水稻花器官相关基因MRG的图位克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻作为重要的粮食作物和理想的模式植物,其花发育调控的遗传和分子机制研究已成为当今分子生物学的研究热点。水稻的花器官雄蕊和雌蕊是保守的,许多实验结果均证实浆片是双子叶植物花瓣的同源器官,然而外稃和内稃与双子叶植物和其他单子叶植物的花萼器官的对应关系仍存在争议。水稻花发育突变体为研究相关基因表达与功能提供了理想材料,内外稃发育与稻米产量、品质关系密切,可见对水稻内外稃突变体进行研究具有理论和现实意义。
     从水稻(Oryza sativa L)‘浙粳22’的6。CoY射线辐射诱变群体和‘秀水09’的EMS诱变群体中筛选获得4份月亮型颖壳突变体(moon rice glume,简称mrg)。对突变体mrg进行了表型观察、米质分析、基因的图位克隆和功能分析等,结果如下:
     1月亮型颖壳突变体mrg形态结构特征:营养生长阶段,月亮型颖壳突变体mrg-1、mrg-2、mrg-3和mrg-4植株形态和野生型植株没有明显差别;突变体mrg浆片、雄蕊和雌蕊正常,但内稃和外稃弯曲,4个突变体表型变异程度略有差异。组织学分析表明,这种差异是由内外稃相互勾合不够紧密造成。
     2月亮型颖壳突变体mrg稻米品质:稻米外观品质方面,月亮型颖壳突变体粒长和粒宽均较野生型小,长宽比增加,千粒重、垩白率和垩白度降低;稻米加工品质方面,月亮型颖壳突变体稻米的糙米率、精米率和整精米率均较野生型低;稻米营养品质方面,月亮型颖壳突变体蛋白含量较野生型高,为9.917mg/g;稻米蒸煮食味品质方面,月亮型颖壳突变体胶稠度较野生型高,为83.06mm,属于软胶稠度;直链淀粉含量和碱消值较野生型减小,分别为13.18%和7.02,属于低糊化温度,月亮型颖壳突变体的蒸煮品质发生变化。
     3突变性状的遗传分析:突变体mrg-1和mrg-2分别与粳稻‘浙粳22’杂交,F1表型与野生型一致,说明mrg为隐性突变导致。根据F2表型及χ2测验结果表明,正常株与突变株的比例符合1对基因控制的分离比3:1,即该突变性状是受一对隐性基因控制。
     4 MRG基因的精细定位和候选基因的克隆分析和确定:利用图位克隆方法,将MRG基因定位于2号染色体InDel标记J59与J95之间,两者相距194Kb,该区域位于AP004081、AP005303和AP005691三个BAC所构成的重叠群上。通过测序得知mrg-1、mrg-2、mrg-3和mrg-4的Os02g0811000基因存在不同形式的突变。根据测序结果,在突变位点存在酶切位点差异。酶切检测突变群体,此突变位点与突变性状完全连锁,确定了Os02g0811000就是MRG的候选基因。
     5 MRG蛋白分析:MRG基因没有内含子,全长cDNA序列(Genbank登录号:NM_001055008.1)为1587bp,其中ORF区为747bp,5'-UTR区为503bp,3'-UTR区为337bp。MRG基因的编码蛋白(Genbank登录号:BAF10387.1或NP 001048473.1)为248个氨基酸,第79-210氨基酸构成DUF640结构域,MRG蛋白的分子量为25.89kD,等电点(PI)为9.62。MRG蛋白具有核定位信号(KKKR,氨基酸205-208),MRG-YFP融合蛋白亚细胞定位结果显示,MRG蛋白定位在细胞核。MRG蛋白含未知功能DUF640结构域,通过对含该结构域的同源蛋白比对分析,发现MRG蛋白与已报道的G1和LSH1属于不同的分支。DUF640结构域具有保守的氨基酸序列,突变体mrg-2和mrg-3的MRG基因发生单碱基突变的位点都位于该结构域保守位点。
Rice is an important food crop and model plant. The genetic and molecular mechanism underlying the regulation of floral development has become one of important subjects. There is evident homology for stamens and carpels between monocots and eudicots. Lodicules are interpreted as homologous to a single perianth whorl of other monocots. Considerable debates exist in the relationship beteen palea and lemma structures and dicot sepals. The mutant of floral development is important for the studies on gene expression and function. The development of palea and lemma structures is directively related to rice quality and productivity. Research on rice reproductive mechanism is significant both in theory and practice.
