碳化钼基催化剂上低温水煤气变换反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属碳化物作为一种新型的催化材料在众多反应过程中表现出类似贵金属的催化活性,从而受到了广泛关注。水煤气变换反应是工业制氢的重要组成部分。本组之前的结果表明,通过程序升温还原方法制备的Mo2C以及负载贵金属的Pt/Mo2C催化剂具有优异的低温变换反应活性。本文针对负载型Mo2C催化剂、碱金属添加对Mo2C和Pt/Mo2C活性的影响和Mo2C在变换反应中的稳定性展开研究。
     本文考察了负载型Mo2C/Al2O3催化剂以及负载贵金属的Pt-Mo2C/Al2O3催化剂的制备、表征以及活性评价。通过等体积浸渍的方法,将钼酸铵浸渍到Al2O3。再通过程序升温的方法制备了Mo2C/Al2O3。另外通过湿法浸渍的方法制备了不同Pt负载量的Pt-Mo2C/Al2O3催化剂。通过使用物理吸附、X射线吸收光谱(XAS)、X射线衍射(XRD)、CO化学吸附和程序升温脱附(COchemisorption和TPD)、扫描透视电镜(SETM-XEDS)等表征手段对Pt-Mo2C/Al2O3、Mo2C/Al2O3和Pt/Al2O3催化剂的结构进行了详细的表征并且评价了各催化剂在变换反应中的活性。Al2O3上Mo2C的存在能够促进Pt在其表面的吸附。Pt-Mo2C/Al2O3的活性远高于相近Pt含量的Pt/Al2O3催化剂。例如,3.8wt%Pt-Mo2C/Al2O3催化剂在240°C的转化频率(0.81s-1)高出Pt/Al2O3的转化频率(0.007s-1)两个数量级。Pt-Mo2C/Al2O3和Pt/Mo2C催化剂的活性随着Pt的负载表现出了相同的趋势。Pt-Mo2C/Al2O3体系上Pt选择性负载于Mo2C颗粒上并且具有相互作用,此作用改变了Pt的化学性质,因此导致了Pt在Pt-Mo2C/Al2O3和Pt/Al2O3上不同的化学吸附性质。
     以高比表面积的SiO2为载体,制备了负载型Mo2C/SiO2和Pt-Mo2C SiO2催化剂并用于变换反应。同样通过各种表征技术和方法对催化剂的结构和活性进行了考察。结果发现:在负载量为16.9和29.0wt.%的Mo2C/SiO2上,Mo2C颗粒粒径分布较窄,并且大部分颗粒在1-2nm之间。两种催化剂上单位重量的Mo2C具有相近的催化活性,并且高于未负载型Mo2C。通过湿法溶液浸渍后,负载了贵金属Pt。4.2wt.%Pt-16.3wt.%Mo2C/SiO2上Pt的粒径分布在5-10nm左右。和Al2O3上负载的Pt-Mo2C催化剂相比,Pt颗粒的形态没有明显的变化。Pt颗粒的组成分析结果表明,Pt和Mo2C之间紧密接触,具有较强的相互作用。这种相互作用同样提高了Pt的催化活性。
     通过过量浸渍的方法,在Mo2C和Pt/Mo2C催化剂上负载了碱金属K和Na。本章对催化剂进行了表征,并且比较了K/Mo2C、Na/Mo2C、Pt/Mo2C和Na-Pt/Mo2C之间的活性。碱金属的添加减少了催化剂的比表面积和化学吸附量,同时也降低了催化活性。在文献报导的结果中,碱金属物种的添加能够改善部分载体活化水的能力,例如A2O3和TiO2,从而提高了催化剂的变换反应活性。由于Mo2C活化水的能力高于碱金属物种,碱金属的添加覆盖了Mo2C的活性位和Pt-Mo2C之间的界面,从而导致了Mo2C和Pt/Mo2C催化剂活性的下降。
     另外本文制备了高比表面积的Mo2C催化剂(~120m2/g),该催化剂在变换反应中具有和工业催化剂Cu/Zn/Al2O3相当的活性但失活速率较快。失活后的Mo2C的体相结构没有发生变化,因此失活主要在Mo2C的表面进行。本章比较了Mo2C在各反应组分中(H2、N2、H2O、CO和CO2)的失活。H2O在Mo2C表面上的活化生成了氢气和氧物种,氧物种在活性位上的不断累积造成了活性位减少从而导致失活。含碳物种在反应后的Mo2C中也被观测到但不是失活的主要原因。本章同时对Mo2C的再生条件也进行了考察分析,Mo2C在H2中240°C下还原5h即可恢复部分活性。
The catalytic properties of early transition metal carbides have been the subject ofmany investigations since it was reported that some carbides possess catalyticproperties that resemble those of Pt group metals. Water gas shift (WGS) reaction isan important industrial process for hydrogen production. Previously we reported thatthe high surface area Mo2C prepared from the temperature programmed reaction andthe Pt deposited onto Mo2C (Pt/Mo2C) were active for this reaction. In this thesis, thesupported Mo2C catalysts, the influences of the alkali metal additions and the stabilityof the Mo2C catalysts were investigated.
     Chapter2describes the synthesis and characterization of Mo2C/Al2O3and Pt-Mo2C/Al2O3catalysts and their evaluation for the WGS reaction. Mo2C/Al2O3catalystwas prepared via the temperature programmed reaction from AM/Al2O3precursorwhich was prepared by the incipient wetness impregnation of Al2O3and AM. The Pt-Mo2C/Al2O3catalysts were prepared from the Mo2C/Al2O3catalyst using a wetimpregnation method. The materials were characterized using techniques includingphysical adsorption, X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD),CO chemisorption, temperature programmed desorption and transmission electronmicroscopy and the activities were evaluated for the WGS reaction under differentialconditions. The presence of Mo2C enhanced the deposition of Pt from H2PtCl6solutions. The Pt-Mo2C/Al2O3catalysts were much more active than thecorresponding Pt/Al2O3catalyst. For example, the turnover frequency for the3.8wt%Pt-Mo2C/Al2O3catalyst at240°C (0.81s-1) was two orders of magnitude higher thanthat for the3.9wt%Pt/Al2O3catalyst (0.007s-1). Trends with increasing Pt loadingfor the Pt-Mo2C/Al2O3catalysts were similar to those previously observed forPt/Mo2C catalysts. The results were consistent with Pt being co-located with Mo2C, aconsequence of the strong affinity of the Pt precursor for Mo2C. Interaction of the Ptwith Mo2C would account for the significant differences between the catalytic andsurface chemical properties of the Pt-Mo2C/Al2O3and Pt/Al2O3catalysts.
