姜黄素通过线粒体途径诱导人脉络膜黑色素瘤细胞死亡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉络膜黑色素瘤(choroidal melanoma, CM)是成人最常见的眼内恶性肿瘤。CM的治疗方法尽管已有一些新进展,除外科手术外,目前多采取综合性治疗,如放疗、化疗、冷冻、激光、免疫及光动力学等,但其疗效有限。目前的研究结果,尚不足以阐明肿瘤发生的机制。姜黄素作为天然多酚类物质且对多种疾病尤其是癌症具有抑制和治疗作用,因此倍受研究者的关注。
     虽然有实验表明姜黄素对鼠和人类的皮肤黑色素瘤细胞有毒性作用,但是姜黄素对人眼脉络膜黑色素瘤细胞的作用尚无相关报道。本实验是通过对人眼脉络膜黑色素瘤细胞与成纤维细胞和脉络膜黑色素细胞进行比较,研究姜黄素对人眼脉络膜黑色素瘤细胞的毒性作用。通过对姜黄素诱导肿瘤细胞产生毒性作用的相关生物学机制如线粒体细胞色素c的释放和caspase-9与caspase-3的激活的研究,进一步阐明姜黄素诱导细胞毒性作用的信号通路。本实验结果表明姜黄素能诱导脉络膜黑色素瘤细胞死亡且呈剂量依赖效应和时间依赖效应。姜黄素诱导脉络膜黑色素瘤细胞的死亡是通过线粒体细胞色素c的释放并激活caspase-9-caspase-3通路实现的。
     本实验首次将姜黄素应用于人眼脉络膜黑色素瘤的研究,这个令人振奋的体外实验结果为进一步研究姜黄素对脉络膜黑色素瘤的治疗奠定了基础,并且随着姜黄素生物利用率的提高,很可能使这一天然的药物在将来成为治疗脉络膜黑色素瘤有效的治疗药物,为脉络膜黑色素瘤患者的治疗提供一种新方法。
Uveal melanoma is the most common primary intraocular tumor in adults and eventually metastasizes to the liver in up to 50% of patients within15 years after the initial diagnosis. Despite advances in diagnosis and treatment of uveal melanoma in the last decades, the overall mortality rate remains high, and systemic uveal melanoma metastases are generally not amenable to treatment. Based on the Collaborative Ocular Melanoma Study Group’s report, only 45% of uveal melanoma patients were alive and clinically cancer free 12 years after treatment.
     Curcumin, a yellow colored polyphenol isolated from the plant Curcuma longa, the principal curcuminoid of the popular spice turmeric, is a member of the ginger family (Zingiberaceae). It was first discovered in 1815, isolated in crystalline form in 1870. Curcumin has a long history of being used as a safe herbal medicine in India and China.Curcumin is a pleiotropic molecule that possesses various biological activities. Curcumin has been shown to have inhibitory effects relevant to all three stages of carcinogenesis: initiation, promotion, and progression.It has been widely studied for its anti-inflammatory, anti-angiogenic, antioxidant and wound healing effects. Curcumin has been demonstrated recently to possess anti-tumor effects both in vitro and in vivo by a variety of mechanisms. It inhibits proliferation and induces apoptosis in a variety of cancer cell types in vitro, including cells from cancers of the prostate, breast, lung, pancreas, bladder, cervix, head and neck, ovary, bone marrow, brain, kidney, and skin. A broad spectrum of anticarcinogenic activity of curcumin has been demonstrated in experimental animal model systems of duodenal, colon, oral, liver, breast, and skin cancers. Whereas curcumin may be relatively nontoxic to normal cells, in vitro studies in tumor cells suggest that curcumin is cytotoxic at low concentrations. Moreover, at least 12 active clinical trials of curcumin for the treatment of various diseases are ongoing in the United States, Israel, and Hong Kong.
     The cytotoxic effect of curcumin on tumor cells is attributed to induction of cell apoptosis mediated by a mitochondria passway. Mitochondria play an important role in cell proliferation and apoptosis processes both in normal and malignant cells. An excess of pro-apoptotic over anti-apoptotic signals initiates increased mitochondrial outer membrane permeability, which leads to the release of cytochrome c from the mitochondrial intermembrane space to the cytosol. Human somatic cytochrome c is a 15 kDa, 104 amino acid polypeptide that participates in apoptosis. Once cytochrome c is released, it activates pro-caspase-9 into caspase-9, which in turn activates the effector caspase-3, allowing apoptosis to proceed.
     It has been reported that curcumin is cytotoxic in murine and human cutaneous melanoma cells in vitro. Curcumin inhibits lung metastasis of cutaneous melanoma cells in mice. However, the effects of curcumin on uveal melanoma cells has not been reported previously. The purpose of the present study was to investigate the cytotoxic effects of curcumin on human uveal melanoma cells in vitro with comparison to normal human scleral fibroblasts. Curcumin induced biological changes in tumor cells, such as release of cytochrome c from mitochondria and the activation of caspase-9 and caspase-3, were also studied in uveal melanoma cells to elucidate the signaling pathway involved in curcumin-induced cytotoxicity in this neoplasm.
     Methods:
     Two human uveal melanoma cell lines (M21 and SP6.5), scleral fibroblasts and choroidal melanocytes were treated with curcumin. The effects of curcumin on cell viability were assessed by using the MTT (3-[4,5-dimethylthiazol-2-yl]2,5-diphenyltetrazolium bromide) assay. In dose-response studies, 24 hr after seeding, curcumin was applied to the cultures at final concentrations of 3, 10, 30 and 100μM and cultured for another 48 hr. In time-response studies, curcumin was added to the culture at a final concentration of 30μM and cultured for 3, 12, 24 and 48 hr. Cytosol cytochrome c levels and the activities of caspase-9 and caspase-3 were measured by using an enzyme-linked immunosorbent assay.
     Results:
     Curcumin induced cell death of cultured human uveal melanoma cells in a dose-dependent manner and time-dependent manner, with IC50 at 19.05μM and 22.39μM in M21 and SP6.5 cell lines, respectively. The difference in cell viability between melanoma cells treated with or without curcumin was significant (P<0.05) at 3-100μM levels. Curcumin at lower concentrations (10-30μM) selectively reduced the cell viability of uveal melanoma cells, without affecting cell viability of fibroblasts and choroidal melanocytes. The difference in cell viability between melanoma cells treated with or without curcumin was significant (P<0.05) at 12-48 h. Curcumin significantly increased the level of cytosol cytochrome c (2 fold greater than the controls after 2 h treatment), caspase-9 and caspase-3 activities (approximately 4.5 and 6 fold greater than the controls after 2-6 h treatment, respectively) in a dose-dependent manner. The difference in the cytosol cytochrome c level between the curcumin-treated group (10, 30, and 100μM) and the controls was statistically significant (P<0.05). The difference in the caspase-9 and -3 levels between curcumin treated groups (3, 10, 30 and 100μM) and the controls was statistically significant (P< 0.05).
     Conclusions:
     Curcumin induces uveal melanoma cell death in a dose- and time-dependent manner. Curcumin induces cell death of the human uveal melanoma cell lines M21 and SP6.5 in a dose- and time-dependent manner. The effects of curcumin on uveal melanoma cell M21 and SP6.5 were compared with scleral fibroblasts. Curcumin at 10μM and 30μM levels induces cell death of uveal melanoma cell whereas the viability of fibroblasts is not affected. Our results suggested that anticancer specificity presents in curcumin for uveal melanoma cells. In the present studies, release of cytochrome c into the cytosol occurred early (2 hr after curcumin treatment). Then significant increase of caspase-9 and caspase-3 was detected after 2–6 hr treatment, followed by significantly decreased cell viability after 12 hr. Curcumin induces cell death by initiating the release of mitochondrial cytochrome c, thereby activating the caspase-9-caspase-3 apoptosis pathway in uveal melanoma cells. These encouraging in-vitro results support further investigation of the use of curcumin in the treatment of uveal melanoma.
引文
[1]Shields CL, Shields JA. Ocular melanoma: relatively rare but requiring respect [J]. Clin Dermatol, 2009, 27:122-133.
    [2]Egan KM, Seddon JM, Glynn RJ, et al. Epidemiologic aspects of uveal melanoma [J]. Surv Ophthalmol,1988, 32:239-251.
    [3]Sisley K, Cottam DW, Rennie IG, et al. Nom-random abnormalities of chromosomes 3, 6 and 8 associated with posterior uveal melanoma [J]. Genes Chromosomes Cancer, 1992, 5: 197-200.
    [4]Seddon JM, Egan KM, Gragondas ES, eds. Epidemiology of uveal melanoma[M]. St.Louis: Mosby. 1989, 639-646.
    [5]Sisley K, Rennie IG, ParsonsMA, et al. Abnormalities of chromosomes 3 and 8 in posterior uveal melanoma uveal melanoma correlate with prognosis [J]. Genes Chromosomes Cancer, 1997, 19(1):22-28.
    [6]Prescher G, Bornfeld N, Horsthemke B, et al. Prognostic implications of monosomy 3 in uveal melanoma [J]. Lancet, 1996, 347(9010):1222-1225.
    [7]Aalto Y, ErikssonL, SeregardS, et al. Concomitant lossof chromosome 3 and whole arm losses and gains of chromosome 1, 6, or 8 in metastasizing primary uveal melanoma [J]. Invest Ophthalmol Vis Sct, 2001, 42(2):313-317.
    [8]Singh AD, Tubbs R, Biscotti C, Schoenfield L, Trizzoi P. Chromosomal 3 and 8 status within hepatic metastasis of uveal melanoma [J]. Arch Pathol Lab Med, 2009, 133(8): 1223-1227.
