脂肪酶基因的克隆与表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究建立了纯培养和非培养微生物脂肪酶基因克隆的有效方法,并分别利用该方法克隆了葡枝根霉YF6脂肪酶基因和宏基因组脂肪酶基因Lip42,构建了高通量的毕赤酵母表面展示表达载体pAMB129,实现了葡枝根霉脂肪酶基因LipRs在毕赤酵母中的展示表达,研究了葡枝根霉全细胞催化合成生物柴油的反应条件,对宏基因组脂肪酶基因Lip42在毕赤酵母中的分泌表达进行了系统研究。具体摘要如下:
     1.筛选并鉴定了1株高产脂肪酶菌株葡枝根霉YF6,并采用简并PCR等分子技术从中克隆到1个新的脂肪酶基因LipRs及其对应的全长cDNA,序列分析表明该基因编码区全长1 173 bp,不含内含子序列,编码1段由26个氨基酸残基组成的信号肽和1个由365个氨基酸残基组成的成熟蛋白,有5个可能的N-糖基化位点,含有脂肪酶特征序列GHSLGGA,与来自米根霉的脂肪酶(AAF32408)同源性最高,一致性为83%。基因序列提交GenBank,登录号为DQ139862。
     2.构建了基于啤酒酵母絮凝蛋白Flo1的新型高通量毕赤酵母表面展示表达载体pAMB129,为了验证其有效性,葡枝根霉脂肪酶基因LipRs被克隆到絮凝蛋白N-端编码序列的下游,转化毕赤酵母,研究其表达情况。结果表明,重组的毕赤酵母菌株可以在橄榄油-罗丹明平板上表现出脂肪酶活性,并经过激光共聚焦显微镜观察,验证了构建的毕赤酵母展示表达载体的有效性,同时实现了葡枝根霉脂肪酶基因在毕赤酵母中的展示表达。
     3.以聚氨酯为葡枝根霉(Rhizopus stolonifer)YF6固定化培养载体,制成干燥的固定化YF6全细胞催化剂。用它进行酯化反应,油醇解反应最适醇油比为3:1,甲醇分3次加入,在反应温度35℃条件下,其酯化率最高达到89%左右。它不仅能使菜籽油、大豆油等油料直接经转酯化反应,生成脂肪酸甲酯,而且也能催化高酸值的废弃油的酯化反应形成生物柴油。
     4.采用简并PCR等分子技术从餐馆灶台油污宏基因组中克隆到脂肪酶基因Lip42及其对应的全长cDNA,序列分析表明脂肪酶基因的cDNA编码区序列全长为1692bp,编码1段由19个氨基酸残基组成的信号肽和1段由544个氨基酸残基组成的成熟肽,有2个可能的N-糖基化位点,BLAST比对分析表明该序列与已发表的白地霉(Geotrichum geotrichum)脂肪酶基因( U02541)在核苷酸水平的一致性为99%。该基因序列提交GenBank,登录号为DQ313172。将该脂肪酶基因的开放阅读框克隆到毕赤酵母表达载体,转化毕赤酵母GS115,经罗丹明B平板功能筛选得到具脂肪酶活性的重组毕赤酵母菌株[GS115(pAMB768)]。利用3种培养基(MM、BMM和BMMY)4种甲醇诱导浓度(0.5%、1.0%、1.5%和2.0%)在22℃恒温摇床中对重组菌株[GS115(pAMB768)]进行诱导表达,研究发现BMMY培养基在甲醇浓度为0.5%条件下表达量最高,纯化后计算表明粗酶液最高脂肪酶酶活为50.60 U/mL,重组脂肪酶的最高产量为147.93 mg/L培养基。重组脂肪酶经3步法纯化后,SDS-PAGE电泳表明该脂肪酶的表观分子量为68 kd,而以橄榄油为底物时其最适反应温度为30°C,最适反应pH值为pH 8.0。金属离子和去污剂对脂肪酶活性有较大影响,研究结果表明Mg2+对重组脂肪酶活性有促进作用,而Ca2+、K+、Fe2+、Cu2+和Co2+则抑制其活性, Tween 20、Triton-X100和SDS可以强烈抑制重组脂肪酶活性。
Lipase genes, LipRs from Rhizopus stolonifer YF6 and Lip42 from metagenome of oil dirt on the hearth of the restaurant were cloned by using degenerate PCR. A nevol highthroughput Pichia pastoris cell-surface display expression vector was constructed based on Flo1 from Saccharomyces cerevisiae and the display expression of RSL was detected. At the same time, preparing biodesiel by cells of R. Stolonifer YF6 immobilized, overexpression and characterization of Lip42 in P. pastoris were conducted. Details as following:
     A novel lipase-encoding cDNA from R. stolonifer YF6 was cloned by using degenerate PCR, rapid amplification of cDNA ends (RACE) and RT-PCR, and its structural gene was amplified by PCR. No intron was found in this lipase gene by nucleotide sequences alignment between the structural gene and its corresponding cDNA. The cDNA of the putative lipase gene (LipRs) consisted of 1 173 bp, including an open reading frame encoding a 26-amino acid signal peptide at the N-terminal end and a 365-amino acid mature protein with a predicted molecular mass of 39 268, a pI value of 7.66 and 5 potential N-glycosylation sites (N-X-T/S). The 7 conserved amino acid residues, GHSLGGA, required to the active site of the lipase from Rhizopus sp. were all found in this lipase, RSL. The amino acid sequences alignment result showed that the RSL had a high degree of identity with other Rhizopus lipases, and the highest one from Rhizopus oryzae (AAF32408) was 83%. This lipase gene sequence has been submitted to GenBank and its accession number is DQ139862.