     In chapter3, high surface area SiO2was used as the support for the preparation ofthe Mo2C/SiO2and Pt-Mo2C/SiO2catalysts. These materials were also characterizedby physical adsorption, XRD and STEM-XEDS and evaluated for WGS reaction to identify the catalyst structures and compositions. The Mo2C particles supported on the16.9and29.0wt.%Mo2C/SiO2were in the range of the1-2nm and the loadingamount of the Mo2C had little influence on the particle size distribution. Thenormalized activities of the16.9and29.0wt.%Mo2C/SiO2catalyst were higher thanthe unsupported Mo2C catalyst because of the higher dispersion.4.2wt.%Pt-16.3wt.%Mo2C/SiO2catalyst was also prepared from the wet-impregnation method and the Ptparticle distribution was in the range of5-10nm. Pt and Mo2C were also co-locatedand the interaction enhanced the reactivity of the Pt.
     In chapter4, the influences of the alkali metal addition were investigated. Thesodium and potassium were loaded on the high surface Mo2C via the wetimpregnation method. The composition and structure of the catalysts werecharacterized and the activities were compared. The addition of the sodium andpotassium decreased the surface areas of the Mo2C catalysts, CO uptakes and also thereaction rates. The reaction rates of Na/Mo2C catalysts normalized by the surfaceareas were similar to each other and also silimar to the Mo2C catalyst indicating thatthe presences of the alkali metals didnot change the chemical properties of the activesites on the Mo2C catalyst while blocked the pores thus decreased the activities of thecatalysts. Alkali metals were reported as the promoters for the enhanced activities inthe WGS reaction which could modify the properties of the supports, such as TiO2andAl2O3. However, the Mo2C was a good catalyst for the water activation compared toalkali metal species. Thus, the addition of the alkali metals decreased the activities ofMo2C and Pt/Mo2C catalysts.
     In chapter5, the stability of the Mo2C in the WGS reaction was investigated. Thehigh surface area Mo2C (~120m2/g) manifested a higher deactivation rate comparedto the commercial Cu/Zn/Al2O3catalyst. The post reaction characterization showedthat the bulk structure of Mo2C was maintained. Thus, the deactivation was due to thesurface properties change of the Mo2C. The reaction rates of the Mo2C before andafter each reactant or reactants treatments were compared. The results showed thatrate of the Mo2C catalyst after the water treatment at240°C was much lower than thatof before the treatment indicating the water may be responsible for the rate decrease.Carbon species were also formed on the post reaction catalyst surface while may notbe the dominating deactivation reason. The water activation on the Mo2C can beprocessed at240°C to produce H2and the oxygen species. The oxygen species wereaccumulated on the Mo2C surface which resulted in the catalyst deactivation. The regeneration methods for the Mo2C catalyst were also investigated and the partialactivity of Mo2C catalyst could be restored after the treatment in H2at240°C.
引文
[1] Ratnasamy C, Wagner J P. Water Gas Shift Catalysis. Catalysis Reviews-Scienceand Engineering.2009,51:325-440.
    [2] Newsome D S. The Water-Gas Shift Reaction. Catalysis Reviews.1980,21:275-318.
    [3]蔡启瑞,彭少逸.碳一化学中的催化作用.化学工业出版社.1995:127-139.
    [4]向德辉,刘惠云.化肥催化剂实用手册.化学工业出版社.1992:142-217.
    [5] Lloyd L, Ridler D E, M.V T. The water gas shift reaction. Catalyst Handbook,2nded, Mansion Publishing House.1996,283-338.
    [6] Kochloefl K. Water gas shift reaction. In Handbook of Heterogeneous Catalysis,Wiley VHS.1997:1831-1840.
    [7]刘全生,张前程,马文平, et al.变换催化剂研究进展.化学进展.2005,17:389-398.
    [8] Kothari R, Buddhi D, Sawhney R L. Comparison of environmental and economicaspects of various hydrogen production methods. Renew Sust Energ Rev.2008,12:553-563.
    [9] Bartholomew C H, Farrauto R J. Fundamentals of Industrial Catalytic Processes.Second Edition. John Wiley and Sons, Inc.2006.
    [10]祝以湘,陈荣钦,封雷. K2O-Fe2O3系催化剂的穆斯堡尔谱研究.物理化学学报.1999,3:234-240.
    [11] Gottschalk F M, Hutchings G J. Manganese oxide water-gas shift catalysts initialoptimization studies. Applied Catalysis.1989,51:127-139.
    [12]欧晓佳,程极源.金属氧化物对铁系催化剂在CO变换反应中的稳定性和活性的影响.天然气化工.2000,25:31-33.
    [13]祝以湘,柴运宙,刘正阳, et al.钾助催化剂与Fe3O4相互作用行为的XRD表征.物理化学学报.2000,16:127-132.
    [14] Andreev A, Idakiev V, Mihajlova D, et al. Iron-based catalysts for the water-gasshift reaction promoted by first-row transition metal oxides. Applied Catalysis.1986,22:385-387.
    [15] Zheng Q, Xu J B, Wei K M, et al. Study on Catalyst For CO High-Temperature-Shift Reaction. Chinese J Catal.1999,20:21-24.
    [16] Diao L T, Jin H, Zhang X, et al. Spectroscopic study on iron-based non-chromiumcatalyst for CO high temperature shift. Chinese J Catal.1998.
    [17] Natesakhawat S, Wang X Q, Zhang L Z, et al. Development of chromium-freeiron-based catalysts for high-temperature water-gas shift reaction. J Mol Catal a-Chem.2006,260:82-94.
    [18] De Araújo G C, Do Carmo Rangel M. An environmental friendly dopant for thehigh-temperature shift catalysts. Catal Today.2000,62:201-207.