     Four moon rice glume (mrg) mutants were obtained by screening the Zhejing22 mutant pool which was theated with 60Co y-ray and Xiushui09 mutant pool which was theated with 0.8% EMS. In this study, we have made the investigation of the floral organs, rice quality and the characterization of a novel gene named MRG. The main results are the following:
     1 The investigation of floral morphogenesis:No abnormalities were observed in the vegetative stage. In the ripening stage, we found the lodicules, stamens and carpels of mrg were nomal, but the paleas and lemmas of mrg were twisted and degenerated, however, the phenotypic severity differed significantly among the four mutants. According to histological analysis, the difference was caused by the loose joints of palea and lemma.
     2 The rice quality of mrg: We analyzed the rice quality of mrg and wild-type. The impact of palea and lemma development on grain shape was larger than other qualities. The grain length and width of mrg was much shorter than that of wild-type, resulted in the increase of length width ratio and decrease of thousand grains weight. The chalkiness grain rate and degree of white core of mrg decreased. The percent of protein content increased compared with wild-type, which was 9.917mg/g. cooking and tasting quality of mrg was different for the decreace of amylose content and gel consistence.
     3 Genetic analysis:mrg-1 and mrg-2 mutants were crossed with Zhejing22 respectively. The F1 population of two crosses showed wild-type phenotype. Investigation for F2 population showed that the segregation of normal plants and mutant plants fited a ratio of 3:1. The result of genetic analysis indicated that the traits of mrg was controlled by a single reeessive gene.
     4 Fine mapping of MRG, determining and cloning analysis of candidate genes: The gene MRG was mapped between InDel maker J59 and J95 on chromosome 2 with physical distance of 194 Kb by a map-based clone stratege. In this region, there are three BACs named AP004081, AP005303 and AP005691. We sequenced the cDNA and DNA of Os02g0811000 in mrg mutants and wild type, and found mutation in the open reading frame region of Os02g0811000 gene. New restriction sites were born for the mutation of Os02g0811000 gene in mutants, all of the mutant plant population was digested. These results indicated that Os02g0811000 gene was the MRG gene.
     5 Functional Analysis of the MRG:The 3'non-coding region of the MRG transcript is 197 nt long and the 5'non-coding region is 49 nt long. The ORF of MRG contains no introns. From the cDNA sequence we obtained, it was predicted that MRG encodes a protein of 248 amino acids which has a conserved domain named DUF640. The MRG protein contains putative nuclear localization signal (KKKR, amino-acid residues 205-208). MRG protein was localized at the nucleus using YFP localization. Phylogenic tree of proteins containing a DUF640 domain indicates MRG belonged to a new branch that is different from G1 and LSH1. the mutated sites in mrg2 and mrg3 are in the conserved region of DUF640.
引文
[1]Izawa T, Shimamoto K. Becoming a model plant: The importance of rice to plant science [J]. Trends in Plant Science,1996,1:95-99
    [2]孙加祥,汤陵华,朱庆森,等.水稻颖壳叶绿素含量与籽粒灌浆的关系[J].江苏农业学报,2001,17(1):24-27
    [3]葛磊,谭克辉,种康,等.水稻花发育基因调控的研究进展[J].科学通报,2001,46(9):705-712
    [4]许智宏.植物发育与生殖的研究:进展与展望[J].植物学报,1999,41(9):909-920
    [5]Kang H G, An G.. Isolation and characterization of a rice MADS-box gene belonging to the AGL2 gene family [J]. Mol Cell,1997,7:45-51 Kang H G, Jeon J S,Lee S,et al. Identification of class B and class C floral organ identity genes from rice [J]. Plant Mol Biol, 1998,38:1021-1029
