重型汽车车内声压级预测与主要噪声源分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国重型汽车正成为中国汽车产业在国际市场上最具竞争力的强势产业,但目前国产重型汽车的NVH(Noise,Vibration and Harshness)性能和国际先进水平之间仍存在一定的差距。研究重型汽车车内噪声的预测与分析方法,开发具有良好声学舒适性的国产重型汽车,不仅对我国的汽车工业具有重要的战略意义,对我国国民经济的高速稳定发展也具有重要的作用。
     本文针对某在研重型汽车车型,在较宽频率范围内建立驾驶室的声学仿真模型,以实现低频、中频和高频段的车内声压级预测;建立运行工况下车内噪声的声源贡献率分析模型,以找出车内噪声的主要噪声源。通过上述两方面工作,为下一步车内声场的分析和优化提供基础平台,以期提高驾驶室的NVH性能。
     本文首先根据各种工况下实测车内噪声信号的能量分布情况,确定了研究的频率范围,然后按照从简到繁、循序渐进、逐一验证的原则依次建立了重型汽车白车身的有限元模型和整备驾驶室的有限元模型,并分别通过白车身模态试验和整备驾驶室的模态试验对模型逐一进行了验证。验证结果表明,建立的有限元模型可以用于下一步的驾驶室内声场仿真建模。
     基于经过验证的驾驶室有限元模型,综合利用有限元和边界元方法,建立了适用于低频车内声压级预测的有限元-边界元模型;综合利用有限元方法和统计能量分析方法,建立了适用于中频车内声压级预测的有限元-统计能量分析混合模型;利用统计能量分析方法,建立了适用于高频车内声压级预测的统计能量分析模型。三种模型均通过实车试验进行了验证。结果表明,在分析频率范围内的大部分频率点或频带内,驾驶员右耳侧声压级的计算值和实测值的误差在5dB以内。
     在建模过程中,主要研究和解决了各种数值计算方法的综合运用方法、不同结构和连接方式的合理简化和建模、约束条件的确定和施加、多种激励的确定和施加、统计能量分析模型参数的确定等问题,并提出了半消声室条件下多孔材料声学特性参数的识别方法,解决了基于对整体多孔材料的直接测量而识别其声学特性参数的问题,为驾驶室声学特性的正向设计提供了多孔材料的声学建模基础。
     为找出车内噪声的主要噪声源,建立了运行工况下车内噪声的声源贡献率分析模型。针对参考激励信号矩阵的病态程度随频率变化的具体情况,提出了基于分频能量相对拟合误差最小的混合求解法用于计算传递率矩阵,为车内噪声的声源贡献率分析提供了重要的计算工具。在此基础上,对各种工况下车内噪声的声源贡献率进行了分析,找出了主要噪声源。
China’s heavy duty truck industry has been becoming increasingly morecompetitive in the international market. However, there still exists a certain gapbetween the NVH(Noise, Vibration and Harshness) performance of the national heavyduty truck and the international advanced level. To research the prediction and analysismethods of heavy duty truck interior noise and develop heavy duty trucks with betteracoustic comfort is not only of strategic significance to China’s automobile industry,but also of great importance to China’s national economy.
     The research object of this dissertation is the cab of the heavy duty truck indevelopment. The goal is to build different acoustic simulation models of the cab forthe prediction of the vehicle interior sound pressure level in different frequency rangesand to build operational vehicle interior noise source contribution analysis model toanalyze the noise sources’ contribution. The purpose is to provide a platform toanalyze and optimize the vehicle interior sound field so that the NVH performance ofthe cab can be improved.
     Firstly, the analysis frequency range is determined according to the energydistribution of the measured vehicle interior noise. Then the finite element model ofthe body-in-white cab and the finite element model of the complete cab are builtconsequently. The models are validated with the modal tests of the body-in-white caband the complete cab. The results show that the models can be used in the followinganalysis and modeling.
     Based on the validated finite element model of the cab, the finiteelement-boundary element model is built with the integrated utilization of the finiteelement method and the boundary element method to predict the vehicle interior noisein the low frequency range. The hybrid finite element-statistical energy analysis modelis built with the integrated utilization of the finite element method and the statisticalenergy analysis method to predict the vehicle interior noise in the middle frequencyrange and the statistical energy analysis model is built to predict the vehicle interiornoise in the high frequency range. All these models are validated with the measureddata under different operational conditions. It shows that for the most part of theanalysis frequency range, the difference between the calculated value and the measured value is within5decibels.