     A novel system based on Flo1 from S. cerevisiae was developed for cell-surface display of heterologous proteins in P. pastoris. In order to test the vector, R. oryzae lipase RSL was fused to the C-terminal of the truncated peptide of Flo1p. The expression of fusion protein Flo1p-RSL was detected throughout the P. pastoris cell surface by confocal laser scanning microscopy. And lipase specific activity was detected on the MM agar medium containing olive oil and Rodanmine B. The results indicated that a Flo1p-based system could express proteins on the surface of P. pastoris and that the fusion proteins did not affect the function of which expressed protein.
     And also, the methanolysis of plant oils was investigated by cells of R. Stolonifer YF6 immobilized within polyurethane material. In order to enhance the methanolysis activity of whole cell, substrate-related compounds, such as 0.5% rapeseed oil and 0.1 % soybean oil, were added to the culture medium. The lyophilized immobilized whole cell was used as biocatalyst to prepare biodiesel. The molar ratio of methanol/oil was 3:1. Methanol should be added 3 times stage by stage to avoid reducing the specific activity of the immobilized whole cells. At optimized condition, reaction yield reached 89%. Various plant oils could be used as stuff to prepare biodiese fuel, not only vegetable oil, such as rapeseed oils and soybean oils, but also high acidic value wasted oil.
     A lipase gene was cloned by degenerate PCR from metagenome of the oil dirt on the hearth of the restaurant and designated as Lip42. Its sequence was submitted to GenBank with the accession number DQ313172 obtained. The cDNA of the putative lipase gene (Lip42) consisted of 1 692 bp, including an open reading frame encoding a 19-amino acid signal peptide at the N-terminal end and a 544-amino acid mature protein with a predicted molecular mass of 61 541.51 Dal, a pI value of 5.482 and 2 potential N-glycosylation sites (N-X-T/S). The open reading frame was transformed into P. pastoris strain GS115 under control of the AOX1 promoter by using the vector pHBM906. Secretion expression of Lip42 was detected from P. pastoris recombinant strain [GS115(pAMB768)]. Furthermore the expression was carried out at three different mediums (MM\BMM\BMMY), four different methanol concentration (0.5%/1.0%/1.5%/2.0%) to optimize the expression for shake-flask cultures at 22℃. The maximum yield of lipase is about 147.93 mg/L of culture medium. The recombinant lipase was purified in a three-step procedure involving ammonium sulfate fractionation and ion exchange. Characterizations of the purified enzyme revealed a molecular mass of 68 kDa in sodium dodecyl sulfate–polyacrylamide gel electrophoresis, maximum activity at 30°C and pH 8.0 for hydrolysis of olive oil. The highest recombinant lipase activity, 50.60 U/mL, was got under the optimum reaction conditions. The metal ions Mg2+ can activate the recombinant lipase, whereas Ca2+, K+, Fe2+, Cu2+, and Co2+ inhibited it, and Tween 20,Triton-X100, SDS inhibited it strongly.
引文
1.陈国仁,林琳. E83V对扩展青霉脂肪酶最适作用温度的影响.微生物学通报,2005,32(1):82-89
    2.陈木妹,林琳. D92P点突变对扩展青霉碱性脂肪酶最适作用温度的改善.生物技术通讯,2005,16(1):31-33
    3.邓利,谭天伟,王芳.脂肪酶催化合成生物柴油的研究[J].生物工程学报,2003,19 (1):97-101
    4.李秋生,余若黔,杨博。固定化脂肪酶的应用研究进展[J].四川食品与发酵, 2003, 2:9-12
    5. Lin L (林琳), Xie BF (谢必峰), Yang GZ (杨冠珍), Shi QQ (施巧琴), Lin QY (林奇英), Xie LH (谢联辉), Wu XF (吴祥甫), Wu SG (吴松刚). Cloning and sequence analysis of cDNA encoding alkaline lipase from Penicillium expansum PF898. Chin J Biochem Mol Biol (中国生物化学与分子生物学报), 2002, 18 (1): 32~37
    6.聂开立,王芳,邓利,谭天伟。间歇及连续式固定化酶反应生产生物柴油,生物加工过程,2005,3(1):58-62
    7.盛梅,杨文伟,郭登峰.固定化脂肪酶催化合成生物柴油[J].应用化学,2005,22(7):788-791
    8. Qiu YJ (邱勇隽), Xu JH (许建和). Immobilized lipase of Rhizopus sp. Bc0-09m01: Characterization and application in kinetic resolution of chiral ester. Chin J Appl Environ Biol (应用与环境生物学报), 2001, 7 (5): 469~473
    9.王一平,翟怡,张金利,李铧,韩振亭.生物柴油制备方法研究进展[J].化工进展.2003,22(1):8-12
    10.张银波,王汉中,江木兰,等.葡枝根霉(Rhizopus stolonifer) YF6脂肪酶基因的克隆及其序列分析,应用与环境生物学报[J],2007,13(6):876-880
    11. Zheng Y (郑毅), Zheng N (郑楠), Zhuo JF (卓进锋), Ma LL (马霖霖). Concentration of PUFAs in glyceride by hydrolysis of fish oil with lipase. Chin J Appl Environ Biol (应用与环境生物学报), 2005, 11 (5): 571~574
    12. Abdul Rahman, M., N. Chaibakhsh, et al. Application of Artificial Neural Network for Yield Prediction of Lipase-Catalyzed Synthesis of Dioctyl Adipate. Applied Biochemistry and Biotechnology, 2009.
    13. Bajpai P. Application of enzymes in the pulp and paper industry. Biotechnol Progr 1999;15:147–57.
    14. Beer HD, McCarthy JE, Bornscheuer UT, Schmid RD. Cloning, expression, characterization and role of the leader sequence of a lipase from Rhizopus oryzae. Biochim Biophys Acta, 1998, 1399 (2~3): 173~80.