    [6]Kyozuka J, Kobayashi T, Morita M, et al. Spatially and temporally regulated expression of rice MADS box genes with similarity to A rabidopsis class A, B and C genes [J]. Plant Cell Physiol, 2000,41 (6):710-718
    [7]Xiong Y, Liu T, Tian C, et al. Transcription factors in rice:a genome-wild comparative analysis between monocots and eudicots [J]. Plant Mol Biol, 2005,59:191-203
    [8]Kempin S A, Mandel M A, Yanofsky M F, et al. Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAGl [J], Plant Physiol,1933,103:1041-1046
    [9]Bowman J L, Drews G N, Meyerowitz E M et al. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development [J]. Plant Cell,1991,3:749-758
    [10]Coen E S, Meyerowitz E M. The war of the whorls:genetic interactions controlling flower development [J]. Nature,1991,353:31-37
    [11]Goto K, Kyozuka J, Bowman J L. Turning floral organs into leaves, leaves into floral organs [J]. Current Opinion in Genetics & Development, 2001,11: 449-456
    [12]Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes [J]. Cell, 1991,78:203-209
    [13]Mandel M A, Gustafson B C, Savidge B, et al. Molecular characterization of the Arabidopsis floral homeotic gcne APET-ALAI [J]. Nature, 1992, 360: 273-277
    [14]Jofuku K D, Boer B, Montagu M, et al. Control of Arabidopsis floral homeotic gene APETALA2 [J]. Plant Cell,1994,6:1211-1225
    [15]Jack T, Brockman L I, Meyerowitz E M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens [J], Cell,1992,68:683-679
    [16]Goto K, Meyerowitz E M. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA [J]. Genes Dev, 1994, 8:1548-1560
    [17]Yanofsky M F, Ma H, Bowman J L, et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors [J]. Nature,1990,345:35-39
    [18]Schwarz S, Huijser R, Nacken W, et al. Genetic control of flower development: Homeotic genes in Antirrhinum majus [J], Seience,1990,2590:931-936.
    [19]Colombo L, Franken J, Koetje E, et al. The petunia MADS box gene FBP11 determines ovule identity [J]. Plant Cell, 1995,7:1859-1868
    [20]Angenent GC, Colombo L. Molecular control of ovule development [J]. Trends Plant Sci,1996,1:228-232
    [21]Pinyopich A, Ditta G S, Savidge B, et al. Assessing the redundancy of MADS-box genes during carpel and ovule development [J]. Nature, 2003, 424(6944):85-88
    [22]Theissen G. Genctics of identity [J]. Nature, 2001,414(6863):491
    [23]Savidge B, Rounsley S D, Yanofsky M F,et al. Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes [J]. Plant Cell, 1995,7,721-733
    [24]Mandel M A, Yanofsky M F. The Arabidopsis AGL9 MADS box gene is expressed in young flower primordial [J]. Sex Plant Reprod, 1998,11:22-28
    [25]Flanagan C A, Ma H,et al. Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers [J]. Plant Mol Biol, 1994,26:581-595
    [26]Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs [J]. Nature,2001,409:525-529
    [27]Pelaz S, Gustafson B C, Kohalmi S E, Crosby W L, et al. APETALA1 and SEPALLATA3 interact to promote flower [J]. Plant,2001,264:385-394
    [28]Ditta G, Pinyopich A, Robles P, et al. The SEP4 gene of Arabidopsisi thaliana functions In floral organ and meristem identity [J]. Curr Biol,2004,14:1935-19 40.
    [29]Theipen G. Development of floral organ identity:stories from the MADS house.Curr [J]. Plant Biol,2001,4:75-85
    [30]Ferrario S, Immink R G. H, Angenent G C. Conservation and diversity in flower land [J]. Current Opinion in Plant Biology, 2004,7:84-91
    [31]计慎敏,水稻花序结构以及颖片发育的重要调控因子OsMADS34基因的功能分析[D].硕士学位论文,上海交通大学生命科学学院,导师:张大兵,2008,pp,14-16
    [32]Lilan H, Qian Q, Keming Z. ELE restrains empty glumes from developing into lemmas [J]. Genet Genomics,2010,37:101-115
    [33]Irish V F. Variations on a theme:flower development and evolution [J]. Genome Biol:REVIEWS,2000,1015.1-10105.4.