    [9]Naus NC, van D Rrunen E, de Klein A, et al. Characterization of complex chromosomal abnormalities in uveal melanoma by fluorescence in situhybridization, spectral karyotyping, and comparative genomic hybridization [J]. Genes Chromosomes Cancer, 2001, 30(3):267- 273.
    [10]ScholesAG, Damato BE, Nunn J, et al. Monosomy 3 in uveal melanoma: Correlation with clinical and histologic predictors of survival [J]. Invest Ophthalmol Vis Sci, 2003, 44(3): 1008-1011.
    [11]Parrella P, Sidransky D, Merbs SL. Allelotype of posterior uveal melanoma: Implications for a bifurcated tumor progression pathway [J]. Cancer Res, 1999, 59(13):3032-3037.
    [12]White VA, McNeil BK, Horsman DE. Acquired homozygosity (isodisomy) of chromo- some 3 in uveal melanoma [J]. Cancer Genet Cytogenet, 1998, 102(1):40-45.
    [13]Pepiński W, So?tyszewski I, Skawrońska M, Rogowski M, Zalewska R, Koz?owski L, 56Filipowski T, Janica J. Loss of heterozygosity (LOH)-implications for human genetic iden-tification [J]. Folia Histochem Cytobiol, 2009, 47(1):105-110.
    [14]Gustafsson B, Stal O, Gustafsson B. Overexpression of MDM2 in acute childhood lymphoblastic leukemia [J]. Pediatr Hematol Oncol, 1998, 15:519-526s.
    [15]Zietz C, Rossle M, Haas C, et al. MDM-2 oncoprotein overexpression, p53 gene mutation, and VEGF up-regulation in angiosarcomas [J]. Am J Pathol, 1998, 153: 1425-1433.
    [16]Freedman DA, Wu L, Levine AJ. Functions of the MDM2 oncoprotein [J]. Cell Mol Life Sci, 1999, 55:96-107.
    [17]Nielsen NH, Emdin SO, Cajander J, Landberg G. Deregulation of cyclin E and D1 in breast cancer is associated with inactivation of the retinoblastoma protein [J]. Oncogene, 1997, 14:295-304.
    [18]Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53 [J]. Nature, 1997, 387:296-299.
    [19]Coupland SE, Anastassiou G, StangA, et al. The prognostic value of cyclin D1, p53, and MDM2 protein expression in uveal melanoma [J]. J Pathol, 2000, 191(2):120-126.
    [20]Harbour JW, Worley L, Ma D, et al. Transducible peptide therapy for uveal melanoma and retinoblastoma [J]. Arch Ophthalmol, 2002, 120(10):1341-1346.
    [21]Florenes VA, Maelandsmo GM, Forus A, Andreassen A, Myklebost O, Fodstad O: MDM2 gene amplification and transcript levels in human sarcomas: relationship to TP53 gene status [J]. J Natl Cancer Inst, 1994, 86:1297-1302.
    [22]Landers JE, Cassel SL, George DL: Translational enhancement of mdm2 oncogene expression in human tumor cells containing a stabilized wild-type p53 proteinv [J]. Cancer Res, 1997, 57:3562-3568.
    [23]Mouriaux F, Chahud F, Maurage CA, Malecaze F, Labalette P. Implication of stem cell factor in the proliferation of choroidal melanocytes [J]. Exp Eye Res, 2001, 73(2):151-157.
    [24]Lefevre G, Glotin AL, Calipel A, et al. Roles of stem cell factor/c-Kit and effects of Glivec/STI571 in human uveal melanoma cell tumorigenesis [J]. Biol Chem, 2004, 279(30): 31769-31779.
    [25]All-Ericsson C, Girnita L, Muller-Brunotte A, et al. c-Kit-dependent growth of uveal melanoma cells: a potential therapeutic target [J]? Invest Ophthalmol Vis Sci,2004,45(7): 2075-2082.
    [26]Pereira PR, Odashiro AN, Marshall JC, Correa ZM, Belfort R Jr, Burnier MN Jr. The role of c-kit and imatinib mesylate in uveal melanoma [J]. J Carcinog, 2005,19,4:19.
    [27]Guerriere-Kovach PM, Hunt EL, Patterson JW, Glembocki DJ, English JC 3rd, Wick MR:Primary melanoma of the skin and cutaneous melanomatous metastases: comparative histologic features and immunophenotypes [J]. Am J Clin Pathol, 2004, 122(1):70-77.
    [28]Chana JS, Cree IA, Foss AJ, Hungerford JL, Wilson GD. The prognostic significance of c-myc oncogene expression in uveal melanoma [J]. Melanoma Res, 1998, 8(2):139-144.
    [29]Chana JS, Wilson GD, Cree IA, et al. c-myc, p53, and Bcl-2 expression and clinical outcome in uveal melanoma [J]. Bt J Ophthalmol, 1999, 83(1):110-114.
    [30]Parrella P, Caballero OL, Sidransky D, et al. Detection of c-myc amplification in uveal melanoma by fluorescent in situ hybridization [J]. Invest Ophthalmol Vis Sci, 2001, 42(8): 1679-1684.
    [31]Cruz F 3rd, Rubin BP, Wilson D, et al. Absence of BRAF and NRAS mutations in uveal melanoma [J]. Cancer Res, 2003, 63(18):5761-5766.
    [32]Edmunds SC, Cree IA, Di Nicolantonio F, et al. Absence of BRAF gene mutations in uveal melanomas in contrast to cutaneousmelanomas [J]. Br J Cancer, 2003, 88(9):1403-1405.
    [33]Al-Jamal RT, Kivel? T. KI-67 immunopositivity in choroidal and ciliary body melanoma with respect to nucleolar diameter and other prognostic factors [J]. Curr Eye Res, 2006, 31(1): 57-67.
    [34]Chowers I, Folberg R, Livni N, Pe'er J. p53 Immunoreactivity, Ki-67 expression, and microcirculation patterns in melanoma of the iris, ciliary body, and choroid [J]. Curr Eye Res, 2002, 24(2):105-108.
    [35]Mooy CM, De Jong PT, Van der Kwast TH, Mulder PG, Jager MJ, Ruiter DJ. Ki-67 immunostaining in uveal melanoma. The effect of pre-enucleation radiotherapy [J]. Ophthal- mology, 1990, 97:1275-1280.
    [36]Seregard S, Oskarsson M, Spangberg B. PC-10 as a predictor of prognosis after antigen retrieval in posterior uveal melanoma [J]. Invest Ophthalmol Vis Sci, 1996, 37:1451- 1458.
    [37]Chowers I, Folberg R, Livni N, Pe’er J. Comparison of microcirculation patterns and MIB-1 immunoreactivity in iris and posterior uveal melanoma [J]. Ophthalmology, 2001, 108:367-371.
    [38]Vadlamudi RK, Kumar R. P21-activated kinases in human cancer [J]. Cancer Metastasis Rev, 2003, 22:385-393.
    [39]Pavey S, Zuidervaart W, van Nieuwpoort F, Packer L, Jager M, Gruis N, Hayward N. Increased p21-activated kinase-1 expression is associated with invasive potential in uveal melanoma [J]. Melanoma Res, 2006, 16(4):285-296.
    [40]Scholes AG, LiloglouT, Maloney P, et al. Loss of heterozygosity on chromosomes 3, 9, 13, and 17, including the retinoblastoma locus, in uveal melanoma [J]. Invest Ophthalmol VisSct, 2001, 42(11):2472-2477.
    [41]Brantley MA Jr, Harbour JW. Inactivation of retinoblastoma protein in uveal melanoma by phosphorylation of sites in the COOH-terminal region [J]. Cancer Res, 2000, 60(16): 4320-4323.
    [42]Errico ME, Staibano S, Tranfa F, et al. Expression of cyclin-D1 in uveal malignant melanoma [J]. Anticancer Res, 2003, 23(3B):2701-2706.
    [43]Merbs SL, Sidransky D. Analysis of p16 (CDKN2/MTS1/INK4A) alterations in primary sporadic uveal melanoma [J]. Invest Ophthalmol Vis Sci, 1999, 40(3):779-783.
    [44]Van der Velden PA, Metzelaar-Blok JA, Bergman W, et al. Promoter hypermethy- lation: Acommon cause of reduced p16 (INK4a) expression in u-veal melanoma [J]. Cancer Res, 2001, 61(13):5303-5306.
    [45]Prives C. Signaling to p53: breaking the MDM2-p53 circuit [J]. Cell, 1998, 95:5-8.
    [46]Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T,Van Dyke T: p53-dependent apoptosis suppresses tumor growth andprogression in vivo [J]. Cell, 1994, 78:703-711.
    [47]Prives C, Hall PA: The p53 pathway [J]. J Pathol, 1999, 187:112-126.
    [48]Tobal K, Warren W, Cooper CS, McCartney A, Hungerford J, Lightman S. Increased expression and mutation of p53 in choroidal melanoma [J]. Br J Cancer, 1992, 66:900-904.
    [49]Jay V, Yi Q, Hunter WS, Zielenska M. p53 expression in uveal malignant melanomas [J]. Pathology, 1996, 28:306-308.
    [50]Wynford Thomas D. p53 in tumour pathology: can we trust immunocytochemistry [J]? J Pathol, 1992, 166:329-330.
    [51]Janssen K, Kuntze J, Busse H, et al. p53 oncoprotein overexpression in choroidal melanoma [J]. Mod Pathol, 1996, 9(3):267-272.
    [52]Brantley MA Jr, Worley L, Harbour JW. Altered expression of Rb and p53 in melanomas following plaque radiotherapy [J]. AM J Ophthalmol, 2002, 133(2):242-248.