    15. Beer, H. D., J. E. G. McCarthy, et al.. Cloning, expression, characterization and role of the leader sequence of a lipase from Rhizopus oryzae. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1998, 1399(2-3): 173-180.
    16. Bertolini, M. C., J. D. Schrag, et al. Expression and Characterization of Geotrichum candidum Lipase I Gene. Comparison of Specificity Profile with Lipase II. European Journal of Biochemistry, 1995, 228(3): 863-869.
    17. Bidlingmaier S, Liu B: Construction and application of a yeast surface-displayed human cDNA library to identify posttranslational modification-dependent protein–protein interactions. Mol Cell Proteomics 2006, 5:533-540.
    18. Blank, K., J. Morfill, et al. Functional expression of Candida antarctica lipase B in Eschericha coli. Journal of Biotechnology, 2006, 125(4): 474-483.
    19. Boer, E., H. P. Mock, et al.. An extracellular lipase from the dimorphic yeast Arxula adeninivorans: molecular cloning of the ALIP1 gene and characterization of the purified recombinant enzyme. Yeast, 2005, 22(7): 523-35.
    20. Bowley DR, Labrijn AF, Zwick MB, Burton DR: Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 2007,20:81-90.
    21. Brady S F, Chao C J, Handelsman J, et al. Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA[J].Org Lett,2001,3:1981-1984.
    22. Breinig F, Diehl B, Rau S, Zimmer C, Schwab H, Schmitt MJ: Cell surface expression of bacterial esterase a by Saccharomyces cerevisiae and its enhancement by constitutive activation of the cellular unfolded protein response. Appl Environ Microbiol 2006, 72:7140-7147.
    23. Brunel L, Neugnot V, Landucci L, Boze H, Moulin G, Bigey F, Dubreucq E. High-level expression of Candida parapsilosis lipase/acyltransferase in Pichia pastoris. J Biotechnol, 2004, 111 (1): 41~50
    24. Castle LA, Siehl DL, Gorton R., Patten, PA, Chen YH, Bertain S., Cho HJ., Duck N., Wong, J., Liu D. and Lassner MW, Discovery and directed evolution of a glyphosate tolerance gene. Science,2004, 304(5674): 1151-1154
    25. Cebon J, Maraskovsky E, Ritter G, Old L, Wittrup KD: Directed evolution for improved secretion of cancer-testis antigen NYESO-1 from yeast. Protein Expr Purif 2006, 48:232-242.
    26. Chao G, Cochran JR, Dane Wittrup K: Fine epitope mapping of anti-epidermal growth factor receptor antibodies through random mutagenesis and yeast surface display. J Mol Biol 2004, 342:539-550.
    27. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD:Isolating and engineering human antibodies using yeast surface display. Nat Protoc 2006, 1:755-768.
    28. Chen J and Wu W. Regeneration of immobilized Candida antarctica lipase for transesterification. Journal of Bioscience and Bioengineering, 2003, 95(5) : 466-469.
    29. Cho, A. R., S.-K. Yoo, et al. Cloning, sequencing and expression in Escherichia coli of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiology Letters, 2000, 186(2): 235-238.
    30. Chung KM, Nybakken GE, Thompson BS, Engle MJ, Marri A, Fremont DH, Diamond MS: Antibodies against West Nile Virus nonstructural protein NS1 prevent lethal infection through Fc g receptor-dependent and -independent mechanisms. J Virol 2006, 80:1340-1351.
    31. Clausen, I. G. Aspects in lipase screening. Journal of Molecular Catalysis B: Enzymatic, 1997, 3(1-4): 139-146.
    32. Cos O, Resina D, Ferrer P, Montesinos J L, Valero F. Heterologous production of Rhizopus oryzae lipase in Pichia pastoris using the alcohol oxidase and formaldehyde dehydrogenase promoters in batch and fed-batch cultures. Biochem Enging J, 2005, 26 (2, 3): 86~94
    33. de Paula, A., G. Nunes, et al. Screening of food grade lipases to be used in esterification and interesterification reactions of industrial interest. Applied Biochemistry and Biotechnology. 2009.
    34. Deng M, Grund A, Sarah L. Wassink, Susan S. Peng, Kathleen L. Nielsen, Brian D. Huckins, Bonnie L. Walsh and Richard P. Burlingame. Directed evolution and characterization of Escherichia coli glucosamine synthase. Biochimie, 2006,88(5): 419-429
    35. Dharmsthiti S, Kuhasuntisuk B. Lipase from Pseudomonas aeruginosa LP602: biochemical properties and application for wastewater treatment. J Industr Microbiol Biotechnol 1998;21:75–80.
    36. Dominguez de Maria, P., J. V. Sinisterra, et al. Carica papaya lipase (CPL): An emerging and versatile biocatalyst. Biotechnology Advances, 2006, 24(5): 493-499.
    37. Du W, Xu Y, Liu D and Zeng J. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. Journal of Molecular Catalysis B: Enzymatic, 2004, 30(3-4):125-129
    38. Elend C, Schmeisser C, Leggewie C, Babiak P, Carballeira J, Steele H, Reymond J, Jaeger K, and Streit W. Isolation and Biochemical Characterization of Two Novel Metagenome-Derived Esterases. Applied and Environmental Microbiology, 2006, 72(5):3637-3645
    39. Elibol M, Ozer D.Lipase production by immobilized Rhizopus arrhizus.Process Biochemistry,2000,36:219—233.
    40. Elibol M, Ozer D.Response surface analysis of lipase production by freely suspended Rhizopus arrhizus.Process Biochemistry,2002,38:367—372.