    [34]罗琼,周开达,刘国庆,等.水稻无内稃突变体的遗传分析和基因定位[J].遗传学报,2002,29(3):230-234
    [35]Schmidt R J, Ambrose B A. The blooming of grass flower development [J]. Curr Opin Plant Biol, 1998,1:60-67
    [36]Kyozuka J, Kobayashi T, Morita M, et al. Spatially and temporally regulated expression of rice MADS-box genes with similarity to Arabidopsis class A,B and C genes [J]. Plant Cell Physiol,2000,41:710-718
    [37]Clifford H T, Spikelet and floral morphology. Grass Systematics and Evolution.In:Sordestrom T R,Hilu K W,Campbell C S,Barkworth M E [M]. Grass Systematics and Evolution.Smithsonian Institute Press, Washington DC, pp:1987,21-30
    [38]Ambrose B A, Lerner D R, Cieeri P, et al. Moleeular and genetics analyses of Silkyl gene reveal conservation in floral organ specification between eudicots and monoeots [J]. Moleeular Cell,2000,5:569-579
    [39]葛磊,谭克辉,种康,等.水稻花发育基因调控的研究进展[J].科学通报,2001,9(46):705-712
    [40]罗琼,朱立煌.水稻花发育的分子生物学研究进展[J].遗传2002,24(1):87-93
    [41]Luo Q, Zhou K, Zhao X, et al. Identification and fine mapping of a mutant gene for Palealess spikelet in rice [J]. Planta,2005,221:222-230
    [42]Kang H G, Noh Y S, Chung Y Y ,et al. Phenotypic alterations of Peta land sepal by ectopic expression of a rice MADS-box gene in tobacco [J]. Plant Molecular Biology,1995,29:1-10
    [43]Kyozuka J, Konishi S, Nemoto K, et al. Down-regulation of RFL, the FLO//LFY homology of rice, accompanied with Panicle branch initiation [J]. Proc Natl Acad Sci,1998,95:1979-1982
    [44]Yanmaguchi T, Nagasawa N, Kawasaki S. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa [J]. Plant Cell,2004,16(2):500-509
    [45]Nagasawa N, Miyoshi M, Sano Y, et al. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice [J]. Development, 2003,130: 705-708
    [46]Eekardt N A. What makes a grass? DROOPING LEAF influences flower and leaf development in rice [J]. Plant Cell, 2004,16:291-293
    [47]LoPez-DeeZ P, Wittich P, Ellrieo P M, et al. OsMADS13, a novel molecular cell expressed during ovule development [J]. Devel Genet, 1999,25:237-244
    [48]Jeon J S, Jang S, Lee S, et al. Leafy hull steilel is a homeotic mutation in a rice MADS Box gene affecting rice flower development [J]. Plant Cell,2000, 12:871-884
    [49]Agrawal K G, Abe K, Yamazaki M, et al. Conserwation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of OsMADSl gene [J]. Plant Mol Biol,2005,59: 125-135
    [50]Greco R, Stagi L, Colombo L, et al. MADS-box genes expressed in developing inflorescences of rice and sorghum [J]. Mol Gen Genet,1997,253: 615-623
    [51]Pelucchi N, Fornara F, Favalli C, et al. Comparative analysis of rice MADS-box genes expressed during flower development [J]. Sex Plant Report, 2002,15,113-122
    [52]Malcomber S T, Preston J C, Reinheimer R, et al. Developmental gene exolution and the origin of grass inflorescence diversity in:Leebens-Mack J.Soltis D E,Soltis PS [M]. Developmental Genetics of the Flower.Academic Press, NEW York, pp:2006,383-421
    [53]陈少游.一个水稻生殖发育突变体的遗传分析及基因定位[D].福建农林大学硕士学位论文,导师:王锋,2008,pp,5-31
    [54]武广珩.水稻花发育关键基因PSD1候选基因的载体构建和转化[D].福建农林大学硕士学位论文,导师:吴为人,2007,pp,31-45
    [55]刘晓玲,一个水稻开颖不育突变体ohsl (t)的遗传分析与精细定位[D].福建农林大学硕士学位论文,导师:王锋,2008,pp,19-29