    [53]Kishore K, Ghazvini S, Char DH, Kroll S, Selle J. p53 gene and cell cycling in uveal melanoma [J]. Am J Ophthalmol, 1996, 121:561-567.
    [54]Brantley MA Jr, Harbour JW. Deregulation of the Rb and p53 pathways in uveal melanoma [J]. Am J Pathol, 2000, 157(6):1795-1801.
    [55]Hussein MR. The relationships between p53 protein expression and the clinicopatho- logical features in the uveal melanomas [J]. Cancer Biol Ther, 2005, 4(1):57-59.
    [56]Foster WJ, Fuller CE, Perry A, et al. Status of the NF1 tumor suppressor locus in uveal melanoma [J]. Arch Ophthalmol, 2003, 121(9):1311-1315.
    [57]Iscovich J, Abdulrazik M, Cour C, et al. Prevalence of the BRCA2 6174 del T mutation in Israeli uveal melanoma patients [J]. Int J Cancer, 2002, 98(1):42-44.
    [58]Bardak Y, Cekic O, Ayhan A, et al. nm23 Expression in choroidal melanoma [J]. Ophthal- mic Res, 2000, 32(6):257-260.
    [59]Bakalian S, Marshall JC, Faingold D, Logan P, Antecka E, Burnier MN Jr. Expression of nm23-H1 in uveal melanoma [J]. Melanoma Res, 2007, 17(5):284-290.
    [60]Martins CM, Fernandes BF, Antecka E, Di Cesare S, Mansure JJ, Marshall JC, Burnier MN Jr. Expression of the metastasis suppressor gene KISS1 in uveal melanoma [J]. Eye (Lond), 2008, 22(5):707-711.
    [61]Abdel-Rahman MH, Yang Y, Zhou XP, Craig EL, Davidorf FH, Eng C. High frequency of submicroscopic hemizygous deletion is a major mechanism of loss of expression of PTEN in uveal melanomav [J]. J Clin Oncol, 2006, 24(2):288-295.
    [62]Klisovic DD, Katz SE, Effron D, et al. Depsipeptide(FR901228) inhibits proliferation and induces apoptosis in primary and metastatic human uveal melanoma cell lines [J]. Invest Ophthalmol Vis Sci, 2003, 44(6):2390-2398.
    [63]Chana JS, Wilson GD, Cree IA, et al. c-myc, p53, and Bcl-2 expression and clinical outcome in uveal melanoma [J]. Br J Ophthalmol, 1999, 83(1):111-114.
    [64]McGill GG, Horstmann M, Widlund HR, et al. Bcl-2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability [J]. Cell, 2002, 109(6):707-718.
    [65]Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis [J]. Genes Dev, 1999, 13:1899-1911.
    [66]Yin C, Knudson CM, Korsmeyer SJ, Van Dyke T. Bax suppresses tumorigenesis and stimulates apoptosis in vivo [J]. Nature, 1997, 385: 637-640.
    [67]Basu A, Haldar S. The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death [J]. Mol Hum Reprod, 1998, 4:1099-1109.
    [68]Jay V, Yi Q, Hunter WS, Zielenska M: Expression of bcl-2 in uveal malignant melanoma [J]. Arch Pathol Lab Med, 1996, 120:497-498.
    [69]Hussein MR. Analysis of Bcl-2 protein expression in choroidal melanomas [J]. J Clin Pathol, 2005, 58(5):486-489.
    [70]Li H, Niederkorn JY, Neelam S, et al. Resistance and susceptibility of human uveal melanoma cells to TRAIL-induced apoptosis [J]. Arch Ophthalmol, 2005, 123(5):654-661.
    [71]Anastassiou G, Coupland SE, Stang A, et al. Expression of Fas and Fas ligand in uveal melanoma: biological implication and prognostic value [J]. J Pathol, 2001,194(4):466-472.
    [72]Repp AC, Mayhew ES, Howard K, et al. Role of fas ligand in uveal melanoma-induced liver damage [J].Graefes Arch Clin Exp Ophthalmol, 2001, 239(10):752- 758.
    [73]Su F, Li B, Wang J, Xu X, Ren R, Li L, Gao F, Liu X. Molecular regulation of vascu- logenic mimicry in human uveal melanoma cells: role of helix-loop-helix Id2 (inhibitor of DNA binding 2) [J]. Graefes Arch Clin Exp Ophthalmol, 2009, 247(3):411-419.
    [74]Rothlein R, Dustin ML, Marlin SD. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1[J]. J Immunol, 1986, 137:1270-1274.
    [75]Springer TA. Adhesion receptors of the immune system [J]. Nature,1990, 346: 425- 434.
    [76]Boyd AW, Wawryk SO, Burns GF, Fekondo JV. Intercellular adhesion molecule-1 (ICAM-1) has a central role in cell-cell contact-mediated immune mechanisms [J]. Proc Natl Acad Sci USA, 1988, 85:3095-3099.
    [77]Denton KJ, Stretch JR, Gatter KC, Harris AL. A study of adhesion molecules as markers of progression in malignant melanoma [J]. J Pathol, 1992, 167:187-191.
    [78]Johnson JP, Stade BG, Holzmann B, Schwable W, Riethmüller G. De novo expression of intercellular adhesion molecule-1 in melanoma correlates with increased risk of metastasis [J]. Proc Natl Acad Sci USA, 1989, 86:641-644.
    [79]Carrel S, Gross N, Schreyer M, Zografos L. Surface antigenic profile of uveal melanoma lesions analysed with a panel of monoclonal antibodies directed against cutaneous melanoma [J]. Anticancer Res, 1990, 10:81-89.
    [80]Natali PG, Bigotti A, Nicotra MR, Nardi RM, Delovu A, Segatto O, Ferrone S. Analysis of the antigenic profile of uveal melanoma lesions with anti-cutaneous melanoma-associated antigen and anti-HLA monoclonal antibodies [J]. Cancer Res, 1989, 49:1269-1274.
    [81]Anastassiou G, Schilling H, Stang A, Djakovic S, Heiligenhaus A, Bornfeld N. Expression of the cell adhesion molecules ICAM-1, VCAM-1 and NCAM in uveal melanoma: a clinicopathological study [J]. Oncology, 2000, 58(1):83-88.
    [82]Giancotti FG, Mainiero F. Integrin-mediated adhesion and signaling in tumorigenesis [J]. Biochem Biophys Acta, 1994, 1198:47-64.
    [83]Ma D, Niederkorn JY. Role of epidermal growth factor receptor in the metastasis of intraocular melanomas [J]. Invest Ophthalmol Vis Sci, 1998, 39(7):1067-1075.
    [84]Hendrix MJ, Seftor EA, Seftor RE, Kirschmann DA, Gardner LM, Boldt HC, Meyer M, Pe'er J, Folberg R. Regulation of uveal melanoma interconverted phenotype by hepatocyte growth factor/scatter factor (HGF/SF) [J]. Am J Pathol, 1998, 152(4):855-863.
    [85]Mallikarjuna K, Pushparaj V, Biswas J, Krishnakumar S. Expression of insulin-like growthfactor receptor (IGF-1R), c-Fos, and c-Jun in uveal melanoma: an immunohisto- chemical study [J]. Curr Eye Res, 2006, 31(10):875-883.
    [86]Economou MA, All-Ericsson C, Bykov V, Girnita L, Bartolazzi A, Larsson O, Seregard S. Receptors for the liver synthesized growth factors IGF-1 and HGF/SF in uveal melanoma: intercorrelation and prognostic implications [J]. Invest Ophthalmol Vis Sci, 2005, 46(12): 4372-4375.
    [87]Blessing K, Grant JJ, Sanders DS, Kennedy MM, Husain A, Coburn P. Small cell malignant melanoma: a variant of naevoid melanoma. Clinicopathological features and histological differential diagnosis [J]. J Clin Pathol, 2000, 53(8):591-595.
    [88]Baisden BL, Askin FB, Lange JR, Westra WH. HMB-45 immunohistochemical staining of sentinel lymph nodes: a specific method for enhancing detection of micrometastases in patients with melanoma [J]. Am J Surg Pathol, 2000, 24(8):1140-1146.
    [89]Orchard GE. Comparison of immunohistochemical labelling of melanocyte differentiation antibodies melan-A, tyrosinase and HMB 45 with NKIC3 and S100 protein in the evaluation of benign naevi and malignant melanoma [J]. Histochem J, 2000, 32(8):475- 481.
    [90]Heegaard S, Jensen OA, Prause JU. Immunohistochemical diagnosis of malignant melanoma of the conjunctiva and uvea: comparison of the novel antibody against melan-A with S100 protein and HMB-45 [J]. Melanoma Res, 2000, 10(4):350-354.
    [91]Burnier MN Jr, McLean IW, Gamel JW. Immunohistochemical evaluation of uveal melanocytic tumors. Expression of HMB-45, S-100 protein, and neuron-specific enolase [J]. Cancer, 1991, 68(4):809-814.
    [92]Iwamoto S, Burrows RC, Kalina RE, George D, Boehm M, Bothwell MA, Schmidt R. Immunophenotypic differences between uveal and cutaneous melanomas [J]. Arch Ophthalmol, 2002, 120(4):466-470.
    [93]Shidham VB, Qi DY, Acker S, Kampalath B, Chang CC, George V,Komorowski R. Evaluation of micrometastases in sentinel lymph nodes of cutaneous melanoma: higher diagnostic accuracy with Melan-A and MART-1 compared with S-100 protein and HMB-45 [J]. Am J Surg Pathol, 2001, 25(8):1039-1046.