    [19] Reddy A L M, Shaijumon M M, Rajalakshmi N, et al. Performance of ProtonExchange Membrane Fuel Cells Using Pt/MWNT-Pt/C Composites asElectrocatalysts for Oxygen Reduction Reaction in Proton Exchange MembraneFuel Cells. Journal of Fuel Cell Science and Technology.2010,7.
    [20] Watanabe K, Miyao T, Higashiyama K, et al. High temperature water-gas shiftreaction over hollow Ni-Fe-Al oxide nano-composite catalysts prepared by thesolution-spray plasma technique. Catal Commun.2009,10:1952-1955.
    [21] Boumaza S, Auroux A, Bennici S, et al. Water gas shift reaction over the CuB2O4spinel catalysts. Reaction Kinetics Mechanisms and Catalysis.2010,100:145-151.
    [22] Sun Y, Hla S S, Duffy G J, et al. Effect of Ce on the structural features andcatalytic properties of La(0.9-x)CexFeO3perovskite-like catalysts for the hightemperature water-gas shift reaction. Int J Hydrogen Energ.2011,36:79-86.
    [23] Maluf S S, Assaf E M. La2-xCexCu1-yZnyO4perovskites for high temperaturewater-gas shift reaction. J Nat Gas Chem.2009,18:131-138.
    [24] Morpeth L D, Sun Y, Hla S S, et al. Effect of H2S on the performance ofLa0.7Ce0.2FeO3perovskite catalyst for high temperature water-gas shift reaction.Int J Hydrogen Energ.2012,37:1475-1481.
    [25] Hla S S, Sun Y, Duffy G J, et al. Kinetics of the water-gas shift reaction over aLa0.7Ce0.2FeO3perovskite-like catalyst using simulated coal-derived syngas athigh temperature. Int J Hydrogen Energ.2011,36:518-527.
    [26]李云锋于,王龙江,程玉春.一氧化碳变换催化剂的应用与发展.广东化工.2009,10:88-90.
    [27] Tohji K, Udagawa Y, Mizushima T, et al. The structure of the copper/zinc oxidecatalyst by an in-situ EXAFS study. The Journal of Physical Chemistry.1985,89:5671-5676.
    [28] Hawker N. Shift CO plus steam to H2. Hydrocarb.Process.1982,64:183-187.
    [29] Twigg M V, Spencer M S. Deactivation of supported copper metal catalysts forhydrogenation reactions. Appl Catal a-Gen.2001,212:161-174.
    [30] Lima A a G, Nele M, Moreno E L, et al. Composition effects on the activity ofCu–ZnO–Al2O3based catalysts for the water gas shift reaction: A statisticalapproach. Appl Catal a-Gen.1998,171:31-43.
    [31] Wambeke A, Jalowiecki L, Kasztelan S, et al. The active site for isoprenehydrogenation on MoS2/γ-Al2O3catalysts. J Catal.1988,109:320-328.
    [32] Eijsbouts S, Van Den Oetelaar L C A, Louwen J N, et al. Changes of MoS2Morphology and the Degree of Co Segregation during the Sulfidation andDeactivation of Commercial Co-Mo/Al2O3Hydroprocessing Catalysts. Ind EngChem Res.2006,46:3945-3954.
    [33]赵钰琼,跃董,张永发. CO催化变换制氢宽温耐硫及新型变换催化剂研究的进展.山西能源与节能.2009,6:69-73.
    [34] Zecevic S, Patton E M, Parhami P. Carbon–air fuel cell without a reformingprocess. Carbon.2004,42:1983-1993.
    [35] Wee J-H, Lee K-Y. Overview of the development of CO-tolerant anodeelectrocatalysts for proton-exchange membrane fuel cells. J Power Sources.2006,157:128-135.
    [36] Song C. Fuel processing for low-temperature and high-temperature fuel cells:Challenges, and opportunities for sustainable development in the21st century.Catal Today.2002,77:17-49.
    [37] Trimm D L, nsan Z I. On board fuel conversion for hydrogen fuel cell drivenvehicles. Catalysis Reviews.2001,43:31-84.
    [38] Ladebeck J R, Wagner J P, Catalyst development for water–gas shift. InHandbook of Fuel Cells, John Wiley&Sons, Ltd:2010.
    [39] Myers D J, Krebs J F, Carter J D. Metal/Ceria Water-Gas Shift Catalysts forAutomotive Polymer Electrolyte Fuel Cell Systems. Presentation at AmericanInstitute of Chemical Engineers. New Orieans: LA.2002.
    [40] Http://Newscenter.Lbl.Gov/Feature-Stories/2008/04/18/to-Build-a-Better-Fuel-Cell/.
    [41] Lin J-H, Biswas P, Guliants V V, et al. Hydrogen production by water-gas shiftreaction over bimetallic Cu-Ni catalysts supported on La-doped mesoporousceria. Appl Catal a-Gen.2010,387:87-94.
    [42] Chen C S, Lin J H, Lai T W, et al. Active sites on Cu/SiO2prepared using theatomic layer epitaxy technique for a low-temperature water-gas shift reaction. JCatal.2009,263:155-166.
    [43] Knudsen J, Nilekar AU, Vang R T, et al. ACu/Pt near-surface alloy for water-gasshift catalysis. Journal of the American Chemical Society.2007,129:6485-90.
    [44] De Souza T R O, Brito S M D, Andrade H M C. Zeolite catalysts for the water gasshift reaction. Appl Catal a-Gen.1999,178:7-15.
    [45] Wn J G, Saito M. Improvement of stability of a Cu/ZnO/Al2O3catalyst for the COshift reaction. J Catal.2000,195:420-422.
    [46] Panagiotopoulou P, Papavasiliou J, Avgouropoulos G, et al. Water–gas shiftactivity of doped Pt/CeO2catalysts. Chem Eng J.2007,134:16-22.
    [47] Panagiotopoulou P, Kondarides D I. Effect of morphological characteristics ofTiO2-supported noble metal catalysts on their activity for the water-gas shiftreaction. J Catal.2004,225:327-336.
    [48] Panagiotopoulou P, Christodoulakis A, Kondarides D I, et al. Particle size effectson the reducibility of titanium dioxide and its relation to the water–gas shiftactivity of Pt/TiO2catalysts. J Catal.2006,240:114-125.