     In the modeling process, the research emphasis is focused on the integratedutilization of available numerical calculation methods,the reasonable simplificationand modeling of different structures and junctions, the determination and definition ofconstraints and various excitations, the determination of statistical energy analysisparameters, and so on. A method to identify the acoustic characteristic parameters ofporous materials in semi-anechoic chamber is put forward, so that the acousticcharacteristic parameters of porous materials can be identified based on the directmeasurement of the whole material and porous materials can be acoustically modeledin the top-down design of the acoustic characteristics of the cab.
     Operational vehicle interior noise source contribution analysis model based on thetransmissibility concept is built. For the problem of the condition number of thereference excitation matrix changing with the frequency, a calculation method basedon the criterion of the minimal energy relative fitting error in every frequency is putforward, so that the transmissibility matrix can be calculated with more accuracy. Mainsources of vehicle interior noise under different operational conditions are determined.
引文
[1]跟尚.中国创造:中国商用车的先天优势.交通世界,2005,(12):47
    [2]惠巍.轿车乘坐室结构振动噪声仿真及其控制研究[硕士学位论文].西安:西北工业大学,2006:1.
    [3]吴冰萍.汽车噪声法规和NVH研究方法的发展及现状.汽车与配件,2009,(31):28.
    [4]孙林.国内外汽车噪声法规和标准的发展.汽车工程,2000,22(3):154-158.
    [5] Gladwell G M L,Zimmermann G. On energy and complementary energy formulations ofacoustic and structural vibration problem. Journal of sound and vibration,1966(3):233-241.
    [6] Nefske D J,Wolf Jr J A,Howell L J. Structural-acoustic finite element analysis of theautomobile passenger compartment:A review of current practice. Journal of Sound andVibration,1982,80(2):247.
    [7] Nefske D J,Sung S H. Vehicle interior acoustic design using finite element methods.International Journal of Vehicle Design,1985,6(1):24.
    [8] Sung S H,Nefske D J. Component mode synthesis of a vehicle structural-acoustic systemmodel. American Institute of Aeronautics and Astronautics Journal,1986,24(6):1021.
    [9] Hong K L,Kim J. Analysis of free vibration of structural-acoustic coupled systems, Part1:development and verification of the procedure. Journal of Sound and Vibration,1995,188(4):561.
    [10] Kopuz S,Lalor N. A note on structural-acoustic coupling phenomenon. ISVR TechnicalMemorandum,1995:761.
    [11] Jayachandran V,Hirsch S M,Sun J Q. On the numerical modelling of interior sound fieldsby the modal function expansion approach. Journal of Sound and Vibration,1998,210(2):243.
    [12] Crighton D G. Rayleigh Medal Lecture:fluid loading-the interaction between sound andvibration. Journal of Sound and Vibration,1989,133(1):1-27.
    [13] Turner W B,Turgay F M. Development of coupled structure-acoustic FE models forvehicle refinement. London:Proceedings of IMechE Conference on Vehicle noise andvibration,1998:229.
    [14] Sung S H,Nefske D J,Le-The H,et al. Development and experimental evaluation of avehicle structural-acoustic trimmed-body model. SAE paper011798,1999.
    [15] Sestieri A,Del Vescoro D,Lucibello P. Structural-acoustic coupling in complex shapedcavities. Journal of Sound and Vibration,1984,96(2):219.
    [16] Sestieri A. Discretization procedures for the Green formulation of structural-acousticproblems. Journal of Sound and Vibration,1985,98(2):305.
    [17] Succi P S. The interior acoustic field of an auto-mobile cabin. The Journal of theAcoustical Society of America,1987,81(6):1688-1694.
    [18] Seybert A F,Hu T,Herrin D, et al. Interior noise prediction process for heavy equipmentcabs. SAE paper971955,1997.
    [19] Alexis Sol, Fran ois Van Herpe. Numerical prediction of a whole car vibro-acousticbehavior at low frequencies. SAE paper2001-01-1521,2001.