    41. Fan, Z., C. Yue, et al. Cloning, sequence analysis and expression of bacterial lipase-coding DNA fragments from environment in Escherichia coli. Molecular Biology Reports, 2009.
    42. Feldhaus, M. J. and R. W. Siegel. Yeast display of antibody fragments: a discovery and characterization platform. J Immunol Methods, 2004, 290(1-2): 69-80.
    43. Fernandez, L., I. Perez-Victoria, et al. High-level expression and characterization of Galactomyces geotrichum (BT107) lipase I in Pichia pastoris. Protein Expression and Purification, 2006, 49(2): 256-264.
    44. Ferrer M, Martinez-Abarca F, Golyshin P. Mining genomes and 'metagenomes' for novel catalysts. Current Opinion in Biotechnology, 2005, 16(6): 588-593
    45. Fujii R, Nakagawa Y,Hiratake J,Sogabe A,Sakata K:Directed evolution of Pseudomonas aeruginosa lipase for improve amide-hydrolyzing activity. Protein Engineering, Design & Selection , 2005,18:93-101.
    46. Fukuda, N., J. Ishii, et al. High-efficiency recovery of target cells using improved yeast displaysystem for detection of protein–protein interactions. Applied Microbiology and Biotechnology, 2007,76(1): 151-158.
    47. Furukawa H, Tanino T, Fukuda H, Kondo A: Development of novel yeast cell surface display system for homo-oligomeric protein by coexpression of native and anchored subunits. Biotechnol Prog 2006, 22:994-997.
    48. Gao Y, Tan T, Nie K and Wang F. Immobilization of Lipase on Macroporous Resin and Its Application in Synthesis of Biodiesel in Low Aqueous Media. Chinese Journal of Biotechnology, 2006,22(1):114-118
    49. Gao, B., E. Su, et al. Development of recombinant Escherichia coli whole-cell biocatalyst expressing a novel alkaline lipase-coding gene from Proteus sp. for biodiesel production. J Biotechnol ,2009, 139(2): 169-75.
    50. Garcia-Rodriguez C, Levy R, Arndt JW, Forsyth CM, Razai A,Lou J, Geren I, Stevens RC, Marks JD: Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin. Nat Biotechnol 2007, 25:107-116.
    51. Gerhartz W. Industrial uses of enzymes. In: Enzymes in industry production and application. Weinheim, Germany: VCH; 1990. pp.77–148.
    52. Griebeler, N., A. Polloni, et al. Isolation and Screening of Lipase-Producing Fungi with Hydrolytic Activity. Food and Bioprocess Technology, 2009.
    53. Gruttadauria, M., P. L. Meo, et al. Lipase-catalyzed resolution of [beta]-hydroxy selenides. Tetrahedron: Asymmetry, 2006, 17(18): 2713-2721.
    54. Ha, S. H., M. N. Lan, et al. Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzyme and Microbial Technology , 2009, In Press, Corrected Proof: 299.
    55. Haas, M. J., J. Allen, et al. Cloning, expression and characterization of a cDNA encoding a lipase from Rhizopus delemar. Gene , 1991, 109(1): 107-113.
    56. Hama S, Tamalampudi S, Fukumizu T, Miura K, Yamaji H, Kondo A and Fukuda H. Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. Journal of Bioscience and Bioengineering, 2006, 101(4): 328-333
    57. Hama S, Yamaji H, Kaieda M, Oda M, Kondo A and Fukuda H. Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochemical Engineering Journal, 2004, 21(2):155-160
    58. Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H et al.: Production of complex human glycoproteins in yeast. Science 2003, 301:1244-1246.
    59. Handelsman J, Michelle R. Rondon, Sean F. Brady, Clardy J and Robert M. Goodman. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry and biology ,1998, 5(10):245-249.
    60. Handelsman, J., M. Liles, et al. Cloning the metagenome: Culture-independent access to thediversity and functions of the uncultivated microbial world. Methods in Microbiology, 2002, Academic Press. Volume 33: 241-255.
    61. Hemachander C, Puvanakrishnan R. Lipase from Ralstonia pickettii as an additive in laundry detergent formulations. Proc Biochem, 2000, 35 (8): 809~814.
    62. Ho M, Nagata S, Pastan I: Isolation of anti-CD22 Fv with high affinity by Fv display on human cells. Proc Natl Acad Sci USA 2006, 103:9637-9642.
    63. Huang, Y., H. Zheng, et al. Optimization of lipase-catalyzed transesterification of lard for biodiesel production using response surface methodology. Applied Biochemistry and Biotechnology, 2009.
    64. Hugenholtz P., Goebel B.M., Pace N.R. 1998.Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity[J].J. Bacteriol. 180(180): 4765–4774.
    65. Inaba, C., K. Maekawa, et al. Efficient synthesis of enantiomeric ethyl lactate by Candida antarctica lipase B (CALB)-displaying yeasts. Applied Microbiology and Biotechnology, 2009.
    66. Jacobs, P., S. Ryckaert, et al. Pichia surface display: display of proteins on the surface of glycoengineered Pichia pastoris strains. Biotechnology Letters, 2009.
    67. Jennings, B. H. and C. C. Akoh. Lipase catalyzed modification of fish oil to incorporate capric acid. Food Chemistry, 2001, 72(3): 273-278.
    68. Jiang, Z., Y. Zheng, et al. Cloning and expression of a novel lipase gene from Pseudomonas fluorescens B52. Molecular Biotechnology,2005, 31(2): 95-101.
    69. Jiang, Z.-B., H.-T. Song, et al. Cell surface display of functionally active lipases from Yarrowia lipolytica in Pichia pastoris. Protein Expression and Purification,2007, 56(1): 35-39.