    [94]Shidham VB, Chang CC, Komorowski R. MCW melanoma cocktail for the evaluation of micrometastases in sentinel lymph nodes of cutaneous melanoma [J]. Expert Rev Mol Diagn, 2005, 5(3):281-290.
    [95]O'Reilly FM, Brat DJ, McAlpine BE, Grossniklaus HE, Folpe AL, Arbiser JL. Microph- thalmia transcription factor immunohistochemistry: a useful diagnostic marker in thediagnosis and detection of cutaneous melanoma, sentinel lymph node metastases, and extracutaneous melanocytic neoplasms [J]. J Am Acad Dermatol, 2001, 45(3):414-419.
    [96]Mouriaux F, Vincent S, Kherrouche Z, Maurage CA, Planque N, MontéD, Labalette P, Saule S. Microphthalmia transcription factor analysis in posterior uveal melanomas [J]. Exp Eye Res, 2003, 76(6):653-661.
    [97]Clarkson KS, Sturdgess IC, Molyneux AJ. The usefulness of tyrosinase in the immunohistochemical assessment of melanocytic lesions: a comparison of the novel T311 antibody (anti-tyrosinase) with S-100, HMB45, and A103 (anti-melan-A) [J]. J Clin Pathol, 2001, 54(3):196-200.
    [98]Boldin I, Langmann G, Richtig E, Schwantzer G, Ardjomand N, Wegscheider B, El- Shabrawi Y. Five-year results of prognostic value of tyrosinase in peripheral blood of uveal melanoma patients [J]. Melanoma Res, 2005, 15(6):503-507.
    [99]Hau P, Apfel R, Wiese P, Tschertner I, Blesch A, Bogdahn U. Melanoma-inhibiting activity (MIA/CD-RAP) is expressed in a variety of malignant tumors of mainly neuroec- todermal origin [J]. Anticancer Res, 2002, 22(2A):577-583.
    [100]Hau P, Wise P, Bosserhoff AK, Blesch A, Jachimczak P, Tschertner I, Bogdahn U, Apfel R. Cloning and characterization of the expression pattern of a novel splice product MIA (splice) of malignant melanoma-derived growth-inhibiting activity (MIA/CD-RAP) [J]. J Invest Dermatol, 2002, 119(3):562-569.
    [101]Schaller UC, Mueller AJ, Bosserhoff AK, Haraida S, L?hrs U, Buettner R, Kampik A. Melanoma inhibitory activity (MIA). Evaluation of a new tumor-associated antigen as a serum marker for uveal melanomas [J]. Ophthalmologe, 2000, 97(6):429-432.
    [102]Schaller UC, Bosserhoff AK, Neubauer AS, Buettner R, Kampik A, Mueller AJ. Melanoma inhibitory activity: a novel serum marker for uveal melanoma [J]. Melanoma Res, 2002, 12(6):593-599.
    [103]Haritoglou I, Wolf A, Maier T, Haritoglou C, Hein R, Schaller UC. Osteopontin and 'melanoma inhibitory activity': comparison of two serological tumor markers in metastatic uveal melanoma patients [J]. Ophthalmologica, 2009, 223(4):239-243.
    [104]Missotten GS, Beijnen JH, Keunen JE, Bonfrer JM. Proteomics in uveal melanoma [J]. Melanoma Res, 2003, 13(6):627-629.
    [105]Carta F, Demuro PP, Zanini C, Santona A, Castiglia D, D'Atri S, Ascierto PA, Napolitano M, Cossu A, Tadolini B, Turrini F,Manca A, Sini MC, Palmieri G, Rozzo AC; Italian Melanoma Intergroup. Analysis of candidate genes through a proteomics-based approachin primary cell lines from malignant melanomas and their metastases [J]. Melanoma Res, 2005, 15(4):235-244.
    [106]Zuidervaart W, Hensbergen PJ, Wong MC, Deelder AM, Tensen CP, Jager MJ, Gruis NA. Proteomic analysis of uveal melanoma reveals novel potential markers involved in tumor progression [J]. Invest Ophthalmol Vis Sci, 2006, 47(3):786-793.
    [107]Pardo M, García A, Thomas B, Pi?eiro A, Akoulitchev A, Dwek RA, Zitzmann N. Proteome analysis of a human uveal melanoma primary cell culture by 2-DE and MS [J]. Proteomics, 2005, 5(18):4980-4993.
    [108]Beutel J, Wegner J, Wegner R, Ziemssen F, Nassar K, Rohrbach JM, Hilgers RD, Lüke M, Grisanti S. Possible implications of MCAM expression in metastasis and non- metastatic of primary uveal melanoma patients [J]. Curr Eye Res, 2009, 34(11): 1004- 1009.
    [109]Casado JG, Delgado E, Patsavoudi E, Durán E, Sanchez-Correa B, Morgado S, Solana R, Tarazona R. Functional implications of HNK-1 expression on invasive behaviour of melanoma cells [J]. Tumour Biol, 2008, 29(5):304-310.
    [110]Shields JA, Glazer LC, Mieler WF, Shields CL. Comparison of xenon arc and argon laser photocoagulation in the treatment of choroidal melanomas [J]. Am J Ophthalmol, 1990, 109:647-655.
    [111]Barbazetto IA, Lee TC, Rollins IS, et al. Treatment of choroidal melanoma using photodynamic therapy [J]. Am J Ophthalmol, 2003, 135:898-899.
    [112]Oosterhuis JA, Journee-de Korver HG, Kakebeeke-Kemme HM, Bleeker JC. Trans- pupillary thermotherapy in choroidal melanomas [J]. Arch Ophthalmol, 1995, 113:315- 321.
    [113]Shields CL, Shields JA, Perez N, et al. Primary transpupillary thermotherapy for small choroidal melanoma in 256 consecutive cases: outcomes and limitations [J]. Ophthalmo- logy, 2002, 109:225-234.
    [114]Journée-de Korver JG, Oosterhuis JA, de Wolff-Rouendaal D, Kemme H. Histopatho- logical findings in human choroidal melanomas after transpupillary thermotherapy [J]. Br J Ophthalmol, 1997, 81:234-239.
    [115]Shields CL,Cater J,Shields JA,et al.Combined plaque radiotherapy and transpupillary thermotherapy for choroidal melanoma in 270 consecutive patients [J]. Arch Ophthalmol, 2002, 120:933-940.
    [116]Shields CL, Naseripour M, Cater J, et al. Plaque radiotherapy for large posterior uveal melanoma (>8 mm in thickness) in 354 consecutive patients [J]. Ophthalmology, 2002, 109:1838-1849.
    [117]Gragoudas ES, Lane AM, Munzenrider J, et al. Long-term risk of local failure after proton therapy for choroidal/ciliary body melanoma [J]. Trans Am Ophthalmol Soc, 2002, 100:43-48.
    [118]Char DH, Quivey JM, Castro JR, Kroll S, Phillips T. Helium ions versus iodine 125 brachytherapy in the management of uveal melanoma. A prospective, randomized, dynamically balanced trial [J]. Ophthalmology, 1993, 100:1547-1554.
    [119]Linstadt D, Castro J, Char D, Decker M, Ahn D, Petti P, Nowakowski V, Quivey J, Phillips TL. Long-term results of helium ion irradiation of uveal melanoma [J]. Int J Radiat Oncol Biol Phys, 1990, 19:613-618.
    [120]Niederkorn JY, Wang S.Immunology of intraocular tumors [J].Ocul Immunol Inflamm, 2005,13:105-110.
    [121]López MN, Pereda C, Ramírez M, Mendoza-Naranjo A, Serrano A, Ferreira A, Poblete R, Kalergis AM, Kiessling R, Salazar-Onfray F. Melanocortin 1 receptor is expressed by uveal malignant melanoma and can be considered a new target for diagnosis and immunotherapy [J]. Invest Ophthalmol Vis Sci, 2007, 48:1219-1227.
    [122]Yang W, Chen PW, Li H, Alizadeh H, Niederkorn JY. PD-L1: PD-1 interaction contributes to the functional suppression of T-cell responses to human uveal melanoma cells in vitro [J]. Invest Ophthalmol Vis Sci, 2008, 49:2518-2525.
    [123]United States Department of Agriculture (USDA) Department of Health and Human Services (HHS) [M]. 2005 Dietary Guidelines for Americans, 6th ed. USDA, 2005, p. 3.
    [124]Govindarajan VS. Turmeric-chemistry, technology, and quality [J]. Crit Rev Food Sci Nutr, 1980, 12(3):199-301.
    [125] Ammon HP, Wahl MA. Pharmacology of Curcuma longa [J]. Planta Med,1991,57:1-7.
    [126]Araujo CC,Leon LL.Biological activities of Curcuma longa L [J].Mem Inst Oswaldo Cruz, 2001, 96:723-728.
    [127]Aggarwal BB, Takada Y, Oommen OV. From chemoprevention to chemotherapy: common targets and common goals [J]. Expert Opin Investig Drugs, 2004, 13(10): 1327- 1338.
    [128]中华人民共和国药典委员会编.中华人民共和国药典[S].一部.北京:化学工业出版社,2000.218
    [129]Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials [J]. Antioxid Redox Signal, 2008, 10:511-545.
    [130]夏文娟,肖小河,刘峰群等.国产姜黄属植物的化学成分分析[J].中国中药杂志. 1999, 24:423-424.
    [131]Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK. Stability of curcumin in buffer solutions and characterization of its degradation products [J]. J Pharm Biomed Anal, 1997, 15:1867-1876.
    [132]Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold [J]. Adv Exp Med Biol, 2007, 595:1-75.
