environmental. Wood flour processing raw materials are different species sawdust. They are easily obtained, cheap and abundant raw materials. If added the amount to ultrafine composite polymer materials, they will produce a new multifunctional materials.
     Used the microscope to observe the larch sawdust, the fracture shape is very irregular. After amplification observations, we observed significant cracks within some of the particles. After high magnification observation, observed micro cracks in some sawdust. These cracks appear related to two factors, one is the test materials is larch, is a radical change material, micro-cracks may occur in the growth process; another sawdust has been processed, in the process had been cause internal micro cracks by the external forces. According to the observation results, the dried sawdust can be assumed to be a brittle laminate. The fracture mode of the wood fibers is separation until fracture between the tracheid, can destroy the honeycomb structure transverse of the softwood transverse, and another is that the tracheids is fracture in the longitudinal direction, so that the tracheid shorter. Based on the microscopic structure of the larch to superfine processing must do cell wall broken. Knowledge of fracture mechanics, structural mechanics and finite element theory calculate the size of the force of the wood cell wall, provides a theoretical basis for the ultra-fine wood flour machining tool spindle design. Available cellular structure to simulate the softwood tracheid structure, application of J integral in the fracture mechanics theory, simulation of Xingan Larch earlywood tracheids tensile deformation of radial force until fracture process and calculate the force in the process of cell wall structure deformation and damage. Compared the theoretical calculation results with the domestic and foreign different species of cell wall fracture experimental study results, obtained the early wood fiber breaking strength range. And apply the structural mechanics and finite element related knowledge in Xingan Larch cell wall structure to model as linear elastic truss structure. According to the structure characteristics of truss with rod unit to compressive stress, calculate the micro mechanics model, and cpmpard the calculation results and the traditional cutting theory, drawed the cutting force of cell wall fracture, provided the theoretical reference for the superfine wood powder machine tool, spindle design.
     Superfine wood flour processing belongs fiber materials the superfine processing, it is the difficulty of ultrafine powder preparation technology. Fiber material toughness, impact alone, extrusion, grinding force is difficult to ultrafine. The composite force field applying strong shear force and strong grinding force combining for the fiber material needs to be possible to reach the micron or submicron size. Superfine wood flour machine design mechanical force to crush the force field, the prominent shear and the role and impact of grinding, mixing, friction force interaction crushed materials. Based on advanced manufacturing technology of powder in the domestic and foreign about Superfine wood flour. And according to the characteristics of wood flour processing, paid attention to the design of cooling equipment. Research and development of superfine wood powder machine can realize the high mesh wood powder and grade separation. Conclude the wood flour processing relationship among mesh, time, cutter and cutter spacing.
     Current separation, grading equipment comparative analysis and test characteristics of the preparation of ultra-fine wood flour, cyclone separation equipment, it mainly collected powder dry powder-based, low manufacturing costs, easy maintenance, inactivity member, pressure drop constant, the main disadvantage is the presence of the particle separation efficiency of the small particle size is low. Design in cyclone structure design based on the classic model of the cyclone, the theoretical calculations based on the equilibrium orbit model of cyclone separation performance, comparing the calculation results with the powder shape and size of the definition, the design a separating apparatus is able to achieve the desired performance. Empirical model and dissipation loss model and the calculation of the voltage drop across the cyclone separator and the use of computational fluid dynamics software to simulate the gas flow field in the cyclone separator and the state of motion of the particles of different size of wood flour. The high-speed jet stream so that the flow of the laminar flow in the spiral separator of the wood meal in the collection box, dry-type pneumatic classifier used in the wood flour grading jet pre-dispersed centrifugal fan reaches the classification of the wood powder.