    [20] Citarella R,Federico L,Cicatiello A. Modal acoustic transfer vector approach in aFEM-BEM vibro-acoustic analysis.Engineering Analysis with BoundaryElements,2007,31(3):248-258.
    [21] Mohanty A R,Pierre B D,Suruli-Narayanasami P. Structure-borne noise reduction in a truckcab interior using numerical techniques. Applied Acoustics,2000,59(1):1-17.
    [22] Raveendra S T,Zhang W. Vibro-acoustic analysis using a hybrid energy finite element/boundary element method. SAE paper2007-01-2177,2007.
    [23] Zhang Weiguo,Raveendra S T. High frequency vibro-acoustic analysis using energy finiteelement method. SAE paper2009-01-0771,2009.
    [24] He Jim,Zhang Geng,Vlahopoulos Nick. Vehicle airborne noise analysis using boundaryelement and finite element energy based methods. SAE paper2009-01-2222,2009.
    [25] Vlahopoulos Nick,Wang Aimin. Combining energy boundary element with energy finiteelement simulations for vehicle airborne noise predictions. SAE paper2008-01-0269,2008.
    [26]张云涛.重型商用车驾驶室内低频声振特性仿真与试验研究[硕士学位论文].长春:吉林大学汽车工程学院,2009.
    [27]邓兆祥,李昌敏,胡玉梅,等.轿车车内低频噪声预测与控制.重庆大学学报:自然科学版,2007年,30(12):7-11.
    [28]孙威.基于驾驶室声固耦合分析的汽车车身结构低频降噪研究[硕士学位论文].上海:同济大学,2008.
    [29]苏昱.重型商用车驾驶室结构及声场分析[硕士学位论文].重庆:重庆大学,2010.
    [30] Lyon R H,Maidanik G. Power flow between linearly couple oscillators. Journal of theAcoustical Society of America,1962,34(5):623-639.
    [31] Smith P W. Response and radiation of structural modes excited by sound. Journal of theAcoustical Society of America,1962,34(5):640-647.
    [32] Cordioli Júlio A,Mário Trichês Jr,Samir N Y Gerges. Applications of the statistical energyanalysis to vibro-acoustic modeling of vehicles. SAE paper2004-01-3352,2004:1
    [33] DeJong R G. A study of vehicle interior noise using statistical energy analysis. SAE paper850960,1985.
    [34] Charpentier Arnaud,Birkett Craig,Manuel S á nchez,et al. Modeling airborne noisetransmission in a truck using statistical energy analysis. SAE paper2007-01-2432,2007.
    [35] Onsay T, Akanda A. Transmission of structure-borne tire/road noise in a mid-size car:statistical energy analysis(SEA). New Zealand:Proceedings of INTER-NOISE’98,1998:543.
    [36] Manning J E,Musser C T,Rodrigues A B. Statistical energy analysis applications forstructure borne vehicle NVH. SAE paper2010-36-0526,2010.
    [37] Dong B,Green M,Voutyras M, et al. Road noise modelling using statistical energy analysismethod. SAE paper951327,1995.
    [38]姚德源,王其政.统计能量分析原理及其应用.北京:北京理工大学出版社,1995.
    [39] Lyon R H,DeJong R G. Theory and application of statistical energy analysis.2nd ed.Washington:Butterworth-Heinemann,1995:153-160.
    [40] Bolduc M,Atalla N. Measurement of SEA damping loss factor for complex structures. TheJournal of the Acoustical Society of America,2008,123(5):3060.
    [41] Bloss B C,Rao M D. Estimation of frequency-averaged loss factors by the power injectionand the impulse response decay methods. The Journal of the Acoustical Society of America,2005,117(1):240-249.
    [42] De Langhe K. High frequency vibrations:Contributions to experimental and computationalSEA parameter identification techniques[D]. Leuven:Katholieke Universiteit,1996.
    [43] Manik D N. A new method for determining coupling loss factors for SEA. Journal ofSound and Vibration,1998,211(3):521-526.
    [44] Liu C Q,Goetchius Gregory M. Estimation of damping loss factors by using the Hilberttransform and exponential average method. SAE paper2001-01-1408,2001.