    [133]Kiuchi F, Goto Y, Sugimoto N, Akao N, Kondo K, Tsuda Y. Nematocidal activity of turmeric:synergistic action of curcuminoids [J].Chem Pharm Bull (Tokyo), 1993, 41: 1640-1643.
    [134]T?nnesen HH, Karlsen J, van Henegouwen GB. Studies on curcumin and curcuminoids: Vlll-photochemical stability of curcumin [J]. Z Lebensm Unters Forsch, 1986, 183: 116-122.
    [135]Ravindranath V, Chandrasekhara N. Metabolism of curcumin-studies with [3H]curcumin [J]. Toxicology,1981, 22:337-344.
    [136]Ravindranath V, Chandrasekhara N. In vitro studies on the intestinal absorption of curcumin in rats [J]. Toxicology, 1981, 20:251-257.
    [137]Ireson C, Orr S, Jones DJ, Verschoyle R, Lim CK, Luo JL, Howells L, Plummer S, Jukes R, Williams M, Steward WP, Gescher A. Characterization of metabolites of the chemo- preventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production [J]. Cancer Res, 2001, 61:1058-1064.
    [138]Ireson CR, Jones DJ, Orr S, Coughtrie MW, Boocock DJ, Williams ML, Farmer PB, Steward WP, Gescher AJ. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine [J]. Cancer Epidemiol Biomarkers Prev, 2002, 11:105-111.
    [139]Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises [J]. Mol Pharm, 2007, 4:807-818.
    [140]Kuttan R, Bhanumathy P, Nirmala K, George MC. Potential anticancer activity of turmeric (Curcuma longa) [J]. Cancer lett, 1985, 29:197-202.
    [141]Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies [J]. Anticancer Res, 2003, 23:363-398.
    [142]Dorai T, Cao YC, Dorai B, et al. Therapeutic potential of curcumin in human prostatecancer.III.Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo [J]. Prostate, 2001, 47:293-303.
    [143]Moragoda L, Jaszewski R, Majumdar AP. Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells [J]. Anticancer Res, 2001, 21:873-878.
    [144]Anto RJ,Mukhopadhyay A,Denning K, Aggarwal BB. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release:its suppression by ectopic expression of Bcl-2 and Bcl-xl [J]. Carcinogenesis, 2002, 23:143-150.
    [145]Chakraborty S, Ghosh U, Bhattacharyya NP, et al. Inhibition of telomerase activity and induction of apoptosis by curcumin in K-562 cells [J]. Mutat Res, 2006, 596:81-90.
    [146]Chen A, Xu J, Johnson AC. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1 [J]. Oncogene, 2006, 25:278-287.
    [147]Dorai T, Gehani N, Katz A. Therapeutic potential of curcumin in human prostate cancer-I. curcumin induces apoptosis in both androgen-dependent and androgen-independent prostate cancer cells [J]. Prostate Cancer Prostatic Dis, 2000, 3:84-93.
    [148]Kuo ML, Huang TS, Lin JK. Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells [J]. Biochim Biophys Acta, 1996, 1317:95-100.
    [149]Shi M, Cai Q, Yao L, et al. Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells [J]. Cell Biol Int, 2006, 30:221-226.
    [150]Huang MT, Lou YR, Ma W, et al. Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice [J]. Cancer Res, 1994, 54:5841-5847.
    [151]Kawamori T, Lubet R, Steele VE, et al. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer [J]. Cancer Res, 1999, 59:597-601.
    [152]Rao CV, Rivenson A, Simi B, Reddy BS. Chemoprevention of colon cancer by dietary curcumin [J]. Ann N Y Acad Sci, 1995, 768:201-204.
    [153]Li N, Chen X, Liao J, et al. Inhibition of 7, 12-dimethylbenz[a]anthracene (DMBA) -induced oral carcinogenesis in hamsters by tea and curcumin [J]. Carcinogenesis, 2002, 23:1307-1313.
    [154]Chuang SE, Kuo ML, Hsu CH, et al. Curcumin-containing diet inhibits diethylni- trosamine-induced murine hepatocarcinogenesis [J]. Carcinogenesis, 2000, 21:331-335.
    [155]Inano H, Onoda M, Inafuku N, et al. Chemoprevention by curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with gamma-rays [J].Carcinogenesis, 1999, 20:1011-1018.
    [156]Limtrakul P, Lipigorngoson S, Namwong O, et al. Inhibitory effect of dietary curcumin on skin carcinogenesis in mice [J]. Cancer Lett, 1997, 116:197-203.
    [157]Azuine MA, Bhide SV. Chemopreventive effect of turmeric against stomach and skin tumors induced by chemical carcinogens in Swiss mice [J]. Nutr Cancer, 1992, 17:77-83.
    [158]Hong JH, Ahn KS, Bae E, et al. The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo [J]. Prostate Cancer Prostatic Dis, 2006, 9:147-152.
    [159]Dhillon N, Aggarwal BB, Newman RA, et al. Phase II clinical trial of curcumin in patients with advanced pancreatic cancer [J]. Clin Cancer Res, 2008, 14:4491-4499.
    [160]Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen to clinic [J]. Biochem Pharmacol, 2008, 75:787-809.
    [161]B.B. Aggarwal, I.D. Bhatt, H. Ichikawa, K.S. Ahn, Sethi, S.K. Sandur, C. Sundaram, N. Seeram, S. Shishodia. Curcumin-biological and medicinal properties[M], in: P.N. Ravindran, K.N. Babu, K. Sivaraman (Eds.), Turmeric Genus Curcuma, CRC Press, NY, 2007,pp. 297- 368.
    [162]Shao ZM, Shen ZZ, Liu CH, Sartippour MR, Go VL, Heber D, Nguyen M. Curcumin exerts multiple suppressive effects on human breast carcinoma cells [J]. Int J Cancer, 2002, 234-240.
    [163]Schindler R, Mentlein R. Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells [J]. J Nutrz, 2006, 1477-1482.
    [164]Singletary K, MacDonald C, Wallig M, Fisher C. Inhibition of 7,12-dimethyl- benz[a]anthracene (DMBA)-induced mammary tumorigenesis and DMBA-DNA adduct formation by curcumin [J]. Cancer Lett, 1996, 103:137-141.
    [165]Aggarwal BB, Shishodia S, Takada Y, Banerjee S, Newman RA, Bueso-Ramos CE, et al. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice [J]. Clin Cancer Res, 2005, 11:7490-7498.
    [166]Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007 [J]. CA Cancer J Clin, 2007, 57:43-66.
    [167]Rafiee P, Ogawa H, Heidemann J, Li MS, Aslam M, Lamirand TH, Fisher PJ, Graewin SJ, Dwinell MB, Johnson CP, Shaker R, Binion DG. Isolation and characterization of human esophageal microvascular endothelial cells: mechanisms of inflammatory activation [J]. Am J Physiol Gastrointest Liver Physiol, 2003, 285(6):G1277-1292.
    [168]Ushida J, Sugie S, Kawabata K, PhamQV, Tanaka T, Fujii K, et al. Chemopreventive effect of curcumin on Nnitrosomethylbenzylamine-induced esophageal carcinogenesis in rats [J]. Jpn J Cancer Res, 2000, 91:893-898.
    [169]Singh SV, Hu X, Srivastava SK, Singh M, Xia H, Orchard JL, et al. Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin [J]. Carcinogenesis, 1998, 19:1357-1360.
    [170]Nagabhushan M, Bhide SV. Curcumin as an inhibitor of cancer [J]. J Am Coll Nutr, 1992, 11:192-198.
    [171]Ikezaki S, Nishikawa A, Furukawa F, Kudo K, Nakamura H, Tamura K, et al. Chemop- reventive effects of curcumin on glandular stomach carcinogenesis induced by N- methyl-N’-nitro-N-nitrosoguanidine and sodium chloride in rats [J]. Anticancer Res, 2001, 21:3407-3411.
    [172]Siewert JR, Stein HJ, von Rahden BH. Multimodal treatment of gastrointestinal tract tumors: consequences for surgery [J]. World J Surg, 2005, 29:940-948.
    [173]Perkins S, Verschoyle RD, Hill K, Parveen I, Threadgill MD, Sharma RA, et al. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis [J]. Cancer Epidemiol Biomarkers Prev, 2002, 11:535-540.
    [174]Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions [J]. Anticancer Res, 2001, 21:2895-2900.
    [175]Almhanna K, Kalmadi S, Pelley R, Kim R. Neoadjuvant therapy for hepatocellular carcinoma: is there an optimal approach? Oncology (Williston Park), 2007, 21(9):1116- 1122.
    [176]White EL, Ross LJ, Schmid SM, Kelloff GJ, Steele VE, Hill DL. Screening of potential cancer preventing chemicals for induction of glutathione in rat liver cells [J]. Oncol Rep, 1998, 5:507-512.
    [177]Vietri M, Pietrabissa A, Mosca F, Spisni R, Pacifici GM. Curcumin is a potent inhibitor of phenol sulfotransferase (SULT1A1) in human liver and extrahepatic tissues [J]. Xenobiotica, 2003, 33:357-363.
    [178]Chen YN, Cheng CC, Chen JC, Tsauer W, Hsu SL. Norcantharidin-induced apoptosis is via the extracellular signal-regulated kinase and c-Jun-NH2-terminal kinase signaling pathways in human hepatoma HepG2 cells [J]. Br J Pharmacol, 2003, 140:461-470.
    [179]Labbozzetta M, Notarbartolo M, Poma P, Giannitrapani L, Cervello M, Montalto G,D'Alessandro N. Significance of autologous interleukin-6 production in the HA22T/VGH cell model of hepatocellular carcinoma [J]. Ann N Y Acad Sci, 2006, 1089:268-275.