    [49] Iida H, Kondo K, Igarashi A. Effect of Pt precursors on catalytic activity ofPt/TiO2(rutile) for water gas shift reaction at low-temperature. Catal Commun.2006,7:240-244.
    [50] Jacobs G, Graham U M, Chenu E, et al. Low-temperature water-gas shift: impactof Pt promoter loading on the partial reduction of ceria and consequences forcatalyst design. J Catal.2005,229:499-512.
    [51] González I D, Navarro R M, álvarez-Galván M C, et al. Performanceenhancement in the water–gas shift reaction of platinum deposited over acerium-modified TiO2support. Catal Commun.2008,9:1759-1765.
    [52] Hutchings G J. Vapor phase hydrochlorination of acetylene: Correlation ofcatalytic activity of supported metal chloride catalysts. J Catal.1985,96:292-295.
    [53] Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared bycoprecipitation for low-temperature oxidation of hydrogen and of carbonmonoxide. J Catal.1989,115:301-309.
    [54] Daté M, Imai H, Tsubota S, et al. In situ measurements under flow condition ofthe CO oxidation over supported gold nanoparticles. Catal Today.2007,122:222-225.
    [55] Burch R. Gold catalysts for pure hydrogen production in the water-gas shiftreaction: activity, structure and reaction mechanism. Phys Chem Chem Phys.2006,8:5483-5500.
    [56] El-Moemen A A, Karpenko A, Denkwitz Y, et al. Activity, stability anddeactivation behavior of Au/CeO2catalysts in the water gas shift reaction atincreased reaction temperature (300degrees C). J Power Sources.2009,190:64-75.
    [57] Sakurai H, Akita T, Tsubota S, et al. Low-temperature activity of Au/CeO2forwater gas shift reaction, and characterization by ADF-STEM, temperature-programmed reaction, and pulse reaction. Appl Catal a-Gen.2005,291:179-187.
    [58] Kim C H, Thompson L T. On the importance of nanocrystalline gold for Au/CeO2water-gas shift catalysts. J Catal.2006,244:248-250.
    [59] Karpenko A, Denkwitz Y, Plzak V, et al. Low-temperature water-gas shift reactionon Au/CeO2catalysts-the influence of catalyst pre-treatment on the activity anddeactivation in idealized reformate. Catal Lett.2007,116:105-115.
    [60] Fu Q, Kudriavtseva S, Saltsburg H, et al. Gold-ceria catalysts for low-temperaturewater-gas shift reaction. Chem Eng J.2003,93:41-53.
    [61] Kimmerle B, Haider P, Grunwaldt J-D, et al. High throughput cell for X-rayabsorption spectroscopy applied to study the effect of Au on Rh-catalyzed partialoxidation of methane. Appl Catal a-Gen.2009,353:36-45.
    [62] Scirè S, Crisafulli C, Riccobene P M, et al. Selective oxidation of CO in H2-richstream over Au/CeO2and Cu/CeO2catalysts: An insight on the effect ofpreparation method and catalyst pretreatment. Appl Catal a-Gen.2012,417–418:66-75.
    [63] Grisel R J H, Nieuwenhuys B E. Selective oxidation of CO over supported Aucatalysts. J Catal.2001,199:48-59.
    [64] Bollinger M A, Vannice M A. A kinetic and DRIFTS study of low-temperaturecarbon monoxide oxidation over Au-TiO2catalysts. Appl Catal B-Environ.1996,8:417-443.
    [65] Pattrick G, Lingen E, Corti C W, et al. The potential for use of gold in automotivepollution control technologies: a short review. Top Catal.2004,30-31:273-279.
    [66] Andreeva D, Idakiev V, Tabakova T, et al. Low-Temperature Water–Gas ShiftReaction over Au/α-Fe2O3. J Catal.1996,158:354-355.
    [67] Andreeva D, Idakiev V, Tabakova T, et al. Low-temperature water-gas shiftreaction onAu/α-Fe2O3catalyst. Appl Catal a-Gen.1996,134:275-283.
    [68] Andreeva D, Tabakova T, Idakiev V, et al. Au/α-Fe2O3catalyst for water–gas shiftreaction prepared by deposition–precipitation. Appl Catal a-Gen.1998,169:9-14.
    [69] Panagiotopoulou P, Kondarides D I. Effect of the nature of the support on thecatalytic performance of noble metal catalysts for the water-gas shift reaction.Catal Today.2006,112:49-52.
    [70] Shekhar M, Wang J, Lee W-S, et al. Size and Support Effects for the Water-GasShift Catalysis over Gold Nanoparticles Supported on Model Al2O3and TiO2.Journal of the American Chemical Society.2012,134:4700-4708.
    [71] Yao H C, Yao Y F Y. Ceria in automotive exhaust catalysts: I. Oxygen storage. JCatal.1984,86:254-265.
    [72] Gandhi H S, Graham G W, Mccabe R W. Automotive exhaust catalysis. J Catal.2003,216:433-442.
    [73] Gorte R J. Ceria in catalysis: From automotive applications to the water–gas shiftreaction. Aiche J.2010,56:1126-1135.
    [74] Kim C H, Thompson L T. Deactivation of Au/CeOxwater gas shift catalysts. JCatal.2005,230:66-74.
    [75] Williams W D, Shekhar M, Lee W-S, et al. Metallic Corner Atoms in GoldClusters Supported on Rutile Are the Dominant Active Site during Water-GasShift Catalysis. Journal of the American Chemical Society.2010,132:14018-14020.
    [76] Jacobs G, Ricote S, Patterson P M, et al. Low temperature water-gas shift:Examining the efficiency of Au as a promoter for ceria-based catalysts preparedby CVD of a Au precursor. Appl Catal a-Gen.2005,292:229-243.
    [77] Tibiletti D, Amieiro-Fonseca A, Burch R, et al. DFT and in situ EXAFSinvestigation of gold/ceria-zirconia low-temperature water gas shift catalysts:Identification of the nature of the active form of gold. J Phys Chem B.2005,109:22553-22559.
    [78] Fu Q, Deng W L, Saltsburg H, et al. Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction. Appl Catal B-Environ.2005,56:57-68.