    [45]孔宪仁,张红亮,张也弛.用于统计能量分析参数辨识的子空间方法研究.宇航学报,2012,32(12):2471-2477.
    [46] Cacciolati C,Guyader J L. Measurement of SEA coupling loss factors using pointmobilities. London:The Royal Society,1994.http://www.jstor.org/stable/54289.
    [47] Ignatius Vaz,Karl Washburn,Loren DeVries. Improvement of an SEA model of cab interiorsound levels through use of a hybrid FE/SEA method. SAE paper2011-01-1706,2011.
    [48] Totaro N,Dodard C,Guyader J L. SEA coupling loss factors of complex vibro-acousticsystems. Journal of vibration and acoustics,2009,131(4).
    [49] Kenji Nishikawa,Kazuhito Misaji,Toru Yamazaki,et al. SEA model building of automotivevehicle body-in-white using experiment and FEM. SAE paper2003-01-1411,2003.
    [50] Shorter P J, Fran ois-Rodolphe de Boussiers. Finite Element characterization of complexautomotive panels for Statistical Energy Analysis (SEA). Minneapolis:NOISE-CON2005,2005.
    [51] Gagliardini L,Houillon L,Petrinelli L,et al. Virtual SEA:mid-frequency structure-bornenoise modeling based on Finite Element Analysis. SAE paper2003-01-1555,2003.
    [52]谢琼,谢石林,张希农.结构高频载荷识别的统计能量分析法.航空动力学报,2012,27(8).
    [53]刘小勇,李君,周云端.液体火箭发动机声振环境试验及统计能量分析研究.火箭推进,2010,36(003):49-53.
    [54]潘凯.基于VA One的飞机舱内噪声预计方法研究.测控技术,2008年,27(3):22-23.
    [55]王军评,毛勇建,黄含军,等.统计能量分析法在爆炸分离冲击响应预示中的应用.航天器环境工程,2012,28(5):414-420.
    [56]邵亮.统计能量法在船舶舱室噪声预报中的应用.舰船科学技术,2012,34(5):98-100.
    [57]邱斌,吴卫国,刘恺.高速船全频段舱室噪声仿真预报.中国舰船研究,2012,6(6):49-53.
    [58]胡旭东,刘小勇.基于统计能量分析的火箭发动机噪声测试分析.压电与声光,2010,32(3):487-489.
    [59]张旭,宋雷鸣.列车通过高架桥结构时的运行噪声统计能量分析(SEA)研究.噪声与振动控制,2008,(2):76-78.
    [60]罗斌,肖友刚.地铁轮轨噪声的统计能量分析.铁道机车车辆,2009,29(005):60-63.
    [61]靳晓雄,叶武平,丁玉兰.基于统计能量分析法的轿车内室噪声优化与控制.同济大学学报:自然科学版,2002,30(7):862-867.
    [62]陈书明.轿车中高频噪声预测与控制方法研究[博士学位论文].长春:吉林大学汽车工程学院,2011.
    [63]宋继强.商用车驾驶室内中高频噪声的分析预测与控制[博士学位论文].长春:吉林大学汽车工程学院,2010.
    [64]宋继强,王登峰,马天飞,等.汽车车身复杂子结构模态密度确定方法.吉林大学学报:工学版,2009,39(52):269-273.
    [65]冯真真.轿车车内噪声的统计能量分析与研究[硕士学位论文].哈尔滨:哈尔滨工业大学汽车工程学院,2010.
    [66] Charpentier A,Sreedhar P,Gardner B,et al. Use of a hybrid FE-SEA model of a trimmedvehicle to improve the design for interior noise. SAE paper2009-01-2199,2009.
    [67] Charpentier A,Sreedhar P,Fukui K. Using the hybrid FE-SEA model of a trimmed fullvehicle to reduce structure borne noise from200Hz to1kHz. Shanghai:Inter-Noise2008,2008
    [68] Charpentier A,Sreedhar P,Fukui K. Using the hybrid FE-SEA method to predictstructure-borne noise transmission in a trimmed automotive. SAE paper2007-01-2181,2007.
    [69] Cotoni V,Gardner B,Shorter P. Demonstration of hybrid FE-SEA analysis ofstructure-borne noise in the mid frequency range. SAE paper2005-01-2331,2005.