    [56]Xiao H, Tang J F, Li Y F, et al. STAMENLESS1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice [J]. The Plant Journal, 2009,59:789-801
    [57]李云.水稻花器官突变体fon (t)和sppl的形态发生遗传分析及相关基因的分子标记定位[D].四川农业大学博士毕业论文,导师:吴先军,2006,pp,51-58
    [58]Jeon J S, Jang S, Lee S, et al. leafy hull sterilel is a homeotic mutation in a rice MADS box gene affecting rice flower development [J]. The Plant Cell,2000,12, 871-884
    [59]Zhang Q F, Xu J D, Li Y, et al. Morphological, Anatomical and Genetic Analysis for a Rice Mutant with Abnormal Hull [J]. Journal of Genetics and Genomics,2007,34(6):519-526
    [60]李云峰,罗洪发,杨正林,等.水稻雄蕊雌蕊化突变体的遗传分析[J].中国水稻科学,2004,18(6):499-502
    [61]Li Y, Xu P, Zhang H Y, et al. Characterization and Identification of a Novel Mutant fon (t) on Floral Organ Number and Floral Organ Identity in Rice [J]. Journal of Genetics and Genomics, 2007,34(8):730-737
    [62]彭慧娟.水稻无内稃突变体的花器形态观察与基因定位[D].湖南农业大学硕士学位论文,导师:刘国华,2007,pp,27-30
    [63]薛大伟.两个水稻花器官突变体的遗传分析[D].中国农科院博士学位论文,导师:钱前,pp,35-40
    [64]赵宁春,叶胜海,汪得凯.晚粳稻品种浙粳22内稃突变体基因的遗传分析和基因定位[J].核农学报,2009,23(3):35-363
    [65]李云峰.水稻小穗不确定性基因LHS1-3和雄蕊雌蕊化基因PS的图位克隆与功能分析[D].西南大学博士学位论文,导师:何光华,2008,pp,30-36
    [66]储黄伟,刘海生,李晖,等.水稻叶状颖壳突变体Oslh的遗传分析和OsLH基因的定位[J].植物生理与分子生物学学报,2005,31(6):594-598
    [67]白素兰,刘永胜,孙敬三,等.水稻颖花开裂基因srs-1定位及其同源异型功能分析[J].中国科学,2000,30(4):337-341
    [68]罗琼,周开达,王文明.一个新的水稻叶片和雌蕊发育异常突变体的遗传分析及其基因的分子标记定位[J].科学通报,2001,46(15):1277-1280
    [69]张绪梅.两份水稻花器官突变体的形态学观察、性状的遗传分析及相关基因的分子标记定位[D].四川师范大学硕士毕业论文,导师:李仕贵,2003,pp,25-34
    [70]Ayako H, Nobuhiro N, Kyoko I. Rice OPEN BEAK is a negative regulator of class 1 knox genes and a positive regulator of class B floral homeotic gene [J]. The Plant Journal, 2009,58:724-736
    [71]陈志雄.裸粒水稻花器官变异的形态发生、基因定位及功能研究[D].浙江大学博士学位论文,导师:石春海,2005,30-52
    [72]罗增科.水稻花发育相关基因EL1的图位克隆与功能分析[D].西南大学博士学位论文,导师:何光华,2008,pp,41-83
    [73]张向前,邹金松,朱海涛.水稻早熟多子房突变体fon5的遗传分析和基因定位[J].遗传,2008,30(10):1349-1355
    [74]李进波,夏明元,万丙良,等.一个水稻颖壳扭曲突变体的遗传分析与基因定位[J].中国水稻科学,2008,22(6):658-660
    [75]Hong L L, Qian Q, Zhu K M, et al. ELE restrains empty glumes from developing into lemmas [J]. Genet Genomics,2010,37:101-115
    [76]Wang H M, Chu H W, Liu H S, et al. Phenotypic characterization of a rice mutant Oryza sativa extraordinary glume 1 (Osegl) and its genetic analysis [J]. Journal of Shanghai University, 2007, 11(6):619-624
    [77]Li H G, Xue D W, Gao Z Y. A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice [J]. The Plant Journal, 2009, 57,593-605
    [78]黎用朝,李小湘.影响稻米品质的遗传和环境因素研究进展[J].中国水稻科学,1998,12(增刊):58-62
    [79]王忠,顾蕴洁,陈刚,等.稻米的品质和影响因素[J].分子植物育种,2003,1(2):231-241
    [80]中国国家技术监督局.中华人民共和国国家标准.优质稻谷GB/T17891-1999[M].北京:中国标准出版社,1999
    [81]中国国家技术监督局.中华人民共和国国家标准.稻米蒸煮试验品质评定GB/T15682-1995[M].北京:中国标准出版社,1995
    [82]黄发松,孙宗修,胡培松,等.食用稻米品质形成研究的现状与展望[J].中国水稻科学,1998,12(3):172-176
    [83]杨益善,陈立云,徐耀武,等.从稻米品质评价标准的变化看我国水稻品质育种的发展[J].杂交水稻,2004,19(3):5-10
    [84]罗玉坤,朱智伟,陈能.中国主要稻米的粒型及其品质特性[J].中国水稻科学,2004,18(2):135-139
    [85]黎杰强,朱碧岩,李小波.籼稻品种杂交后代垩白性状频数分布及遗传分析[J].广东农业科学,2000,4:8-10
    [86]孙业盈.水稻Wx基因与稻米AC、GC和GT的遗传关系及育种中间选系稻米品质的综合评价[J].硕士学位论文,四川农业大学,导师:邓晓健,2008,pp,6-33
    [87]Juliano B O. Rice chemistry and technology,2nd edn.American Association of Cereal Chemists [J]. Incorporated Saint Paul, Minnesota, USA, 1985
    [88]Jennings P R, Coffman W R, Kauffiman H E. Rice improvement [J]. Philippines:IRRI,1979.