    [79] Lessard J D, Valsamakis I, Flytzani-Stephanopoulos M. Novel Au/La2O3andAu/La2O2SO4catalysts for the water-gas shift reaction prepared via an anionadsorption method. Chem Commun.2012,48:4857-9.
    [80] Liu X S, Ruettinger W, Xu X M, et al. Deactivation of Pt/CeO2water-gas shiftcatalysts due to shutdown/startup modes for fuel cell applications. Appl Catal B-Environ.2005,56:69-75.
    [81] El-Moemen A A, Kucerova G, Behm R J. Influence of H-2, CO2and H2O on theactivity and deactivation behavior of Au/CeO2catalysts in the water gas shiftreaction at300degrees C. Appl Catal B-Environ.2010,95:57-70.
    [82] Wang X, Gorte R J, Wagner J P. Deactivation mechanisms for Pd/ceria during thewater-gas-shift reaction. J Catal.2002,212:225-230.
    [83] Franchini C A, Duarte De Farias A M, Albuquerque E M, et al. Single-stagemedium temperature water-gas shift reaction over Pt/ZrO2-Support structuralpolymorphism and catalyst deactivation. Appl Catal B-Environ.2012,117:302-309.
    [84] Silberova B a A, Makkee M, Moulijn J A. Mechanism of deactivation ofAu/Fe2O3catalysts under water-gas shift conditions. Top Catal.2007,44:209-221.
    [85] Zalc J M, Sokolovskii V, Loffler D G. Are noble metal-based water-gas shiftcatalysts practical for automotive fuel processing? J Catal.2002,206:169-171.
    [86] Zhai Y, Pierre D, Si R, et al. Alkali-Stabilized Pt-OHxSpecies Catalyze Low-Temperature Water-Gas Shift Reactions. Science.2010,329:1633-1636.
    [87] Zhu X, Shen M, Lobban L L, et al. Structural effects of Na promotion for highwater gas shift activity on Pt-Na/TiO2. J Catal.2011,278:123-132.
    [88] Pazmino J H, Shekhar M, Williams W D, et al. Metallic Pt as active sites for thewater-gas shift reaction on alkali-promoted supported catalysts. J Catal.2012,286:279-286.
    [89] Panagiotopoulou P, Kondarides D I. Effects of promotion of TiO2with alkalineearth metals on the chemisorptive properties and water-gas shift activity ofsupported platinum catalysts. Appl Catal B-Environ.2011,101:738-746.
    [90] Xie H, Lu J, Shekhar M, et al. Synthesis of Na-Stabilized Nonporous t-ZrO2Supports and Pt/t-ZrO2Catalysts and Application to Water-Gas-Shift Reaction.Acs Catalysis.2012,3:61-73.
    [91] Bunluesin T, Gorte R J, Graham G W. Studies of the water-gas-shift reaction onceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties. ApplCatal B-Environ.1998,15:107-114.
    [92] Li Y, Fu Q, Flytzani-Stephanopoulos M. Low-temperature water-gas shift reactionover Cu-and Ni-loaded cerium oxide catalysts. Appl Catal B-Environ.2000,27:179-191.
    [93] Jacobs G, Crawford A, Davis B. Water-gas shift: steady state isotope switchingstudy of the water-gas shift reaction over Pt/ceria using in-situ DRIFTS. CatalLett.2005,100:147-152.
    [94] Zafiris G S, Gorte R J. Evidence for Low-Temperature Oxygen Migration fromCeria to Rh. J Catal.1993,139:561-567.
    [95] Azzam K G, Babich I V, Seshan K, et al. Single stage water gas shift conversionover Pt/TiO2-Problem of catalyst deactivation. Appl Catal a-Gen.2008,338:66-71.
    [96] Grabow L C, Gokhale A A, Evans S T, et al. Mechanism of the Water Gas ShiftReaction on Pt: First Principles, Experiments, and Microkinetic Modeling. TheJournal of Physical Chemistry C.2008,112:4608-4617.
    [97] Schweitzer N M. Ph.D. Thesis, University of Michigan,2010.
    [98] Hufton J R, Mayorga S, Sircar S. Sorption-enhanced reaction process forhydrogen production. Aiche J.1999,45:248-256.
    [99] Li Z, Liu Y, Cai N. Effect of CaO hydration and carbonation on the hydrogenproduction from sorption enhanced water gas shift reaction. Int J HydrogenEnerg.2012,37:11227-11236.
    [100] Liu Y, Li Z, Xu L, et al. Effect of Sorbent Type on the Sorption Enhanced WaterGas Shift Process in a Fluidized Bed Reactor. Ind Eng Chem Res.2012,51:11989-11997.
    [101] Zhang Y, Yu Z, Zhang F, et al. Li2ZrO3Nanoparticles as Absorbent for in-SituRemoval of CO2in Water-Gas Shift Reaction to Enhance H2Production.Chinese J Catal.2012,33:1572-1577.
    [102] Basile A, Drioli E, Santell F, et al. A study on catalytic membrane reactors forwater gas shift reaction. Gas Separation&Purification.1996,10:53-61.
    [103]王卫平.钯复合膜反应器中的水煤气变换反应与混合气体分离过程:博士论文.大连,中国科学院大连化学物理研究所,2007.
    [104] Barbieri G, Brunetti A, Caravella A, et al. Pd-based membrane reactors for one-stage process of water gas shift. Rsc Adv.2011,1:651-661.
    [105] Uemiya S, Sato N, Ando H, et al. The water gas shift reaction assisted by apalladium membrane reactor. Ind Eng Chem Res.1991,30:585-589.
    [106] Kikuchi E, Uemiya S, Sato N, et al. Membrane Reactor Using MicroporousGlass-supported Thin Film of Palladium. Application to the Water Gas ShiftReaction. Chemistry Letters.1989,18:489-492.
    [107] Willms R S, Wilhelm R, Okuno K, Performance of a palladium membrane reactorusing a Ni catalyst for fusion fuel impurities processing.1994; p Medium: ED;Size:14p.
    [108] Criscuoli A, Basile A, Drioli E. An analysis of the performance of membranereactors for the water-gas shift reaction using gas feed mixtures. Catal Today.2000,56:53-64.