    [70] Cotoni V,Gardner B,Cordioli J A,et al. Advanced modeling of aircraft interior noise usingthe hybrid FE-SEA method. SAE paper2008-36-0575,2008.
    [71] Shorter P J,Langley R S. Vibro-acoustic analysis of complex systems. Journal of Soundand Vibration,2005,288(3).
    [72] Langley R S,Brernner P. A hybrid method for the vibration analysis of complex structural-acoustic systems. Journal of the Acoustical Society of America,1999,105(3):1657-1671.
    [73] Shorter P J,Langley R S. On the reciprocity relationship between direct field radiation anddiffuse reverberant loading. Journal of the Acoustical Society of America,2005,117(1):85-95.
    [74] Langley R S,Cordioli J A. Hybrid deterministic-statistical analysis of vibro-acousticsystems with domain couplings on statistical components. Journal of Sound andVibration,2009,321(3-5):893-912.
    [75] Vergote K,Van Genechten B,Vandepitte D,et al. On the analysis of vibro-acoustic systemsin the mid-frequency range using a hybrid deterministic-statistical approach. Computers&Structures,2011,89(11):868-877.
    [76] Humphry L. Extending the hybrid method into the time domain[D]. Cambridge:Universityof Cambridge,2008.
    [77] Attenborough K. Acoustical characteristics of porous materials. Physics Reports,1982,82(3):179-227.
    [78] Scott R A. The absorption of sound in a homogeneous porous medium. London:Proceedings of the Physical Society,1946:358–368.
    [79] Beranek L L. Some notes on the measurement of acoustic impedance. The Journal of theAcoustical Society of America,1947,19(3):420-427.
    [80] Beranek L L. Acoustical properties of homogeneous,isotropic rigid tiles and flexibleblankets. The Journal of the Acoustical Society of America,1947,19(4):556-568.
    [81] Ferrero M A,Sacerdote G G. Parameters of sound propagation in granular absorptionmaterials. Acustica,1951,(1):135-142.
    [82] Yaniv S L. Impedance tube measurement of propagation constant and characteristicimpedance of porous acoustical material. The Journal of the Acoustical Society of America,1973,54(5):1138-1142.
    [83] Song Bryan H,Bolton J Stuart. A transfer-matrix approach for estimating the characteristicimpedance and wave numbers of limp and rigid porous materials. The Journal of theAcoustical Society of America,2000,107(3):1444-1451.
    [84] Sun L,Hou H,Dong L,et al. Measurement of characteristic impedance and wave number ofporous material using pulse-tube and transfer-matrix methods. The Journal of theAcoustical Society of America,2009,126:3049.
    [85] Salissou Y,Panneton R. Wideband characterization of the complex wave number andcharacteristic impedance of sound absorbers. The Journal of the Acoustical Society ofAmerica,2010,128:2868.
    [86] Allard J F,Atalla N. Propagation of sound in porous media:Modelling sound absorbingmaterials.2nd ed. New York:Wiley-Blackwell,2009.
    [87] Auweraer H Van der,Mas P,Dom S,et al. Transfer path analysis in the critical path ofvehicle refinement:The role of fast,hybrid and operational path analysis. SAE paper2007-01-2352,2007.
    [88] Starkey J M,Merrill G L. On the ill conditioned nature of indirect force measurementtechniques. Analytical and Experimental Modal Analysis,1989,4(3):66-73.
    [89] Gunduz A,Inoue A,Singh R. Estimation of interfacial forces in time domain for linearsystems. Journal of Sound and Vibration,2010,329(13):2616-2634.
    [90] Ten Wolde T. Reciprocity Measurements in Acoustical and Mechano-Acoustical Systems.Review of Theory and Applications. Acta Acustica united with Acustica,2010,96(1):1-13.
    [91] Kim S J,Lee S K. Prediction of interior noise by excitation force of the powertrain basedon hybrid transfer path analysis. International Journal of Automotive Technology,2008,9(5):577-583.
    [92] Kim B S,Kim G J,Lee T K. The identification of tyre induced vehicle interior noise.Applied Acoustics,2007,68(1):134-156.