    70. Jin M, Song G, Carman CV, Kim Y-S, Astrof NS, Shimaoka M, Wittrup DK, Springer TA: Directed evolution to probe protein allostery and integrin I domains of 200,000-fold higher affinity. Proc Natl Acad Sci USA 2006, 103:5758-5763.
    71. Kaewprapan, K., P. Tuchinda, et al. pH imprinted lipase catalyzed synthesis of dextran fatty acid ester. Journal of Molecular Catalysis B: Enzymatic, 2009, In Press, Accepted Manuscript: 46.
    72. Kim DY, Dordick JS. Combinatorial array-based enzymatic polyester synthesis. Biotechnol Bioeng, 2001, 76: 200~206
    73. Kim, E.-Y., Oh, K.-H., Lee, M.-H., Kang, C.-H., Oh, T.-K., Yoon, J.-H. (2009). Novel Cold-Adapted Alkaline Lipase from an Intertidal Flat Metagenome and Proposal for a New Family of Bacterial Lipases. Appl. Environ. Microbiol. 75: 257-260.
    74. Kim, H. and W. Song. Lipase treatment of polyester fabrics. Fibers and Polymers, 2006, 7(4): 339-343.
    75. Kim, H. and W. Song. Optimization of enzymatic treatment of polyester fabrics by lipase from Porcine Pancreas. Fibers and Polymers,2008, 9(4): 423-430.
    76. Kouker G and Jaeger K E. Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol. 1987, 53(1): 211-213
    77. Kuroda K, Ueda M: Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 2006, 70:458-463.
    78. Kuroda, K., K. Matsui, et al. Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Applied Microbiology and Biotechnology, 2009.
    79. Kwon, C., J. Jeong, et al. Molecular modeling and experimental verification of lipase-catalyzed enantioselective esterification of racemic naproxen in supercritical carbon dioxide. Korean Journal of Chemical Engineering,2009, 26(1): 214-219.
    80. Latha K, Ramarethinam S. Studies on lipid acyl hydrolases during tea processing. Ann Plant Physiol 1999;3:73–78.
    81. Lee H-W, Lee S-H, Park K-J, Kim J-S, Kwon M-H, Kim Y-S: Construction and characterization of a pseudo-immune human antibody library using yeast surface display. Biochem Biophys Res Commun 2006, 346:896-903.
    82. Lee S, Won K, Lim H, Kim J, Choi G and Cho K. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Applied Microbiology and Biotechnology, 2004,65(6 ): 720-726
    83. Lee, J., C. Kwon, et al. Biodiesel production from various oils under supercritical fluid conditions by Candida antartica Lipase B using a stepwise reaction method. Applied Biochemistry and Biotechnology,2009.
    84. Levy R, Forsyth CM, LaPorte SL, Geren IN, Smith LA, Marks JD: Fine and domain-level epitope mapping of botulinum neurotoxin type A neutralizing antibodies by yeast surface display. J Mol Biol 2007, 365:196-210.
    85. Liang Y, Wan Y, Qiu L-W, Zhou J, Ni B, Guo B, Zou Q, Zou L, Zhou W, Jia Z et al.: Comprehensive antibody epitope mapping of the nucleocapsid protein of severe acute respiratory syndrome (SARS) coronavirus: insight into the humoral immunity of SARS. Clin Chem 2005, 51:1382-1396.
    86. Lima VMG, Krieger N, Mitchell DA, Fontana JD. Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochem Engin J, 2004, 18 (1): 65~71
    87. Lin, Y., T. Tsumuraya, et al. Display of a functional hetero-oligomeric catalytic antibody on the yeast cell surface. Applied Microbiology and Biotechnology,2003, 62(2): 226-232.
    88. Linko, Y.-Y., M. Lamsa, et al. Biodegradable products by lipase biocatalysis. Journal of Biotechnology,1998, 66(1): 41-50.
    89. Lipovsek D, Lippow SM, Hackel BJ, Gregson MW, Cheng P, Kapila A, Wittrup KD: Evolution of an interloop disulfide bond in high-affinity antibody mimics based on fibronectin type III domain and selected by yeast surface display: molecular convergence with single-domain camelid and shark antibodies. J Mol Biol 2007, 368:1024-1041.
    90. Liu, Z., X. Li, et al. Cloning, characterization and expression of the extracellular lipase gene from Aureobasidium pullulans HN2-3 isolated from sea saltern. Antonie van Leeuwenhoek,2008, 94(2):245-255.
    91. Long, Z.-D., J.-H. Xu, et al. Overexpression of Serratia marcescens lipase in Escherichia coli for efficient bioresolution of racemic ketoprofen. Journal of Molecular Catalysis B: Enzymatic,2009, In Press, Corrected Proof: 96.
    92. Lorenz Patrick, Liebeton Klaus, Niehaus Frank, et al. Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space[J]. Current Opinion in Biotechnology, 2002,13(6):572-577.
    93. Manichanh , C., Chapple, C. E., Frangeul, L., Gloux, K., Guigo, R., Dore, J. (2008). A comparison of random sequence reads versus 16S rDNA sequences for estimating the biodiversity of a metagenomic library. Nucleic Acids Res 36: 5180-5188.
    94. Matsumoto T, Fukuda H, Ueda M, Tanaka A, and Kondo A. Construction of Yeast Strains with High Cell Surface Lipase Activity by Using Novel Display Systems Based on the Flo1p Flocculation Functional Domain. Applied Environmental Microbiology, 2002,68(9): 4517–4522
    95. Matsumoto, T., S. Takahashi, et al. Preparation of high activity yeast whole cell bioctalysts by optimization of intracellular production of recombinant Rhizopus oryzae lipase. Journal of Molecular Catalysis B: Enzymatic, 2002, 17(3-5): 143-149.