    [109] Criscuoli A, Basile A, Drioli E, et al. An economic feasibility study for water gasshift membrane reactor. Journal of Membrane Science.2001,181:21-27.
    [110] Tosti S, Basile A, Chiappetta G, et al. Pd-Ag membrane reactors for water gasshift reaction. Chem Eng J.2003,93:23-30.
    [111] Pinacci P, Broglia M, Valli C, et al. Evaluation of the water gas shift reaction in apalladium membrane reactor. Catal Today.2010,156:165-172.
    [112] Kim S-J, Xu Z, Reddy G K, et al. Effect of Pressure on High-Temperature WaterGas Shift Reaction in Microporous Zeolite Membrane Reactor. Ind Eng ChemRes.2012,51:1364-1375.
    [113] Li J, Yoon H, Oh T-K, et al. SrCe0.7Zr0.2Eu0.1O3-based hydrogen transport watergas shift reactor. Int J Hydrogen Energ.2012,37:16006-16012.
    [114] Oettel C, Rihko-Struckmann L, Sundmacher K. Characterisation of theelectrochemical water gas shift reactor (EWGSR) operated with hydrogen andcarbon monoxide rich feed gas. Int J Hydrogen Energ.2012,37:11759-11771.
    [115] Oettel C, Rihko-Struckmann L, Sundmacher K. Combined generation andseparation of hydrogen in an electrochemical water gas shift reactor (EWGSR).Int J Hydrogen Energ.2012,37:6635-6645.
    [116] Pierson H O. Handbook of processing, and refractory carbides and nitrides:properties, applications. William Andrew,1996.
    [117] Furimsky E. Metal carbides and nitrides as potential catalysts forhydroprocessing. Appl Catal a-Gen.2003,240:1-28.
    [118] Neckel A. Recent investigations on the electronic structure of the fourth and fifthgroup transition metal monocarbides, mononitrides, and monoxides.International Journal of Quantum Chemistry.1983,23:1317-1353.
    [119] Schwarz K. Band structure and chemical bonding in transition metal carbides andnitrides. Critical Reviews in Solid State and Materials Sciences.1987,13:211-257.
    [120] Levy R B, Boudart M. Platinum-Like Behavior of Tungsten Carbide in SurfaceCatalysis. Science.1973,181:547-549.
    [121] Oyama S T. Preparation and catalytic properties of transition metal carbides andnitrides. Catal Today.1992,15:179-200.
    [122] Volpe L, Boudart M. Topotactic Preparation of Powders with High SpecificSurface Area. Catalysis Reviews.1985,27:515-538.
    [123] Kim J H, Kim K L. A study of preparation of tungsten nitride catalysts with highsurface area. Appl Catal a-Gen.1999,181:103-111.
    [124] Delannoy L, Giraudon J M, Granger P, et al. Hydrodechlorination of CCl4overgroup VI transition metal carbides. Appl Catal B-Environ.2002,37:161-173.
    [125] Delannoy L, Giraudon J M, Granger P, et al. ChloropentafluoroethaneHydrodechlorination over Tungsten Carbides: Influence of SurfaceStoichiometry. J Catal.2002,206:358-362.
    [126] Hara Y, Minami N, Itagaki H. Synthesis and characterization of high-surface areatungsten carbides and application to electrocatalytic hydrogen oxidation. ApplCatal a-Gen.2007,323:86-93.
    [127] Kodama S, Ichikuni N, Bando K K, et al. Preparation of supported NbC catalystsfrom peroxoniobic acid and in situ XAFS characterization. Appl Catal a-Gen.2008,343:25-28.
    [128] L fberg A, Frennet A, Leclercq G, et al. Mechanism of WO3Reduction andCarburization in CH4/H2Mixtures Leading to Bulk Tungsten Carbide PowderCatalysts. J Catal.2000,189:170-183.
    [129] Barthos R, Széchenyi A, Koós á, et al. The decomposition of ethanol overMo2C/carbon catalysts. Appl Catal a-Gen.2007,327:95-105.
    [130] Hu F, Cui G, Wei Z, et al. Improved kinetics of ethanol oxidation on Pd catalystssupported on tungsten carbides/carbon nanotubes. ElectrochemistryCommunications.2008,10:1303-1306.
    [131] Zhao Z, Fang X, Li Y, et al. The origin of the high performance of tungstencarbides/carbon nanotubes supported Pt catalysts for methanol electrooxidation.Electrochemistry Communications.2009,11:290-293.
    [132] Yin S, Cai M, Wang C, et al. Tungsten carbide promoted Pd-Fe as alcohol-tolerant electrocatalysts for oxygen reduction reactions. Energy&EnvironmentalScience.2011,4:558-563.
    [133] Liu Y, Mustain W E. Structural and Electrochemical Studies of Pt ClustersSupported on High-Surface-Area Tungsten Carbide for Oxygen Reduction. ACSCatalysis.2011,1:212-220.
    [134] Rees E J, Essaki K, Brady C D A, et al. Hydrogen electrocatalysts frommicrowave-synthesised nanoparticulate carbides. J Power Sources.2009,188:75-81.
    [135] Rees E J, Essaki K, Brady C D A, et al. Proton Exchange Membrane Fuel Cells2008, Pts1and2,:147-158.
    [136] Hyeon T H, Fang M M, Suslick K S. Nanostructured molybdenum carbide:Sonochemical synthesis and catalytic properties. Journal of the AmericanChemical Society.1996,118:5492-5493.
    [137] Bécue T, Manoli J-M, Potvin C, et al. Preparation, Characterization, and CatalyticActivity of Molybdenum Carbide or Nitride Supported on Platinum ClustersDispersed in EMT Zeolite. J Catal.1999,186:110-122.
    [138] Rocha AS, Da Silva V T, Faro Jr AC. Carbided Y zeolite-supported molybdenum:On the genesis of the active species, activity and stability in benzenehydrogenation. Appl Catal a-Gen.2006,314:137-147.
    [139] Giraudon J M, Devassine P, Leclercq L, et al. Synthesis of ditungsten carbide bycontrolled decomposition of Cp2W2(CO)4(dmad) under a hydrogen atmosphere.Journal of Materials Science.1998,33:1369-1377.