    [93] Tandogan F O,Guney A. Technical note:Vehicle interior noise source contribution andtransfer path analysis. International Journal of Vehicle Design,2010,52(1):252-267.
    [94] De Klerk D,Rixen D J. Component transfer path analysis method with compensation fortest bench dynamics. Mechanical Systems and Signal Processing,2010,24(6):1693-1710.
    [95] Zheng Sifa,Hao Peng,Lian Xiaomin,et al. Time-domain transfer path analysis of multiplemoving noise sources. Noise Control Engineering Journal,2011,59(5):541-548.
    [96] Koizumi T,Tsujiuchi N,Maruo K,et al. Experimental verification of coverage ofinverse-numerical acoustic analysis. INTER-NOISE and NOISE-CON Congress andConference Proceedings,2011.
    [97] Takayuki Koizumi,Nobutaka Tsujiuchi,Yukio Nakamura,et al. A Measures PlanningMethod by Analysis of Contribution of the Vibration Transfer Path. SAE Paper2009-01-2197,2009.
    [98]李克强.汽车车内噪声特性的研究[博士学位论文].重庆:重庆大学机械传动国家重点实验室,1995.
    [99]郭荣,余卓平,左曙光,等.燃料电池轿车空气声传递路径分析及控制.江苏大学学报:自然科学版,2011,32(4):394-399.
    [100]郭荣.燃料电池轿车噪声源和传递路径识别及控制研究[博士学位论文].上海:同济大学汽车学院,2008.
    [101]李未,李庆华.动力总成振动对车内噪声的传递路径影响.智能系统学报,2012,7(2):183-187.
    [102]乔宇锋,黄其柏,李天匀.汽车NVH传递路径分析的一种参数化等效方法.华中科技大学学报:自然科学版,2010,38(4):83-89.
    [103]龙岩,范让林,史文库,等.提高传递路径分析速度和精度的方法.吉林大学学报:工学版,2009,39(1):78-82.
    [104] Sitter G D,Devriendt Christof,Guillaume Patrick,et al. Operational transfer path analysis.Mechanical Systems and Signal Processing,2010,24(3):416-431.
    [105] Paulo Eduardo Franca Padilha,Jos′e Roberto de Franca Arruda. Comparison of estimationtechniques for vibro-acoustic transfer path analysis. Shock and Vibration,2006,13(4):459-467.
    [106] Kousuke Noumura,Junji Yoshida. Method of transfer path analysis for vehicle interiorsound with no excitation experiment. Yokohama:Proceedings of FISITA WorldAutomotive Congress,2006.
    [107] Kousuke Noumura,Junji Yoshida. Method of transfer path analysis for interior vehiclesound by actual measurement data. Yokohama:Proceedings of JSAE AnnualCongress,2006.
    [108] Tcherniak Dmitri,Ryu yun S. Developments in transmissibility matrix method inapplication for structure borne noise path analysis. Japan:Proceedings of JSAE AnnualCongress,2009.
    [109] Gajdatsy P,Janssens K,Giele L,et al. Critical assessment of Operational Path Analysis:mathematical problems of transmissibility estimation. Paris:Proceedings of Acoustics’08,2008.
    [110] Gajdatsy P,Janssens K,Giele L,et al. Critical assessment of Operational Path Analysis:effect of coupling between path inputs. Paris:Proceedings of Acoustics’08,2008.
    [111] Janssens K,Gajdatsy P,Auweraer H Van der. Operational Path Analysis:a critical review.Leuven:Proceedings of ISMA-2008,2008.
    [112] Tcherniak D,Schuhmacher A P. Application of transmissibility matrix method to NVHsource contribution analysis. Orlando:Proceedings of IMAC-2009,2009.
    [113] Moorhouse A T. Compensation for discarded singular values in vibro-acoustic inversemethods. Journal of Sound and Vibration,2003,267(2):245-252.
    [114] Allen M. The relationship between variable selection and data augmentation and a methodfor prediction. Technometrics,1974,16(1):125-127.
    [115] Golub G H,Heath M,Wahba G. Generalized cross validation as a method for choosing agood ridge parameter. Technometrics,1979,21(2):215-223.
    [116] Hansen P C,O'leary D P. The use of the L-curve in the regularisation of discrete ill-posedproblems. SIAM Journal on Scientic Computing,1993,14(6):1487-1503.