    [89]Juliano B O. Amylose analysis in rice-a review.In:Brady N C ed,Proceedings of the workshop on chemical aspects of rice grain quality [J]. IRRI,Philippines,1979.251-260
    [90]Khush G S, Paule C M, De La Cruz N M.Rice grain quality evaluation and improvement at IRRI.In:Brady N C ed,Proceedings of the workshop on chemical aspects of rice grain quality [J]. IRRI,Philippines,1979,20-31
    [91]Perez C M. Gel consistency and viscosity of rice.In:Brady N C ed,Proceedings of the workshop on chemical aspects of rice grain quality [J]. IRRI,Philippines,1979,293-303
    [92]符文英,陈俊.稻米营养品质研究综述[J].海南大学学报自然科学版,1997,15(1):67-70
    [93]楼珏.稻米品质的分子遗传剖析及辐射诱变群体中水稻粒形突变体的鉴定[J].博士学位论文,华中农业大学,导师:罗利军,2009,pp,4-36
    [94]林建荣,吴明国,石春海,等.粳型杂交稻稻米外观品质性状的遗传效应研究[J].中国水稻科学,2001,15(2):93-96
    [95]陈建国,朱军,等.籼粳杂交稻米外观品质性状的遗传及基因型×环境互作效应研究[J].中国农业科学,1998,31(4):1-7
    [96]石春海,何慈信,朱军.籼稻稻米外观品质性状的遗传主效应和环境互作效应分析[J].中国水稻科学,1999,13(3):179-182
    [97]徐辰武,张爱红.几个釉粳交组合稻米品质性状遗传表达的鉴别[J].中国水稻科学,1998,12(1):51-54
    [98]林鸿宣,闵绍楷,熊振民,等.应用RFLP图谱分析籼稻粒型数量性状座位[J].中国农业科学,1995,28:1-7
    [99]莫惠栋.谷类作物胚乳品质性状的遗传研究[J].中国农业科学,1995,28(2):1-7
    [100]朱军,许馥华,等.胚乳性状的遗传模型及其分析方法[J].作物学报,1994,20(3):263-270
    [101]李军.稻米品质遗传研究方法[J].上海农业学报,2001,17(2):41-44
    [102]申岳正,闵绍楷,熊振民,等.稻米直链淀粉含量的遗传及测定方法改进[J].中国农业科学,1990,23(1):60-68
    [103]汤圣祥.籼稻胶稠度的遗传[J].作物学报,1993,19(2):119-124
    [104]徐辰武,张爱红,朱庆森.籼粳杂交稻米品质性状的遗传分析[J].作物学报,1996,22(5):530-534
    [105]张玉华.稻米直链淀粉含量及其影响因素研究[J].黑龙江农业科学,2002,(3):34-37
    [106]邓化冰,陈立云.稻米品质性状遗传及性状间相关性的研究综述[J].杂交水稻,2004,19(4):1-6
    [107]顾蕴洁,熊飞,王忠,等.水稻和小麦胚乳发育的比较[J],南京师大学报(自然科学版),2001,24(3):65-74
    [108]王丹英,章秀福,朱智伟,等.食用稻米品质性状间的相关性分析[J],作物学报,2005,31(8):1086-1091
    [109]蔺万煌,萧浪涛,彭克勤,等.稻米垩白的形成及其调控[J],湖南农业大学学报(自然科学版),2001,27(3):234-239
    [110]周新桥,邹冬生,等.稻米垩白研究综述[J],作物研究,2001,3:52-58
    [111]丁得亮,张欣,张艳,等.市场粳米食味品质及外观品质性状间的相关关系[J],安徽农业科学,2010,38(9):4454-4456
    [112]沈鹏,罗秋香,金正勋,等.稻米蛋白质与蒸煮食味品质关系研究[J],东北农业大学学报,2003,34(4):368-371
    [113]Coulson A, Sulston J, Brenner S, et al. Toward a physical map of the genome of the nematode Caenorhabditis elegans [J]. Proc.Natl.Acad.Sci, USA,1986, 83 (20):7821-7825
    [114]Arondel V, Lemieux B, Hwang I, et al. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis [J]. Science,1992, 258:1353-11354
    [115]Giraudat J, Hauge B M, Valon C, et al. Isolation of the Arabidopsis ABI3 gene by positional cloning [J]. Plant Cell,1992,4:1251-1261.