     Test preparation different mesh wood flour powder physical properties of experimental study it, can be drawn with the gradual increase of wood flour mesh, wood flour color will gradually deepen. This is its corresponding processing time also gradually extended due to the higher the mesh number of the wood powder, wood flour in the process to heat the more carbonization more remarkable. Sawdust particles during processing as the processing time by laminar, sheet, rod, needle, until the results of the last observed filamentous. Different mesh wood flour test measured with the higher density of the mesh becomes large, the porosity of the powder particles becomes small, between the particles increased coordination number, powder compressibility becomes small. The main force under normal powder van der Waals force, its magnitude can calculate the size of the reunion of wood flour, wood flour mesh greater the higher the number of its reunion, but defined in superfine wood flour stable under normal conditions within the mesh wood flour reunion is not easy.
引文
[1]Howard G B. Modern Methods of Particle Size Analysis[M]. John Wiley & Sons.1984,5
    [2]孙成林,连钦明,王清发.现代超细粉体的机械现状及发展[J].中国粉体工业.2009,(6):33-36
    [3]崔平,李凤生,杨毅等.机械混合法改性微纳米粉体的设备设计[J].中国粉体技术,2006,(1):17-20
    [4]包士雷,工建,孙永升.国内粉体工程行业的现状与发展[J].中国粉体工业,2010,(4):9-12
    [5]严冬生,冯瑞.我国纳米材料研究进展[J].中国科学院院刊,1997(5):364-366
    [6]Laemsak N, Development of boards made from oil palm frond Ⅱ:properties of binderless boards from steamexploded fibers of oil palm frond. J Wood Sci. Okuma M.2000,46:322-326
    [7]Gregorova A,Hrabalova M,Kovalcik R,et al.Surface modification of spruce wood flour and effects on the dynamic fragility of PLA/wood composites[J].Polymer Engineering and Science,2011,51(1):143-150
    [8]Suzuki S, Shintani H, Park S, Saito K, Laemsak N, Preparation of binderless boards from steam exploded pulps of oil palm (Elaeis guneensis Jaxq.):fronds and structural characteristics of lignin and wall polysaccharides in steam exploded pulps to be discussed for self-bindings[J]. Holzforschung.Okuma M,1998,52:417-426
    [9]Widyorini R, Xu J, Umemura K, Manufacture and properties of binderless particleboard from bagasse I:effect of raw material type, storage methods, and manufacturing process[J].J Wood Sci. Kawai S.2005,51:648-654
    [10]Mobarak F, Fahmy Y, Binderless iignocellulose composite from bagasse and mechanism of self-bonding. Holzforschung. Augustin H.1982,36:131-135
    [11]Motoe Ando, Masatoshi Sato. Manufacture of plywood bonded with kenaf core powder[J].The Japan Wood Research Society.2009,55(1):283-288