    [140] Giraudon J M, Leclercq L, Leclercq G, et al. Organometallic route todimolybdenum carbide via a low-temperature pyrolysis of a dimolybdenumalkyne complex. Journal of Materials Science.1993,28:2449-2454.
    [141] Zeng D, Hampden-Smith M J. Room-temperature synthesis of molybdenum andtungsten carbides, Mo2C and W2C, via chemical reduction methods. Chemistryof Materials.1992,4:968-970.
    [142] Koyamo T, Lee C H, Fukunaga T. Formation of iron nitrides by mechanicalalloying in ammonia atmosphere. Mater. Sci. Forum.1992,88-90:809-816.
    [143] Kaczmarek W A, Ninham B W, Onyszkiewicz I. Synthesis of Fe3N by mechano-chemical reactions between iron and organic H x (CN)6ring compounds.Journal of Materials Science.1995,30:5514-5521.
    [144] Wu J D, Wu C Z, Song Z M, et al. Preparation of molybdenum nitrides by laser-promoted nitridation reaction. Thin Solid Films.1997,311:62-66.
    [145] Patt J, Moon D J, Phillips C, et al. Molybdenum carbide catalysts for water-gasshift. Catal Lett.2000,65:193-195.
    [146] Moon D J, Ryu J W. Molybdenum carbide water-gas shift catalyst for fuel cell-powered vehicles applications. Catal Lett.2004,92:17-24.
    [147] Patterson P M, Das T K, Davis B H. Carbon monoxide hydrogenation overmolybdenum and tungsten carbides. Appl Catal a-Gen.2003,251:449-455.
    [148] Griboval-Constant A, Giraudon J M, Leclercq G, et al. Catalytic behaviour ofcobalt or ruthenium supported molybdenum carbide catalysts for FT reaction.Appl Catal a-Gen.2004,260:35-45.
    [149] Miyamoto Y, Akiyama M, Nagai M. Steam reforming of ethanol over nickelmolybdenum carbides for hydrogen production. Catal Today.2009,146:87-95.
    [150] Schlatter J C, Oyama S T, Metcalfe J E, et al. Catalytic behavior of selectedtransition metal carbides, nitrides, and borides in the hydrodenitrogenation ofquinoline. Ind Eng Chem Res.1988,27:1648-1653.
    [151] Ramanathan S, Oyama S T. New Catalysts for Hydroprocessing: Transition MetalCarbides and Nitrides. The Journal of Physical Chemistry.1995,99:16365-16372.
    [152] Liu P, Rodriguez J A. Water-gas-shift reaction on molybdenum carbide surfaces:Essential role of the oxycarbide. J Phys Chem B.2006,110:19418-19425.
    [153] Nagai M, Zahidul AM, Matsuda K. Nano-structured nickel–molybdenum carbidecatalyst for low-temperature water-gas shift reaction. Appl Catal a-Gen.2006,313:137-145.
    [154] Nagai M, Zahidul AM, Kunisaki Y, et al. Water-gas shift reactions on potassium-and zirconium-promoted cobalt molybdenum carbide catalysts. Appl Catal a-Gen.2010,383:58-65.
    [155] Schaidle J. Carbide and Nitride Based Catalysts for Synthesis Gas Conversion,University of Michigan,2011.
    [156] Darujati AR S, Thomson W J. Stability of supported and promoted-molybdenumcarbide catalysts in dry-methane reforming. Appl Catal a-Gen.2005,296:139-147.
    [157] Szechenyi A, Solymosi F. Production of hydrogen in the decomposition ofethanol and methanol over unsupported Mo2C catalysts. J Phys Chem C.2007,111:9509-9515.
    [158] Szymańska-Kolasa A, Lewandowski M, Sayag C, et al. Comparison betweentungsten carbide and molybdenum carbide for the hydrodenitrogenation ofcarbazole. Catal Today.2007,119:35-38.
    [159] Wang J X, Ji S F, Yang J, et al. Mo2C and Mo2C/Al2O3catalysts for NO directdecomposition. Catal Commun.2005,6:389-393.
    [160] Wang J, Castonguay M, Deng J, et al. RAIRS and TPD study of CO and NO onβ-Mo2C. Surface Science.1997,374:197-207.
    [161] Rumaiz A K, Lin H Y, Baldytchev I, et al. Nanosized tungsten carbide for NOxreduction. J Vac Sci Technol B.2007,25:893-898.
    [162] Schweitzer N M, Schaidle J A, Ezekoye O K, et al. High Activity CarbideSupported Catalysts for Water Gas Shift. Journal of the American ChemicalSociety.2011,133:2378-2381.
    [163] Schaidle J A, Schweitzer N M, Ajenifujah O T, et al. On the preparation ofmolybdenum carbide-supported metal catalysts. J Catal.2012,289:210-217.
    [164] Florez E, Feria L, Vines F, et al. Effect of the Support on the Electronic Structureof Au Nanoparticles Supported on Transition Metal Carbides: Choice of the BestSubstrate for Au Activation. J Phys Chem C.2009,113:19994-20001.
    [165] Rodriguez J A, Illas F. Activation of noble metals on metal-carbide surfaces:novel catalysts for CO oxidation, desulfurization and hydrogenation reactions.Phys Chem Chem Phys.2012,14:427-438.
    [166] Esposito D V, Hunt S T, Kimmel Y C, et al. A New Class of Electrocatalysts forHydrogen Production from Water Electrolysis: Metal Monolayers Supported onLow-Cost Transition Metal Carbides. Journal of the American Chemical Society.2012,134:3025-3033.
    [167] Hsu I J, Kimmel Y C, Jiang X, et al. Atomic layer deposition synthesis ofplatinum-tungsten carbide core-shell catalysts for the hydrogen evolutionreaction. Chem Commun.2012,48:1063-5.
    [168] Lee J S, Yeom M H, Park K Y, et al. Preparation and Benzene HydrogenationActivity of Supported Molybdenum Carbide Catalysts. J Catal.1991,128:126-136.
    [169] Aegerter P A, Quigley W W C, Simpson G J, et al. Thiophenehydrodesulfurization over alumina-supported molybdenum carbide and nitridecatalysts: Adsorption sites, catalytic activities, and nature of the active surface. JCatal.1996,164:109-121.