    [180]Bae MK, Kim SH, Jeong JW, Lee YM, Kim HS, Kim SR, Yun I, Bae SK, Kim KW. Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1 [J]. Oncol Rep, 2006, 15:1557-1562.
    [181]Choi H, Chun YS,Kim SW, Kim MS, Park JW. Curcumin inhibits hypoxia-inducible factor-1 by degrading arylhydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition [J]. Mol Pharmacol, 2006, 70:1664-1671.
    [182]Busquets S, Carbo N, Almendro V, Quiles MT, Lopez-Soriano FJ, Argiles JM. Curcumin, a natural product present in turmeric, decreases tumor growth but does not behave as an anticachectic compound in a rat model [J]. Cancer Lett, 2001, 167:33-38.
    [183]Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ. The nuclear factor- kappa B RelA transcription factor is constitutively activated in human pancreatic adenocar- cinoma cells [J]. Clin Cancer Res, 1999, 5:119-127.
    [184]Khanbolooki S, Nawrocki ST, Arumugam T, Andtbacka R, Pino MS, Kurzrock R, Logsdon CD, Abbruzzese JL, McConkey DJ. Nuclear factor-kappaB maintains TRAIL resistance in human pancreatic cancer cells [J]. Mol Cancer Ther, 2006, 5:2251-2260.
    [185]Kamohara H, Takahashi M, Ishiko T, Ogawa M, Baba H. Induction of interleukin-8 (CXCL-8) by tumor necrosis factor-alpha and leukemia inhibitory factor in pancreatic carcinoma cells: Impact of CXCL-8 as an autocrine growth factor [J]. Int J Oncol, 2007, 31:627-632.
    [186]Li L, Braiteh FS, Kurzrock R. Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis [J]. Cancer, 2005, 104: 1322-1331.
    [187]Durgaprasad S, Pai CG, Vasanthkumar, Alvres JF, Namitha S. A pilot study of the antioxidant effect of curcumin in tropical pancreatitis [J]. Indian J Med Res, 2005, 122:315-318.
    [188]Wei SC, Lin YS, Tsao PN, Wu-Tsai JJ, Wu CH, Wong JM. Comparison of the anti- proliferation and apoptosis-induction activities of sulindac, celecoxib, curcumin, and nifedipine in mismatch repair-deficient cell lines [J]. J Formos Med Assoc, 2004, 103: 599-606.
    [189]Scott DW, Loo G. Curcumin-induced GADD153 gene up-regulation in human colon cancer cells [J]. Carcinogenesis, 2004, 25:2155-2164.
    [190]Moussavi M, Assi K, Gómez-Mu?oz A, Salh B. Curcumin mediates ceramide generationvia the de novo pathway in colon cancer cells [J].Carcinogenesis, 2006, 27:1636- 1644.
    [191]Collett GP, Campbell FC. Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells [J]. Carcinogenesis, 2004, 25:2183-2189.
    [192]Jeong WS, Kim IW, Hu R, Kong AN. Modulation of AP-1 by natural chemop- reventive compounds in human colon HT-29 cancer cell line [J]. Pharm Res, 2004, 21:649-660.
    [193]Wang X, Wang Q, Ives KL, Evers BM. Curcumin inhibits neurotensin-mediated interleukin-8 production and migration of HCT116 human colon cancer cells [J]. Clin Cancer Res, 2006, 12:5346-5355.
    [194]Lev-Ari S, Maimon Y, Strier L, Kazanov D, Arber N. Down-regulation of prostaglandin E2 by curcumin is correlated with inhibition of cell growth and induction of apoptosis in human colon carcinoma cell lines [J]. J Soc Integr Oncol, 2006, 4:21-26.
    [195]Su CC, Chen GW, Lin JG, Wu LT, Chung JG. Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B /p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions [J]. Anticancer Res, 2006, 26:1281-1288.
    [196]Volate SR, Davenport DM, Muga SJ, Wargovich MJ. Modulation of aberrant crypt foci and apoptosis by dietary herbal supplements (quercetin, curcumin, silymarin, ginseng and rutin) [J]. Carcinogenesis, 2005, 26:1450-1456.
    [197]Xu G, Huang W, Zhang WM, Lai ZS, He MR, Wang YD, Zhang YL. Effects of combined use of curcumin and catechin on cyclooxygenase-2 mRNA expression in dimethylhy- drazine-induced rat colon carcinogenesis [J]. Di Yi Jun Yi Da Xue Xue Bao, 2005, 25: 48-52.
    [198]Kwon Y, Magnuson BA. Effect of azoxymethane and curcumin on transcriptional levels of cyclooxygenase-1 and-2 during initiation of colon carcinogenesis [J]. Scand J Gastroenterol, 2007, 42:72-80.
    [199]Devasena T, Rajasekaran KN, Gunasekaran G, Viswanathan P, Menon VP. Anticarcino- genic effect of bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione a curcumin analog on DMH- induced colon cancer model [J]. Pharmacol Res, 2003, 47:133-140.
    [200]Devasena T, Menon VP, Rajasekharan KN. Prevention of 1,2-dimethylhy- drazine-induced circulatory oxidative stress by bis-1,7-(2-hydroxyphenyl)-hepta-1, 6-diene- 3, 5-dione during colon carcinogenesis [J]. Pharmacol Rep, 2006, 58:229-235.
    [201]Wargovich MJ, Chen CD, Jimenez A, Steele VE, Velasco M, Stephens LC, Price R, Gray K, Kelloff GJ. Aberrant crypts as a biomarker for colon cancer: evaluation of potential chemopreventive agents in the rat [J]. Cancer Epidemiol Biomarkers Prev, 1996, 5:355-360.
    [202]Wijnands MV, van Erk MJ, Doornbos RP, Krul CA, Woutersen RA. Do aberrant crypt foci have predictive value for the occurrence of colorectal tumours? Potential of gene expression profiling in tumours [J]. Food Chem Toxicol, 2004, 42:1629-1639.
    [203]Sharma RA, Euden SA, Platton SL, et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance [J]. Clin Cancer Res, 2004, 10:6847- 6854.
    [204]Sun M, Yang Y, Li H, Su B, Lu Y, Wei Q, Fan T. The effect of curcumin on bladder cancer cell line EJ in vitro [J]. Zhong Yao Cai, 2004, 27:848-850.
    [205]Kamat AM, Sethi G, Aggarwal BB. Curcumin potentiates the apoptotic effects of chemotherapeutic agents and cytokines through down-regulation of nuclear factor- kappaB and nuclear factor-kappaB-regulated gene products in IFN-alpha-sensitive and IFN-alpha-resistant human bladder cancer cells [J]. Mol Cancer Ther, 2007, 6:1022- 1030.
    [206]Park C, Kim GY, Kim GD, Choi BT, Park YM, Choi YH. Induction of G2/M arrest and inhibition of cyclooxygenase-2 activity by curcumin in human bladder cancer T24 cells [J]. Oncol Rep, 2006, 15:1225-1231.
    [207]Jiang MC, Yang-Yen HF, Yen JJ, Lin JK. Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines [J]. Nutr Cancer, 1996, 26 : 111-120.
    [208]Chen X, Hasuma T, Yano Y, Yoshimata T, Morishima Y, Wang Y, Otani S. Inhibition of farnesyl protein transferase by monoterpene, curcumin derivatives and Gallotannin [J]. Anticancer Res, 1997, 17: 2555-2564.
    [209]Ramsewak RS, DeWitt DL, Nair MG. Cytotoxicity, antioxidant and anti- inflammatory activities of curcumins I-III from Curcuma longa [J]. Phytomedicine, 2000, 7:303-308.
    [210]Iqbal M, Okazaki Y, Okada S. In vitro curcumin modulates ferric nitrilotriacetate (Fe-NTA) and hydrogen peroxide (H2O2)-induced peroxidation of microsomal membrane lipids and DNA damage. Teratog Carcinog Mutagen, (Suppl. 1) 2003, 151-160.
    [211]Woo JH, Kim YH, Choi YJ, Kim DG, Lee KS, Bae JH, Min DS, Chang JS, Jeong YJ, Lee YH, Park JW, Kwon TK. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt [J]. Carcinogenesis, 2003, 24:1199-1208.
    [212]Frank N, Knauft J, Amelung F, Nair J, Wesch H, Bartsch H. No prevention of liver andkidney tumors in Long-Evans Cinnamon rats by dietary curcumin, but inhibition at other sites and of metastases [J]. Mutat Res, 2003, 523-524:127-135.
    [213]Shenouda NS, Zhou C, Browning JD, Ansell PJ, Sakla MS, Lubahn DB, Macdonald RS. Phytoestrogens in common herbs regulate prostate cancer cell growth in vitro [J]. Nutr Cancer, 2004, 49:200-208.
    [214]Guo H, Yu JH, Chen K, Ye ZQ. Curcumin-induced the expression of inhibitor kappa Balpha protein in human prostate cancer cells [J]. Zhonghua Wai Ke Za Zhi, 2006, 44: 1256-1259.
    [215]Shankar S, Chen Q, Sarva K, Siddiqui I, Srivastava RK. Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells: molecular mechanisms of apoptosis, migration and angiogenesis [J]. J Mol Signal, 2007, 2:10.
    [216]Shi P, Chen WW, Hu XY, Yu CX, Zhang PJ, Jiang AL, Zhang JY. Up-regulates the expression of maspin gene in prostate cancer cell line LNCaP [J]. Yao Xue Xue Bao, 2006, 41:1152-1156.