    [12]M. Le Baillif and K. Oksman. The influence of the extrusion process on bleached pulp fiber and its compo-sites. In:Progress in Wood and BioFibre Plastic Composites[D], Canada:Toronto,2006,5
    [13]姜增琨,刘建军,左胜利等.木质生物质常压液化及催化裂解研究[J].北京化工大学学报.2012,39(3):46-49
    [14]张海荣,庞浩,石锦志等.木粉及其组分的多元醇酸催化热化学液化[J].林产化学与工业.2012,32(2):14-20
    [15]Zhang H R,Ding F,Luo C R,et al.Liquefaction and characterization of acid hydrolysis residue of corn cob in polyhydric alcohols[J].Industrial Crops and Products,2012,39:47-51
    [16]王浩,韩秋喜,贺悦科.生物质能源及发电技术研究[J],环境工程,2012,30:461-469
    [17]齐添,邵鹏璐.解决农村能源贫困可优先推广生物质能[J].中国经济导报.2013,1,12
    [18]孙鹏,陈慧清,盖国胜.对木粉加工技术研发与装备状况的认识[J].中国建材报.2009,10,19,003
    [19]Sato T,Kobayashi N,Itaya Y,et al.Development of liquefaction technique of pulverized ligneous biomass powder[J].Industrial&Engineering Chemistry Research,2009,48(1): 373-379
    [20]Nicole M. Stark. Photodegradation and photostabilization of weathered wood flour filled polyethylene composites [D].2003.Michigan Technological University
    [21]Samayamutthirian Palaniandy, Nurdina Abd Kadir, Mariatti Jaafar. Value adding limestone to filler grade through an ultra-fine grinding process in jet mill for use in plastic industries[J].Minerals Engineering.2009,22(7):695-703
    [22]孙成林,连钦明,工清发.我国超细粉碎机械现状及发展[J].中国粉体工业,2007,(6):21-26
    [23]刁雄,李双跃,黄鹏等.超细粉碎分级系统设计与实验研究[J].现代化.2011,31(4):83-86
    [24]包士雷,工建,孙永升.国内粉体工程行业的现状与发展[J].中国粉体工业.2010(4):9-12
    [25]杨春梅,马岩,赵越等.亚纳米木粉的加工原理与运动分析[J].东北林业大学学报.2012,40(2):89-92
    [26]邱坚,李坚.纳米科技及其在木材科学中的应用前景(Ⅰ)[J].东北林业大学学报.2003,31(1):1-5
    [27]李坚,邱坚.纳米技术及其在木材科学中的应用前景(Ⅱ)[J].东北林业大学学报.2003,31(2):1-3
    [28]赵广杰.木材中的纳米尺度、纳米木材及木材——无机纳米复合材料[J].北京林业大学学报.2002,24(9):204-207
    [29]马岩.纳微米科学与技术在木材工业的应用前景展望[J].林业科学.2001,37(6):109-113
    [30]陈力,关懿平,张乐福.超微粉碎技术及其在中药加工中的应用[J].中药材.2002,25(1):55-57
    [31]尹小冬,工长会,谭涌等.超细粉碎技术现状与应用[J].中国非金属矿工业导刊.2009,(6):25-28
    [32]周宝魁.超微碎技术及设备在食品加工中的应用[J].明胶科学与技术.2010,30(6):72-74
    [33]国家林业局森林资源管理司.第七次全国森林资源清查及森林资源状况[J].林业资源管理.2010,(1):1-8
    [34]朱再胜,盖国胜,吴成宝等.不同含水量木质生物质的粉碎特性研究[J].中国粉体技术.2012,18(2):7-11
    [35]蒋忠道,许元春.针叶木阔叶木锯屑制浆造纸[J].湖北造纸.2004,4:4
    [36]Sato T, Kobayashi N, Itaya Y, et al. Development of liquefaction technique of pulverized ligneous biomass powder [J].Industrial&Engineering Chemistry Research,2009,48(1):373-379
    [37]Cao Y,Wang Y,Riley J,et al.A novel biomass air gasification process for producing tar-free higher heating value fuel gas[J].Fuel Processing Technology,2006,87(4):343-353
    [38]张希良,陈荣,何建坤.中国生物质气化发电技术的商业化分析[J].太阳能学报,2004,25(4):557-560