    [116]Michhnore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations [J]. Proc.Natl.Acad.Sci, U S A,1991,88(21):9828-9832
    [117]闫其涛,逯慧,毛万霞,等.植物基因分离的图位克隆技术[J].分子植物育种,2005,3(4):585-590
    [118]何俊平,阮松林,祝水金,等.图位克隆技术在农作物基因分离中的应用与评价[J].遗传,2010,32(9):903-913
    [119]吴自明.水稻基因的图位克隆技术[J].安徽农业科学,2008,36(34):14905-14906
    [120]单雪,王秀利,仇雪梅,等.分子标记及其在海洋动物遗传研究中的应用[J].生物技术通讯,2005,16(4):463-466
    [121]陈若雷,宋道军,余增亮.RAPD分子标记及其在作物遗传育种中的应用[J].生物学杂志,2000,17(4):32-34
    [122]郝炯,渠云芳.DNA分子标记在作物育种中的应用[J],山西农业科学,2009,37(3):81-85
    [123]陈秋玲,高建明,罗峰,等.分子标记技术在禾本科作物基因定位上的研究进展[J].中国农学通报,2010,26(9):42-48
    [124]姚红伟,张立冬,孙金阳.DNA分子标记技术概述[J].河北渔业,2010,7(20),45-46
    [125]Yu J, Hu S N, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L.ssp indica) [J]. Science,2002,296:79-92
    [126]Goff S A, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp.Japonica) [J]. Science,2002,296:92
    [127]Harushima Y, Yano M, Shomura A, et al. A high-density rice genetic linkage map with 2275 markers using a single F2 population [J]. Genetics,148: 479-494
    [128]Chen M, Resting G, Bar B, et al. An integrated physical and genetic map of the rice genome [J]. Plant Cell,2002,14:537-545
    [129]IRGSP, The map-based sequence of the rice genome [J]. Nature,2005, 436(7052):p:93-800
    [130]Ware D, Stein L. Comparison of genes among cereals [J]. Current Opinion in Plant Biology,2003,6:121-127
    [131]景润春,黄青阳,朱英国,等.图位克隆技术在分离植物基因中的应用[J].遗传,2000,22(3):180-185
    [132]Lukowitz W, Gillmor C S, Scheible W R, et al. Positional cloning in Arabidopsis:why it feels good to have a genome initiative working for you [J]. Plant Physiol, 2000, 123(3):795-805
    [133]Jander G, Norris S R, Rounsley S D, et al. Arabidopsis map-based cloning in the post-genome era [J]. Plant Physiol, 2002,129(2):440-450
    [134]XU S P, WEI Z M. Introduction to method of microprojectile bombardment and its application [J]. Plant Physiology Communications, 1998,34(1):41-43
    [135]Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence aligment aided by quality analysis tools[J]. Nucl Acids Res,1997,25:4876-4882
    [136]Tamura K, DudleyJ, Nei M, et al. MEGA4:molecular evolutionary genetics analysis(MEGA) software version4.0. Mol Biol Evol,2007,24:1596-1599
    [137]Akiko Yoshida, Takuya Suzaki, Wakana Tanaka, et al. The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet[J]. PNAS,2009,11:20103-2010