    [217]Deeb D, Xu YX, Jiang H, Gao X, Janakiraman N, Chapman RA, Gautam SC. Curcumin (diferuloyl-methane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells [J]. Mol Cancer Ther, 2003, 2:95-103.
    [218]Deeb D, Jiang H, Gao X, Hafner MS, Wong H, Divine G, Chapman RA, Dulchavsky SA, Gautam SC. Curcumin sensitizes prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L by inhibiting nuclear factor-kappaB through suppression of IkappaBalpha phosphorylation [J]. Mol Cancer Ther, 2004, 3:803-812.
    [219]Deeb DD, Jiang H, Gao X, Divine G, Dulchavsky SA, Gautam SC. Chemosensitization of hormone-refractory prostate cancer cells by curcumin to TRAIL- induced apoptosis [J]. J Exp Ther Oncol, 2005, 5:81-91.
    [220]Fernández-Martínez AB, Collado B, Bajo AM, Sánchez-Chapado M, Prieto JC, Carmena MJ. Vasoactive intestinal peptide induces cyclooxygenase-2 expression through nuclear factor-kappaB in human prostate cell lines Differential time-dependent responses in cancer progression [J]. Mol Cell Endocrinol, 2007, 270:8-16.
    [221]Collado B, Sánchez MG, Díaz-Laviada I, Prieto JC, Carmena MJ. Vasoactive intestinal peptide (VIP) induces c-fos expression in LNCaP prostate cancer cells through a mechanism that involves Ca2+ signalling. Implications in angiogenesis and neuroendocrine differentiation [J]. Biochim Biophys Acta, 2005, 1744:224-233.
    [222]Park JI, Lee MG, Cho K, Park BJ, Chae KS, Byun DS, Ryu BK, Park YK, Chi SG.Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways [J]. Oncogene, 2003, 22:4314-4332.
    [223]Li M, Zhang Z, Hill DL, Wang H, Zhang R. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway [J]. Cancer Res, 2007, 67:1988-1996.
    [224]Chaudhary LR, Hruska KA. Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells [J]. J Cell Biochem, 2003, 89:1-5.
    [225]Deeb D,Jiang H, Gao X, Al-Holou S, Danyluk AL, Dulchavsky SA, Gautam SC. Curcumin[1,7-bis(4-hydroxy-3-methoxyphenyl)-1-6-heptadine-3,5-dione;C21H20O6]sen-sitizes human prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/ Apo2L-induced apoptosis by suppressing nuclear factor-kappaB via inhibition of the prosurvival Akt signaling pathway [J]. J Pharmacol Exp Ther, 2007, 321:616-625.
    [226]Kim JH, Xu C, Keum YS, Reddy B, Conney A, Kong AN. Inhibition of EGFR signaling in human prostate cancer PC-3 cells by combination treatment with beta-phenylethyl isothiocyanate and curcumin [J]. Carcinogenesis, 2006, 27:475-482.
    [227]Rafailov S, Cammack S, Stone BA, Katz AE. The role of zyflamend, an herbal anti-inflammatory, as a potential chemopreventive agent against prostate cancer: a case report [J]. Integr Cancer Ther, 2007, 6:74-76.
    [228]Roy M, Chakraborty S, Siddiqi M, Bhattacharya RK. Induction of Apoptosis in Tumor Cells by Natural Phenolic Compounds [J]. Asian Pac J Cancer Prev, 2002, 3:61-67.
    [229] Divya CS, Pillai MR. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NF-kB and AP-1 translocation, and modulation of ap optosis [J]. Mol Carcinog, 2006, 45:320-332.
    [230]Syu WJ, Shen CC, Don MJ, Ou JC, Lee GH, Sun CM. Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria [J]. J Nat Prod, 1998, 61:1531-1534.
    [231]Guo F, Xu CJ. Progress on the study of mechanism of the direct action of TCM bioactive components on ovarian cancer [J]. Zhongguo Zhong Xi Yi Jie He Za Zhi, 2005, 25:1140-1144.
    [232]Zheng LD, Tong QS, Wu CH. Inhibitory effects of curcumin on apoptosis of human ovary cancer cell line A2780 and its molecular mechanism [J]. Ai Zheng, 2002, 21:1296-1300.
    [233]Zheng L, Tong Q, Wu C. Growth-inhibitory effects of curcumin on ovary cancer cells and its mechanisms [J]. J Huazhong Univ Sci Technolog Med Sci, 2004, 24:55-58.
    [234]Weir NM, Selvendiran K, Kutala VK, Tong L, Vishwanath S, Rajaram M, Tridandapani S, Anant S, Kuppusamy P. Curcumin induces G2/M arrest and apoptosis in cisplatin- resistant human ovarian cancer cells by modulating Akt and p38 MAPK [J]. Cancer Biol Ther, 2007, 6:178-184.
    [235]Wahl H, Tan L, Griffith K, Choi M, Liu JR. Curcumin enhances Apo2L/ TRAIL- induced apoptosis in chemoresistant ovarian cancer cells [J]. Gynecol Oncol, 2007, 105:104-112.
    [236]Lin YG, Kunnumakkara AB, Nair A, Merritt WM, Han LY, Armaiz-Pena GN, Kamat AA, Spannuth WA, Gershenson DM, Lutgendorf SK, Aggarwal BB, Sood AK. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway [J]. Clin Cancer Res, 2007, 13:3423-3430.
    [237]Ichiki K, Mitani N, Doki Y, Hara H, Misaki T, Saiki I. Regulation of activator protein-1 activity in the mediastinal lymph node metastasis of lung cancer [J]. Clin Exp Metastasis, 2000, 18:539-545.
    [238]Radhakrishna Pillai G, Srivastava AS, Hassanein TI, Chauhan DP, Carrier E. Induction of apoptosis in human lung cancer cells by curcumin [J]. Cancer Lett, 2004, 208: 163-170.
    [239]Liu Y, Chang RL, Cui XX, Newmark HL, Conney AH. Synergistic effects of curcumin on all-trans retinoic acid- and 1 alpha,25-dihydroxyvitamin D3-induced differentiation in human promyelocytic leukemia HL-60 cells [J]. Oncol Res, 1997, 9:19-29.
    [240]Sokoloski JA, Shyam K, Sartorelli AC. Induction of the differentiation of HL-60 promyelocytic leukemia cells by curcumin in combination with low levels of vitamin D3 [J]. Oncol Res, 1997, 9:31-39.
    [241]Pan MH, Chang WL, Lin-Shiau SY, Ho CT, Lin JK. Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells [J]. J Agric Food Chem, 2001, 49:1464-1474.
    [242]Bielak-Mijewska A, Piwocka K, Magalska A, Sikora E. P-glycoprotein expression does not change the apoptotic pathway induced by curcumin in HL-60 cells [J]. Cancer Chemother Pharmacol, 2004, 53:179-185.
    [243]Mukherjee Nee Chakraborty S, Ghosh U, Bhattacharyya NP, Bhattacharya RK, Dey S, Roy M. Curcumin-induced apoptosis in human leukemia cell HL-60 is associated with inhibition of telomerase activity [J]. Mol Cell Biochem, 2007, 297:31-39.
    [244]Pae HO, Jeong SO, Jeong GS, Kim KM, Kim HS, Kim SA, Kim YC, Kang SD, Kim BN, Chung HT. Curcumin induces pro-apoptotic endoplasmic reticulum stress in human leukemia HL-60 cells [J]. Biochem Biophys Res Commun, 2007, 353:1040-1045.
    [245]Atsumi T, Murakami Y, Shibuya K, Tonosaki K, Fujisawa S. Induction of cytotoxicity andapoptosis and inhibition of cyclooxygenase-2 gene expression, by curcumin and its analog, alpha-diisoeugenol [J]. Anticancer Res, 2005, 25:4029-4036.
    [246]Chen J, Wanming D, Zhang D, Liu Q, Kang J. Water-soluble antioxidants improve the antioxidant and anticancer activity of low concentrations of curcumin in human leukemia cells [J]. Pharmazie, 2005, 60:57-61.
    [247]Tan TW, Tsai HR, Lu HF, Lin HL, Tsou MF, Lin YT, Tsai HY, Chen YF, Chung JG. Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activation [J]. Anticancer Res, 2006, 26:4361-4371.
    [248]Huang MT, Lou YR, Xie JG, Ma W, Lu YP, Yen P, Zhu BT, Newmark H, Ho CT. Effect of dietary curcumin and dibenzoylmethane on formation of 7,12-dimethylbenz[a] anthracene-induced mammary tumors and lymphomas/leukemias in Sencar mice [J]. Carcino- genesis, 1998, 19:1697-1700.
    [249]Anuchapreeda S, Thanarattanakorn P, Sittipreechacharn S, Tima S, Chanarat P, Limtrakul P. Inhibitory effect of curcumin on MDR1 gene expression in patient leukemic cells [J]. Arch Pharm Res, 2006, 29:866-873.
    [250]Thomas RK, Sos ML, Zander T, Mani O, Popov A, Berenbrinker D, Smola-Hess S, Schultze JL, Wolf J. Inhibition of nuclear translocation of nuclear factor-kappaB despite lack of functional IkappaBalpha protein overcomes multiple defects in apoptosis signaling in human B-cell malignancies [J]. Clin Cancer Res, 2005, 11:8186-8194.
    [251]Liu B, Bai QX, Chen XQ, Gao GX, Gu HT. Effect of curcumin on expression of survivin, Bcl-2 and Bax in human multiple myeloma cell line [J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2007, 15:762-766.