    96. Miller, K. D., N. B. Pefaur, et al. Construction and screening of antigen targeted immune yeast surface display antibody libraries. Curr Protoc Cytom, 2008, Chapter 4: Unit4 7.
    97. Mine Y, Fukunaga K, Maruoka N, Nakao K, Sugimura Y. Preparation of detergent-lipase complexes utilizing water-soluble amphiphiles in single aqueous phase and catalysis of transesterifications in homogeneous organic solvents. J Biosci & Bioengin, 2000, 90 (6): 631~636
    98. Modi M, Reddy J, Rao B and Prasad R. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresource Technology, 2007, 38(6): 1260-1264.
    99. Mori, T., Mizuta, S., Suenaga, H., Miyazaki, K. (2008). Metagenomic Screening for Bleomycin Resistance Genes. Appl. Environ. Microbiol. 74: 6803-6805.
    100. Naoe K, Awatsu S, Yamada Y , Kawagoe M, Nagayama K, Imai M. Solvent condition in triolein hydrolysis by Rhizopus delemar lipase using an AOT reverse micellar system. Biochem Engin J, 2004, 18 (1): 49~55.
    101. Nara SJ, Harjani JR, Salunkhe MM, Mane AT, Wadgaonkar PP. Lipase-catalysed polyester synthesis in 1-butyl-3-methyl-imidazolium hexafluorophosphate ionic liquid. Tetrahedron Lett, 2003, 44 (7): 1371~1373.
    102. Neri, C. and J. M. J. Williams. Racemic auxiliaries: applications to asymmetric synthesis. Tetrahedron Letters,2002, 43(23): 4257-4260.
    103. Niu W, Li Z, Zhang D, Yu Mand Tan T. Improved thermostability and the optimum temperature of Rhizopus arrhizus lipase by directed evolution. Journal of Molecular Catalysis B: Enzymatic, 2006, 43(1-4):33-39.
    104. Noureddini H, Gao X, Philkana RS. Immobilized Pseudomonas cepacia lipase for biodiesel fuelproduction from soybean oil. Bioresour Technol, 2005, 96: 769~777.
    105. Nybakken GE, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH: Structural basis of West Nile Virus neutralization by a therapeutic antibody. Nature 2005, 437:764-769.
    106. Oda M, Kaieda M, Hama S, Yamaji H, Kondo A, Izumoto E, Fukuda H. Facilitatory effect of immobilized lipase-producing Rhizopus oryzae cells on acyl migration in biodiesel-fuel production. Biochem Engin J, 2005, 23 (1): 45~51.
    107. Oda M, Kaieda M, Hama S, Yamaji H, Kondo A, Izumoto E, Fukuda H. Facilitatory effect of immobilized lipase-producing Rhizopus oryzae cells on acyl migration in biodiesel-fuel production[J]. Biochem Engin J, 2005, 23 (1): 45~51.
    108. Ogino, H., Y. Katou, et al. Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03. Extremophiles,2007, 11(6): 809-817.
    109. Oh, B.-C., H.-K. Kim, et al. Staphylococcus haemolyticus lipase: biochemical properties, substrate specificity and gene cloning, 1999, 179: 385-392.
    110. Quintana-Castro, R., P. Díaz, et al. Gene Cloning, Expression, and Characterization of the Geobacillus Thermoleovorans CCR11 Thermoalkaliphilic Lipase. Molecular Biotechnology,2009.
    111. Quyen DT, Dannert CS,. Schmid RD. High-level expression of a lipase from Bacillus thermocatenulatus BTL2 in Pichia pastoris and some properties of the recombinant lipase. Prot Expr & Purif, 2003, 28 (1): 102~110.
    112. Quyen DT, Le TTG, Nguyen TT, Oh TK, Lee JK. High-level heterologous expression and properties of a novel lipase from Ralstonia sp. M1. Prot Expr & Purif, 2005, 39 (1): 97~106.
    113. Rahman MBA, Tajudin SM, Hussein MZ, Rahman RNZRA, Salleh AB, Basri M. Application of natural kaolin as support for the immobilization of lipase from Candida rugosa as biocatalsyt for effective esterification. Appl Clay Sci, 2005, 29 (2): 111~116.
    114. Rakestraw JA, Baskaran AR, Wittrup KD: A flow cytometric assay for screening improved heterologous protein secretion in yeast. Biotechnol Prog 2006, 22:1200-1208.
    115. Ramon, R., P. Ferrer, et al. Sorbitol co-feeding reduces metabolic burden caused by the overexpression of a Rhizopus oryzae lipase in Pichia pastoris. Journal of Biotechnology,2007, 130(1): 39-46.
    116. Rathi P, Saxena RK, Gupta R. A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Proc Biochem, 2001, 37 (2): 187~192.
    117. Richman SA, Healan SJ, Weber KS, Donermeyer DL, Dossett ML, Greenberg PD, Allen PM, Kranz DM: Development of a novel strategy for engineering high-affinity proteins by yeast display. Protein Eng Des Sel 2006, 19:255-264.
    118. Romero MD, Calvo L, Alba C, Daneshfar A, Ghaziaskar HS. Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane. Enzym & Microb Technol, 2005, 37(1): 42~48.
    119. Rondon MR, August PR, Bettermann AD,et al. Cloning the soil metagenome: a strategy foraccessing the genetic and functional diversity of uncultured microorganisms[J]. Appl Environ Microbiol, 2000,66(6):2541-2547.
    120. Royon, M. Daz, G. Ellenrieder and S. Locatelli. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technology, 2007,98(3): 648-653.