    [39]Pilarske J M,Matuana L M.Durability of wood flour-plastic composites exposed to accelerated freeze-thaw cycling.Ⅱ.High density polyethylene matrix[J]. Journal of Applied Polymer Science,2006,100(1):35-39
    [40]Matuana L M,Jin S,Stark N M,et al.Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer[J].Polymer Degradation and Stability,2011,96(1):97-106
    [41]陈佳.木屑与环保[J].绿化与生活,1997(2):23
    [42]盖国胜.关于交叉学科粉体工程学的建设[J].粉体技术,1995,3(6):40-42
    [43]郭瑞平,刘官厅,范天佑等.冲击载荷下含表面裂纹圆柱壳体的动态断裂[J].应用力学学报.2006,23(1):53-56
    [44]Kachanov M. Elastic solids with many cracks a simple method of analysis[J].International Journal of Solids and Structures.1987,23(1):23-43
    [45]王凡,马岩,杨春梅,赵越.超细木粉原料粉碎机的设计[J].林业机械与木工设备.2012,40(3):34-36
    [46]L.J.Gibson and M.F.Ashby, Cellular solids:Structure and properties[D].Pergamon Press, Oxford,1988
    [47]姜笑梅,程业明,殷亚方等.中国裸子植物木材志[M].科学出版社.2010,1
    [48]周杰,张光华,权国政.曲轴热锻中表层局部微米级裂纹产生机理[J].农业机械学报,2011,42(6):230-234
    [49]曹双平,王戈,余雁.几种植物单根纤维力学性能对比[J].南京林业大学学报,2010,34(5):87-90
    [50]江泽慧,费本华,侯祝强等.针叶树木材细胞力学及纵向弹性模量计算——纵向弹性模量的理论模型[J].林业科学.2002,38(5):101-107
    [51]程献宝,王小青,余雁等.纳米压痕技术在木质材料细胞壁力学研究中的应用[J].世界林业研究.2011,24(5):40-46
    [52]Parhizgar S, Zachary L W, Sun C T. Application of the Principle of Linear Fracture Mechanics to the Composite Materials[J]. Int. J. Fract,1982,20:3-15
    [53]Triboulot P, Jodin P, Pluvinage G. Validity of Fractre Mechanics Concepts Applied to Wood by Finite Element Calculation[J]. Wood Sci. and Tech.,1984,18:51-58
    [54]邵卓平,江泽慧,任海青.线弹性断裂力学原理在木材中应用的特殊性与术材顺纹理断裂[J].林业科学.2002,38(6):110-115
    [55]李大纲.木材细胞壁细观断裂及其损伤机理[J].科学技术与工程.2004,4(1):24-27
    [56]Kosei Ando, Hitoshi Onda. Mechanism for deformation of wood as a honeycomb structure Ⅱ ".First buckling mechanism of cell walls under radial compression using the generalized cell model[J]. J Wood Sci.1999,45:250-253
    [57]Junji Matsumura,Yoko Yamasaki,et al.Profile of bordered pit aspiration in Cryptomeria japonica using confocal laser scanning microscopy:pit aspiration and heartwood color[J].The Japan Wood Research Society.2005,51:328-33
    [58]邵卓平.木材损伤断裂与木材细观损伤基本构元[J].林业科学.2007,43(4):107-110
    [59]Mott L. Micromechanical properties and fracture mechanism of single wood pulp fibers[D].Doctoral dissertation from Maine University, USA,1995
    [60]Shaler S M, Groom L, Mott L. Microscopic analysis of wood fibers using ESEM andconfocal microscopy [J]. Proceeding of the Woodfiber-Plastic Composites,1996,3:25-32
    [61]Ugai Watanabe,Yuji Imamura,Ikuho Iida. Liquid penetration of precompressed wood Ⅵ:Anatomical characterization of pit fractures[J]. The Japan Wood Research Society 1998,44:158-162