    [252]Sun A, Shoji M, Lu YJ, Liotta DC, Snyder JP. Synthesis of EF24-tripeptide chloromethyl ketone:a novel curcumin-related anticancer drug delivery system [J]. J Med Chem, 2006, 49: 3153-3158.
    [253]Iersel ML, Ploemen JP, Struik I, van Amersfoort C, Keyzer AE, Schefferlie JG, van Bladeren PJ. Inhibition of glutathione S-transferase activity in human melanoma cells by alpha,beta-unsaturated carbonyl derivatives. Effects of acrolein,cinnamaldehyde,citral, crotonal- dehyde,curcumin,ethacrynic acid,and trans-2-hexenal [J].Chem Biol Interact, 1996, 102:117-132.
    [254]Siwak DR, Shishodia S, Aggarwal BB, Kurzrock R. Curcumin-induced antiproli- ferative and proapoptotic effects in melanoma cells are associated with suppression of IkappaB kinase and nuclear factor kappaB activity and are independent of the B-Raf/ mitogen-activated/ extracellular signal-regulated protein kinase pathway and the Akt pathway [J]. Cancer, 2005, 104:879-890.
    [255]Marín YE, Wall BA, Wang S, Namkoong J, Martino JJ, Suh J, Lee HJ, Rabson AB, Yang CS, Chen S, Ryu JH. Curcumin downregulates the constitutive activity of NF-kappaB and induces apoptosis in novel mouse melanoma cells [J]. Melanoma Res, 2007, 17:274- 283.
    [256]Ray S, Chattopadhyay N, Mitra A, Siddiqi M, Chatterjee A. Curcumin exhibits antimetastatic properties by modulating integrin receptors, collagenase activity, and expression of Nm23 and E-cadherin [J]. J Environ Pathol Toxicol Oncol, 2003, 22:49-58.
    [257]Banerji A, Chakrabarti J, Mitra A, Chatterjee A. Effect of curcumin on gelatinase A (MMP-2) activity in B16F10 melanoma cells [J]. Cancer Lett, 2004, 211:235-242.
    [258]Depeille P, Cuq P, Mary S, Passagne I, Evrard A, Cupissol D, Vian L. Glutathione S-transferase M1 and multidrug resistance protein 1 act in synergy to protect melanoma cells from vincristine effects [J]. Mol Pharmacol, 2004, 65:897-905.
    [259]Depeille P, Cuq P, Passagne I, Evrard A, Vian L. Combined effects of GSTP1 and MRP1 in melanoma drug resistance [J]. Br J Cancer, 2005, 93:216-223.
    [260]Bae JH, Park JW, Kwon TK. Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular Ca2+ depletion and cytochrome c release [J]. Biochem Biophys Res Commun, 2003, 303:1073-1079.
    [261]Pal S, Choudhuri T, Chattopadhyay S, Bhattacharya A, Datta GK, Das T, Sa G. Mechanisms of curcumin-induced apoptosis of Ehrlich's ascites carcinoma cells [J]. Biochem Biophys Res Commun, 2001, 288:658-665.
    [262]Shankar S, Srivastava RK. Involvement of Bcl-2 family members, phosphatidy- linositol 3'-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer [J]. Int J Oncol, 2007, 30:905-918.
    [263]Su CC, Lin JG, Li TM, Chung JG, Yang JS, Ip SW, Lin WC, Chen GW. Curcumin- induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+ and the activation of caspase-3 [J]. Anticancer Res, 2006, 26:4379-4389.
    [264]Ligeret H, Barthelemy S, Zini R, Tillement JP, Labidalle S, Morin D. Effects of curcumin and curcumin derivatives on mitochondrial permeability transition pore [J]. Free Radic Biol Med, 2004, 36:919-929.
    [265]Bush JA, Cheung KJ Jr, Li G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53 [J]. Exp Cell Res, 2001, 271: 305-314.
    [266]Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines [J]. Oncogene, 2001, 20:7597-7609.
    [267]Karmakar S, Banik NL, Patel SJ, Ray SK. Curcumin activated both receptor- mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells [J]. Neurosci Lett, 2006, 407:53-58.
    [268]Jana NR, Dikshit P, Goswami A, Nukina N. Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway [J]. J Biol Chem, 2004, 279: 11680-11685.
    [269]Logan-Smith MJ, East JM, Lee AG. Evidence for a global inhibitor-induced confor- mation change on the Ca2+-ATPase of sarcoplasmic reticulum from paired inhibitor studies[J]. Biochemistry, 2002, 41:2869-2875.
    [270]Logan-Smith MJ, Lockyer PJ, East JM, Lee AG. Curcumin, a molecule that inhibits the Ca2+-ATPase of sarcoplasmic reticulum but increases the rate of accumulation of Ca2+ [J]. J Biol Chem, 2001, 276:46905-46911.
    [271]Bakhshi J, Weinstein L, Poksay KS, Nishinaga B, Bredesen DE, Rao RV. Coupling endoplasmic reticulum stress to the cell death program in mouse melanoma cells: effect of curcumin [J]. Apoptosis, 2008, 13:904-914.
    [272]Eigner D, Scholz D. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal [J]. J Ethnopharmacol, 1999, 67:1-6.
    [273]NCI and DCPC. Clinical development plan: curcumin [J]. J Cell Biochem Suppl, 1996, 26:72-85.
    [274]Deodhar SD, Sethi R, Srimal RC. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane) [J]. Indian J Med Res, 1980, 71:632-634.
    [275]Collaborative Ocular Melanoma Study Group. The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma: V. Twelve-year mortality rates and prognostic factors: COMS report No. 28 [J]. Arch Ophthalmol, 2006, 124:1684-1693.
    [276]Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin Inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins [J]. Cancer Lett, 2008, 269:199-225.
    [277]Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review [J]. Life Sci, 2006, 78:2081-2087.
    [278]Menon LG, Kuttan R, Kuttan G. Inhibition of lung metastasis in mice induced by B16F10 melanoma cells by polyphenolic compound [J]. Cancer Lett, 1995, 95:221-225.
    [279]Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation [J]. N Engl J Med, 1999, 340:1341-1348.
    [280]Yu GP, Hu DN, McCormick SA. Latitude and incidence of ocular melanoma. Photochem Photobiol [J], 2006, 82:1621-1626.
    [281]Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy [J]. Nature, 2007, 445:851-857.
    [282]Hu DN,Yu G, McCormick SA, Finger PT. Population-based incidence of conjunctival melanoma in various races and ethnic groups and comparison with other melanomas [J]. Am J Ophthalmol, 2008, 145:418-423.
    [283]Sharma RA, Farmer PB. Biological relevance of adduct detection to the chemoprevention of cancer [J]. Clin Cancer Res, 2004, 10:4901-4912.
    [284]Rao CV, Rivenson A, Simi B, Reddy BS. Chemoprevention of colon carcinogenesis by dietary curcumin,a naturally occurring plant phenolic compound [J]. Cancer Res, 1995, 55:259-266.
    [285]Hu DN, McCormick SA. Biochemical pathways: Different gene expression and cellular pathways determining tumor phenotype comparision of uveal melanocytes and uveal melanoma cells in vitro[M]. In: Albert DM, Polans A, eds. Ocular Oncology. New York, NY: Marcel Dekker, 2003, 189-210.
    [286]Lu F, Yan D, Zhou X, Hu DN, et al. Expression of melanin-related genes in cultured adult human retinal pigment epithelium and uveal melanoma cells [J]. Mol Vis, 2007, 13:2066- 2072.
    [287]Ye M, Hu DN, Tu L, et al. Involvement of PI3K/Akt signaling pathway in hepatocyte growth factor-induced migration of uveal melanoma cells [J]. Invest Ophthalmol Vis Sci, 2008, 49:497-504.
    [288]Yan D, Zhou X, Chen X, Hu DN, et al. MicroRNA-34a inhibits uveal melanoma cell proliferation and migration through downregulation of c-Met [J]. Invest Ophthalmol Vis Sci, 2009, 50:1559-1565.
    [289]Hu DN, Wakamatsu K, Ito S, McCormick SA. Comparison of eumelanin and pheomelanin content between cultured uveal melanoma cells and normal uveal melanocytes [J]. Melanoma Res, 2009, 19:75-79.
    [290]Green DR. Apoptotic pathways: ten minutes to dead [J]. Cell, 2005, 121:671-674.
    [291]Kim CN, Wang X, Huang Y, et al. Overexpression of Bcl-X (L) inhibits Ara-C-induced mitochondrial loss of cytochrome c and other perturbations that activate the molecular cascade of apoptosis [J]. Cancer Res, 1997, 57:3115-3120.
    [292]Khar A, Ali AM, Pardhasaradhi BV, et al. Antitumor activity of curcumin is mediated through the induction of apoptosis in AK-5 tumor cells [J]. FEBS Lett, 1999, 445:165- 168.
    [293]Mandal MN, Patlolla JM, Zheng L, et al. Curcumin protects retinal cells from light-and oxidant stress-induced cell death [J]. Free Radic Biol Med, 2009, 46:672-679.
    [294]Rema M, Pradeepa R. Diabetic retinopathy: an Indian perspective [J]. Indian J Med Res, 2007, 125:297-310.
    [295]Pandya U, Saini MK, Jin GF, et al. Dietary curcumin prevents ocular toxicity of naphthalene in rats [J]. Toxicol Lett, 2000, 115:195-204.
    [296]Maiti K, Mukherjee K, Gantait A, et al. Curcumin-phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats [J]. Int J Pharm, 2007, 330: 155-163.
    [297]Mosley CA, Liotta DC, Snyder JP. Highly active anticancer curcumin analogues [J]. Adv Exp Med Biol, 2007, 595:77-103.