    121. Salis A, Pinna M, Monduzzi M and Solinas V. Biodiesel production from triolein and short chain alcohols through biocatalysis. Journal of Biotechnology, 2005, 119(3):291-299.
    122. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001.
    123. Santarossa G, Lafranconi P., Alquati C., DeGioia L., Alberghina L., Fantucci P., Lotti M.. Mutations in the“lid”region affect chain length specificity and thermostability of a Pseudomonas fragi lipase. FEBS Letters, 2005, 579(11):2383-2386.
    124. Schmeisser C, Stockigt C, Raasch C, et al. Metagenome survey of biofilms in drinking-water networks[J]. Appl Environ Microbiol,2003,69:7298-7309.
    125. Schmidt-Dannert, C. Recombinant microbial lipases for biotechnological applications. Bioorganic & Medicinal Chemistry,1999, 7(10): 2123-2130.
    126. Schmidt-Dannert, C., M. L. Rua, et al. Thermoalkalophilic lipase of Bacillus thermocatenulatus. I. Molecular cloning, nucleotide sequence, purification and some properties. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism,1996, 1301(1-2): 105-114.
    127. Scholler N, Garvik B, Quarles T, Jiang S, Urban N: Method for generation of in vivo biotinylated recombinant antibodies by yeast mating. J Immunol Methods 2006, 317:132-143.
    128. Shibasaki S, Kawabata A, Ishii J, Yagi S, Kadonosono T, Kato M, Fukuda N, Kondo A, Ueda M: Construction of a novel synergistic system for production and recovery of secreted recombinant proteins by the cell surface engineering. Appl Microbiol Biotechnol 2007, 75:821-828.
    129. Shim J-H, Seo N-S, Roh S-A, Kim J-W, Cha H, Park K-H: Improved bread-baking process using Saccharomyces cerevisiae displayed with engineered cyclodextrin glucanotransferase. J Agric Food Chem 2007, 55:4735-4740.
    130. Shimada Y, Watanabe Y, Sugihara A and Tominaga Y. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. Journal of Molecular Catalysis B: Enzymatic, 2002,17(3-5): 133-142.
    131. Shiraga S, Ishiguro M, Fukami H, Nakao M, Ueda M: Creation of Rhizopus oryzae lipase having a unique oxyanion hole by combinatorial mutagenesis in the lid domain. Appl Microbiol Biotechnol 2005, 68:779-785.
    132. Shu, Z.-Y., Y.-J. Yan, et al. Aspergillus niger lipase: gene cloning, over-expression in Escherichia coli and in vitro refolding. Biotechnology Letters,2007, 29(12): 1875-1879.
    133. Shusta EV, Kieke MC, Parke E, Kranz DM, Wittrup KD: Yeast polypeptide fusion surface display levels predict thermal stability and soluble secretion efficiency. J Mol Biol 1999, 292:949-956.
    134. Shyamala V, Ferro-Luzzi G. Genome walking by single specific primer-polymerase chain reaction.AMES Methods in enzymology. 1993,217: 436-446.
    135. Simon C, Herath J., Rockstroh, S., Daniel, R. (2009). Rapid Identification of Genes Encoding DNA Polymerases by Function-Based Screening of Metagenomic Libraries Derived from Glacial Ice. Appl. Environ. Microbiol. 75: 2964-2968.
    136. Singer T, Burke E. High-throughput TAIL-PCR as a tool to identify DNA flanking insertions. Methods in molecular biology(Clifton, NJ) 236, 241-271, Humana Press, 2003.
    137. Stephens D, Rumbold K, Permaul K, Prior B and Singh S. Directed evolution of the thermostable xylanase from Thermomyces lanuginosus. Journal of Biotechnology, 2007, 127(3): 348-354.
    138. Suen W, Zhang N, Xiao L, Madison V and Zaks A. Improved activity and thermostability of Candida Antarctica lipase B by DNA family shuffling. Protein Engineering, Design & Selection,2004,17(2):133-140.
    139. Takayama K, Suye S-I, Kuroda K, Ueda M, Kitaguchi T, Tsuchiyama K, Fukuda T, Chen W, Mulchandani A: Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae. Biotechnol Prog 2006, 22:939-943.
    140. Tamaru Y, Ohtsuka M, Kato K, Manabe S, Kuroda K, Sanada M, Ueda M: Application of the arming system for the expression of the 380R antigen from Red Sea Bream Iridovirus (RSIV) on the surface of yeast cells: a first step for the development of an oral vaccine. Biotechnol Prog 2006, 22:949-953.
    141. Tang SJ, Sun KH, Sun GH, Chang TY, Lee GC. Recombinant expression of the Candida rugosa lip4 lipase in Escherichia coli. Prot Expr & Purif, 2000, 20 (2): 308~313.
    142. Tanino T, Aoki T, et al. Improvement of a Candida antarctica lipase B-displaying yeast whole-cell biocatalyst and its application to the polyester synthesis reaction. Applied Microbiology and Biotechnology,2009.
    143. Thongekkaew, J. and C. Boonchird. Molecular cloning and functional expression of a novel extracellular lipase from the thermotolerant yeast Candida thermophila. FEMS Yeast Research, 2007, 7(2): 232-243.
    144. Ting, W. J., K. Y. Tung, et al.. Application of binary immobilized Candida rugosa lipase for hydrolysis of soybean oil. Journal of Molecular Catalysis B: Enzymatic,2006, 42(1-2): 32-38.
    145. Tirawongsaroj P, Rutchadaporn Sriprang, Piyanun Harnpicharnchai, Taksawan Thongaram, Verawat Champreda, Sutipa Tanapongpipat, Kusol Pootanakit and Lily Eurwilaichitr. Novel thermophilic and thermostable lipolytic enzymes from a Thailand hot spring metagenomic library. Journal of Biotechnology, 2008,133(1): 42-49.