    [62]Ikuo Furukawa.Studies on the fractographic features of the longitudinal tensile fracture of Coniferous wood[D]. Dissertation of Tottori Unibersity Forests,1980
    [63]费本华,余雁,黄安民.木材细胞壁力学研究进展[J].生命科学,2010.22(11):1173-1176
    [64]Mark R E. Cell Wall Mechanics of Trachieds[D]. Yale Univ. Press.1967
    [65]Mott L, Groom Les, Shaler S M. Mechanical properties of individual southerm pine fibers.Part II:Comparison of earlywood and latewood fibers with respect to tree height and juvenility[J]. Wood Fiber and Science.2002,34(2):221-237
    [66]周崟.中国落叶松属木材[M].中国林业出版社.2001,2
    [67]工伟宏,黄海兵,付朝龙.热氧老化和水浸渍对木粉/HDPE和稻壳粉/HDPE两种复合材料性能的影响[J].林产工业,2012,39(1):11-14
    [68]工伟宏,张晨夕.自然老化对木粉/HDPE复合材性能的影响及添加剂的应用.林业科学[J],2012,48(4):102-107
    [69]罗海.木塑复合材料的光降解与光稳定[J].中国塑料.2011,25(5):24-29
    [70]高景然,邱坚,李坚等.木材细胞壁的超微构造与气凝胶型木材的制备原理[J].东北林业大学学报,2008,36(11):98-100
    [71]马岩.木材横断面六棱规则细胞数学描述理论研究.生物数学学报[J],2002,17(1):64-68
    [72]齐英杰,杨春梅,马岩.马尾松细胞外廓结构简化模型的建立与仿真[J].林业科学,2006,42(9):93-95
    [73]郑世强,李明宝,杨建明.基于随机有限元法的木材断裂参数的研究[J].森林工程,2007,23(5):12-15
    [74]马岩,潘承怡.微米木纤维模压制品形成的试验装备与工艺[J].林业科学,2008,44(6):113-117
    [75]成俊卿,杨家驹,刘鹏.中国木材志[M].北京:中国林业出版社.1992,3
    [76]赵仁杰,喻云水.木质材料学[M].北京:中国林业出版社.2003,12
    [77]刘一星,赵广杰.木质资源材料学[M].北京:中国林业出版社.2003,11
    [78]朴永守.木材切削学[M].哈尔滨:东北林业大学出版社.1992,7
    [79]赵玉彬,鞠洪明.干磨技术在分子筛制备工艺中的应用[J].石油学报.2012,28(2):153-156
    [80]朱再胜,盖国胜,吴成宝.不同含水量木质生物质的粉碎特性研究[J].中国粉体技术.2012,18(2):7-11
    [81]费本华,张东升.木材断裂裂纹及应力场的分形研究[J].木材工业.2003,17(3):7-10
    [82]南京林业大学.木材切削原理与刀具[M].南京林业大学.1983.12
    [83]张自军,任汉信,华明明.木材燃烧痕迹及其对火灾的证明作用[J].山东消防,2002,12:50-51
    [84]刘宏英,杨毅,邓国栋等.硬质木炭、竹炭超细粉碎技术研究[J].中国粉体技术,2006,(2):15-17
    [85]戴宁,张裕中,吴浩等.高油脂物料物性对其微细粉碎特性的影响[J].江苏农业科学,2010,(5):411-413
    [86]王思惠肖汉宁,陆洲等.搅拌式砂磨技术制备电瓷原料[J].机械工程材料,2010,34(6):47-50
    [87]郑少华,陶珍东,刘福田.超细粉射流分级机工业样机的研制[J].中国粉体技术,2000,4
    [88]卢寿慈.粉体加工技术[M].北京:中国轻工业出版社.2000,7
    [89]Zheng J, Harris C C, Somasundaran P. A Study on Grinding and energy Input in Stirred Media Mills[J]. Powder Technology,1996,86:171-178
    [90]吴建明.当前技术水平的干式分级设备[J].有色金属(选矿部分),2010,(5):25-29
    [91]宫元娟,孟繁壮,秦军伟等.北虫草干燥特性与粉碎工艺试验[J].农业机械学 报,2012,43(5):142-146
    [92]赵建生.断裂力学及断裂物理[M].华中科技大学出版社,2003,2
    [93]俞晓明,崔益和,陈飞等.恢复系数及重力加速度的落球弹跳法测量[J].大学物理.2010,29(11):35-37
    [94]Mankosa M J, Adel G T, Yoon R H. Effect of Operating Parameters in Stirred Ball Mill Grinding of Coal[J]. Powder Technology.1989,59:255-260
    [95]陶珍东,郑少华.用旋风分离器进行微细粉分级的可行性[J].化工装备技术,1996,16(1):14-16
    [96]江津河,李建,李建隆.环流式旋风分离器用于超细颗粒分级的实验研究[J].潍坊学院学报,2010,10(2):85-87