    [117] Anderssen B,Bloomfield P. Numerical dfferentiation procedures for non-exact data.Numerische Mathematik,1974,22(3):157-182.
    [118] Choi H G,Thite A N,Thompson D J. Comparison of methods for parameter selection inTikhonov regularization with application to inverse force determination. Journal of Soundand Vibration,2007,304(3-5):894-917.
    [119] Choi H G,Thite A N,Thompson D J. A threshold for the use of Tikhonov regularization ininverse force determination. Applied Acoustics,2006,67(7):701-719.
    [120] Panneton Raymond. Comments on the limp frame equivalent fluid model for porous media.Journal of the Acoustical Society of America,2007,122(6):217.
    [121] Lanoye R,Vermeir G, Lauriks W,et al. Measuring the free field acoustic impedance andabsorption coefficient of sound absorbing materials with a combined particle velocity-pressure sensor. The Journal of the Acoustical Society of America,2006,119(5):2826.
    [122] Zwikker C,Kosten C W. Sound absorbing materials. New York:Elsevier publishingcompany,1949:2-3.
    [123] Jorge Daniel Alvarez B,Finn Jacobsen. In-situ measurements of the complex acousticimpedance of porous materials. Istanbul:Inter-Noise2007,2007.
    [124] Bree H d,Nosko M,Tijs E. A handheld device to measure the acoustic absorption in situ.Graz: Proceedings of the5th Styrian NVH Congres,2008.
    [125] Song Bryan H,Bolton J Stuart. A transfer-matrix approach for estimating the characteristicimpedance and wave numbers of limp and rigid porous materials. The Journal of theAcoustical Society of America,2000,107(3):1444-1451.
    [126]路红娟.基于NASTRAN的装配体连接螺栓有限元分析.机械制造与自动化,2008,37(6):20.
    [127]张瑞先.轻卡车身振动问题的研究与系统解决[硕士学位论文].大连:大连理工大学,2003:18.
    [128]李德葆.实验模态分析及其应用.北京:科学出版社,2001:121.
    [129] ESI Group. VA One2010.5user’s guide. ESI Group,2011.
    [130]周林.运行工况下驾驶室载荷识别方法研究及车内噪声预测[硕士学位论文].北京:清华大学,2011.
    [131] Deraemaeker A,Babuska I,Bouillard P. Dispersion and pollution of the FEM solution forthe Helmholtz equation in one, two and three dimensions. International Journal forNumerical Methods in Engineering,1999,46(4):471-499.
    [132] ESI Group. VA One2010.5foam module user’s guide,Theory&QA. ESIGroup,2011:20-36.
    [133] Lauriks W,Cops A,Allard J F,et al. Modelization at oblique incidence of layered porousmaterials with impervious screens. The Journal of the Acoustical Society ofAmerica,1990,87(3):1205.
    [134]杜功焕,朱哲民,龚秀芬.声学基础.南京:南京大学出版社,2001.
    [135] Gwaltney G D,Blough J R. Evaluation of off-highway vehicle cab noise and vibrationusing inverse matrix techniques. SEA paper1999-01-2815,1999.
    [136] Thite A N,Thompson D J. The quantification of structure-borne transmission paths byinverse methods. Part1: Improved singular value rejection methods. Journal of Sound andVibration,2003,264(2):412.
    [137] Partridge M,Calvo R A. Fast dimensionality reduction and simple PCA. Intelligent DataAnalysis,1998,2(3):72-81.
    [138] Jain,Duin R,Mao J. Statistical pattern recognition:A review. IEEE Transactions on PatternAnalysis and Machine Intelligence,2000,22(1):4-37.
    [139] Jolliffe I T. Principal component analysis.2nd ed. New York:Springer-Verlag,2002.
    [140]吴春国,梁艳春,孙延风,等.关于SVD与PCA等价性的研究.计算机学报,2004,27(2):286-288.
    [141] Torija A J,Ruiz D P,Ramos-Ridao ángel. Required stabilization time,short-term variabilityand impulsiveness of the sound pressure level to characterize the temporal composition ofurban soundscapes. Applied Acoustics,2011,72(2-3):90.