    146. Toida, J., M. Fukuzawa, et al.. Cloning and sequencing of the triacylglycerol lipase gene of Aspergillus oryzae and its expression in Escherichia coli. FEMS Microbiology Letters,2000, 189(2): 159-164.
    147. Torsvik V., Ovreas L. 2002. Microbial diversity and function in soil: from genes to ecosystems[J].Curr. Opin. Microbiol. 5(3):240-5.
    148. Tripathi, M. K., U. Roy, et al. Cloning, sequencing and structural features of a novel Streptococcus lipase. Enzyme and Microbial Technology,2004, 34(5): 437-445.
    149. Tschocke C. Enzymatic treatment of fats in wastewater treatment plants. Eau Ind, Nuisances 1990;138:63–4.
    150. Tyson G W, Chapman J, Hugenholtz P, et al.Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature,2004,428:37-43.
    151. ul-Haq Ikram, Idrees S M, Rajoka I.Production of lipases by Rhizopus oligosporous by solid-state fermentation.Process Biochemistry,2002,37:637—641.
    152. van Kampen, M. D., R. Rosenstein, et al. Cloning, purification and characterisation of Staphylococcus warneri lipase 2. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology,2001, 1544(1-2): 229-241.
    153. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res, 1986, 14: 4683~4690.
    154. Wadle A, Mischo A, Imig J, Wu¨llner B, Hensel D, Wa¨tzig K, Neumann F, Kubuschok B, Schmidt W, Old LJ et al.: Serological identification of breast cancer-related antigens from a Saccharomyces cerevisiae surface display library. Int J Cancer 2005, 117:104-113.
    155. Wang Z, Kim G-B, Woo J-H, Liu YY, Mathias A, Stavrou S,Neville DM: Improvement of a recombinant anti-monkey anti-CD3 diphtheria toxin based immunotoxin by yeast display affinity maturation of the scFv. Bioconjugate Chem 2007,18:947-955.
    156. Wang, Q., L. Li, et al. Construction of a novel Pichia pastoris cell-surface display system based on the cell wall protein Pir1. Current Microbiology,2008, 56(4): 352-357.
    157. Watanabe Y, Shimada Y, Sugihara A and Tominaga Y. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. Journal of Molecular Catalysis B: Enzymatic, 2002,17(3-5):151-155.
    158. Wentz AE, Shusta EV: A novel high-throughput screen reveals yeast genes that increase secretion of heterologous proteins. Appl Environ Microbiol 2007, 73:1189-1198.
    159. Wolfgang R S, Daniel R and Jaeger K E. Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms. Current Opinion in Biotechnology, 2004, 15(4):285-290.
    160. Wu, M., Z. Qian, et al. Cloning of an alkaline lipase gene from Penicillium cyclopium and its expression in Escherichia coli. Lipids,2003, 38(3): 191-199.
    161. Xu Y, Du W and Liu D. Study on the kinetics of enzymatic interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor. Journal of Molecular Catalysis B: Enzymatic, 2005, 32(5-6):241-245.
    162. Yang XH, Wang BW, Cui FN, Tan TW. Production of lipase by repeated batch fermentation with immobilized Rhizopus arrhizus. Proc Biochem, 2005, 40 (6): 2095~2103.
    163. Yang, G., J. Wu, et al. Enantioselective resolution of 2-(1-hydroxy-3-butenyl)- 5-methylfuran by immobilized lipase. Applied Microbiology and Biotechnology,2009.
    164. Yang, J., B. Zhang, et al. Cloning and Expression of Pseudomonas fluorescens 26-2 Lipase Gene in Pichia pastoris and Characterizing for Transesterification. Appl Biochem Biotechnol, 2009.
    165. Yang, J., D. Guo, et al. Cloning, expression and characterization of a novel thermal stable and short-chain alcohol tolerant lipase from Burkholderia cepacia strain G63. Journal of Molecular Catalysis B: Enzymatic,2007, 45(3-4): 91-96.
    166. Yao, H., S. Yu, et al. Isolation of a novel lipase gene from Serratia liquefaciens S33 DB-1, functional expression in Pichia pastoris and its properties. Mol Biotechnol,2008, 38(2): 99-107.
    167. Yu, M., S. Lange, et al. High-level expression of extracellular lipase Lip2 from Yarrowia lipolytica in Pichia pastoris and its purification and characterization. Protein Expression and Purification,2007, 53(2): 255-263.
    168. Zelena, K., S. Krugener, et al. Functional expression of the lipase gene Lip2 of Pleurotus sapidus in Escherichia coli. Biotechnol Lett,2009, 31(3): 395-401.
    169. Zhang, J. W. and R. Y. Zeng. Molecular cloning and expression of a cold-adapted lipase gene from an Antarctic deep sea psychrotrophic bacterium Pseudomonas sp. 7323. Mar Biotechnol (NY),2008, 10(5): 612-21.
    170. Zheng, Y., J. Quan, et al. Lipase-catalyzed transesterification of soybean oil for biodiesel production in tert -amyl alcohol. World Journal of Microbiology and Biotechnology,2009.
    171. Zhu Z, Momeu C, Zakhartsev M and Schwaneberg. U. Making glucose oxidase fit for biofuel cell applications by directed protein evolution. Biosensors and Bioelectronics, 2006,21(11): 2046-2051Tyler W. Johannes and Huimin Zhao Directed evolution of enzymes and biosynthetic pathways.Current Opinion in Microbiology, 2006,9(3): 261-267.
    172. Zwolinski , M. D. (2007). DNA Sequencing: Strategies for Soil Microbiology. Soil Sci. 71: 592-600.