    [97]闫顺林,魏杰儒,董标.新型弯扭叶片旋转煤粉分离器分离性能的冷态数值研究[J].动力工程学报.2013,33(1):42-46
    [98]Clift R, Ghadiri M and Hoffmann AC A critique of two models for cyclone performance[J]. AIChE Journal.1991,37:285-289
    [99]张礼华.旋风预热器阻力损失的构成及其影响因素[J].新世纪水泥导报,2008,(8):5-7
    [100]崔洁,陈雪莉,王辅臣.新型旋风分离器内近壁面颗粒浓度的分布特性[J].中国电机工程学报.2009,29(12):118-123
    [101]沈志恒,李巍,陆慧林.1025t/h循环流化床内气固两相流动及反应特性的数值研究[J].石油化工设备,2012,41(3):15-19
    [102]李敏,贲伟,王维刚等.旋风分离器压降数值分析[J].科学技术与工程.2010,10(10):2552-2555
    [103]谭慧敏,王建军,马艳杰.排尘锥结构对旋风分离器内气固两相分离性能影响的研究[J].高校化学工程学报,2011,25(4):590-596
    [104]姚宗路,欧阳双平,孟海波.颗粒状秸秆物料流动特性试验[J].农业机械学报,2012,43(7):112-116
    [105]刘纯捷,胡天群,吴磊.流化床内复杂物料气力筛分问题的数值仿真分析[J].水动力学研究与进展A辑,2013,28(2):225-229
    [106]Muschelknautz E Die Berechnung von Zyklonabscheidern Fur Gase (in German) [J]. Chemie-Ing.1972,44:63-71
    [107]Muschelknautz E.Theorie der Fliehkraftabscheider mit besondered Berucksichtigung hoher Temperaturen un Drucke(in German) [J].VDI-Berichte,1980,36(3):49-60
    [108]赵峰.三系列高固气比旋风预热器系统的冷模试验研究[D].西安:西安建筑科技大学,2006,5
    [109]韩婕,刘阿龙,彭东辉.旋风分离器两相流动数值模拟研究进展[J].天然气化工,2012,37(5):55-61
    [110]谢建民,洪秉玲,张志军等.旋风分离器磨损与防磨措施的研究[J].工业安全与环保2005,31(11):36-37
    [111]余璐璐,许振明.高压静电分选技术在回收废旧电路板中的研究进展[J].材料导报,2011,25(6):139-145
    [112]李成林,王琪,吴中连等.基于平衡轨道模型和CFD的旋风分离器除尘特性分析[J].机械,2011,38(11):9-14
    [113]尚志新,吴成宝,盖国胜等.采用冲击磨粉碎木屑的试验研究[J].中国粉体技术,2011,17(6):53-57
    [114]李坚.木材科学[M].北京:高等教育出版社,2002,8
    [115]骆介禹,骆希明.纤维基质材料阻燃技术[M].北京:化学工业出版社,2003,(1):20-35
    [116]Anatole A. Klyosov著.王伟宏,宋永明,高华译.木塑复合材料[M].北京:科学出版社,2010,2
    [117]胡娜,吴志平,王国栋等.木粉/聚乙烯阻燃复合材料的阻燃特性和力学性能研究[J].中南林业科技大学学报,2012(32)1:28-31
    [118]Sally Humphreys. Market developments in wood-plastic composites[J]. JEC Composites Magazine.2009,(46):26-27
    [119]Ashori A. Wood-plastic composites as promising green-composites for automotive industries[J].Bioresource Technology.2008,99(11):4661-4667
    [120]N. M.Stark. The effect of weathering variables on the lightness of HDPE/WF composites[J]. In:Eighth International Conference on Wood fiber Composites, Madison, WI,2005,(5):23-25
    [121]M.M.Stark and R.E.Roland.Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites[J].Wood J Fiber Sci.,2003,35(2):167-174
    [122]陈振兴.特种粉体[M].北京:化学工业出版社,2004,6
    [123]陆厚根.粉体技术导论[M].上海同济大学出版社,2008,6
    [124]Paulrud S, Nilsson C.The effects of particle characteristics on emissions from burning wood fuel powder Fuel[J],2004,83(7):813-821
    [125]翁星星,盖国胜,吴成宝等.林木生物质剪切粉碎特性及其机理分析[J].林产化学与工业,2012,32(1):19-24
    [126]谢洪勇,刘志军.粉体力学与工程[M].北京:化学工业出版社,2007,8
    [127]文瑞芝,胡云楚,袁莉萍.阻燃杨木粉热解过程的红外谱图分析[J].中南林业科技大学学报.2011,(31)2:100-102