    [170] Mccrea K R, Logan J W, Tarbuck T L, et al. Thiophene hydrodesulfurization overalumina-supported molybdenum carbide and nitride catalysts: Effect of Moloading and phase. J Catal.1997,171:255-267.
    [171] Wang H M, Wang X H, Zhang M H, et al. Synthesis of bulk and supportedmolybdenum carbide by a single-step thermal carburization method. Chemistryof Materials.2007,19:1801-1807.
    [172] Solymosi F, Széchenyi A. Aromatization of n-butane and1-butene over supportedMo2C catalyst. J Catal.2004,223:221-231.
    [173] Kecskeméti A, Barthos R, Solymosi F. Aromatization of dimethyl and diethylethers on Mo2C-promoted ZSM-5catalysts. J Catal.2008,258:111-120.
    [174] Vo D-V N, Adesina A A. Fischer-Tropsch synthesis over alumina-supportedmolybdenum carbide catalyst. Appl Catal a-Gen.2011,399:221-232.
    [175] Zhu Q L, Zhang B, Yang J, et al. The promotion of nickel to Mo2C/Al2O3catalystfor the partial oxidation of methane to syngas. New J Chem.2003,27:1633-1638.
    [176] Shou H, Ferrari D, Barton D G, et al. Influence of Passivation on the Reactivityof Unpromoted and Rb-Promoted Mo2C Nanoparticles for CO Hydrogenation.Acs Catalysis.2012,2:1408-1416.
    [177] Shou H, Davis R J. Reactivity and in situ X-ray absorption spectroscopy of Rb-promoted Mo2C/MgO catalysts for higher alcohol synthesis. J Catal.2011,282:83-93.
    [178] Perret N, Wang X D, Delannoy L, et al. Enhanced selective nitroarenehydrogenation over Au supported on beta-Mo2C and beta-MO2C/Al2O3. J Catal.2012,286:172-183.
    [179] Wu W C, Wu Z L, Liang C H, et al. In situ FT-IR spectroscopic studies of COadsorption on fresh Mo2C/Al2O3catalyst. J Phys Chem B.2003,107:7088-7094.
    [180] Wu W C, Wu Z L, Liang C H, et al. An IR study on the surface passivation ofMo2C/Al2O3catalyst with O2, H2O and CO2. Phys Chem Chem Phys.2004,6:5603-5608.
    [181] Xiang M L, Zou J A, Li Q H, et al. Catalytic performance of iron carbide forcarbon monoxide hydrogenation. J Nat Gas Chem.2010,19:468-470.
    [182] Setthapun W, Bej S, Thompson L. Carbide and Nitride Supported MethanolSteam Reforming Catalysts: Parallel Synthesis and High Throughput Screening.Top Catal.2008,49:73-80.
    [183] Hsu I J, Kimmel Y C, Jiang X G, et al. Atomic layer deposition synthesis ofplatinum-tungsten carbide core-shell catalysts for the hydrogen evolutionreaction. Chem Commun.2012,48:1063-1065.
    [184] Panagiotopoulou P, Kondarides D I. A comparative study of the water-gas shiftactivity of Pt catalysts supported on single (MOx) and composite (MOx/Al2O3,MOx/TiO2). Catal Today.2007,127:319-329.
    [185] Senanayake S D, Stacchiola D, Evans J, et al. Probing the reaction intermediatesfor the water-gas shift over inverse CeOx/Au(111) catalysts. J Catal.2010,271:392-400.
    [186] Chen W F, Wang C H, Sasaki K, et al. Highly active and durable nanostructuredmolybdenum carbide electrocatalysts for hydrogen production. Energy&Environmental Science.2013,6:943-951.
    [187] Conner W C, Falconer J L. Spillover in Heterogeneous Catalysis. ChemicalReviews.1995,95:759-788.
    [188] Rozanov V V, Krylov O V. Hydrogen spillover in heterogeneous catalysis. Russ.Chem. Rev.1997:66-107.
    [189] Vannice M A. Kinetics of Catalytic Reactions, Springer, New York,2005.
    [190] Satterfield C N. Herogeneous Catalysis in Industrial Practice,2nd ed., McGraw-Hill, Inc.,1991,434.
    [191] Austermann R L, Denley D R, Hart D W, et al. Catalyst characterization. Anal.Chem.1987,59:68R-102R.
    [192] Spieker W A, Regalbuto J R. A fundamental model of platinum impregnationonto alumina. Chemical Engineering Science.2001,56:3491-3504.
    [193] Lewera A, Timperman L, Roguska A, et al. Metal-Support Interactions betweenNanosized Pt and Metal Oxides (WO3and TiO2) Studied Using X-rayPhotoelectron Spectroscopy. J Phys Chem C.2011,115:20153-20159.
    [194] Park C, Baker R T K. Induction of an electronic perturbation in supported metalcatalysts. J Phys Chem B.2000,104:4418-4424.
    [195] Esposito D V, Hunt S T, Kimmel Y C, et al. A New Class of Electrocatalysts forHydrogen Production from Water Electrolysis: Metal Monolayers Supported onLow-Cost Transition Metal Carbides. Journal of the American Chemical Society.2012,134:3025-3033.
    [196] Chen Y M, Liang Z X, Yang F, et al. Ni-Pt Core-Shell Nanoparticles as OxygenReduction Electrocatalysts: Effect of Pt Shell Coverage. J Phys Chem C.2011,115:24073-24079.
    [197] Alayoglu S, Nilekar A U, Mavrikakis M, et al. Ru-Pt core-shell nanoparticles forpreferential oxidation of carbon monoxide in hydrogen. Nat Mater.2008,7:333-338.
    [198] Lee C C, Chen D H. Large-scale synthesis of Ni-Ag core-shell nanoparticles withmagnetic, optical and anti-oxidation properties. Nanotechnology.2006,17:3094-3099.
    [199] Zhu X, Hoang T, Lobban L L, et al. Significant Improvement in Activity andStability of Pt/TiO2Catalyst for Water Gas Shift Reaction Via Controlling theAmount of Na Addition. Catal Lett.2009,129:135-141.
    [200] Pierre D, Deng W, Flytzani-Stephanopoulos M. The Importance of StronglyBound Pt–CeOxSpecies for the Water-gas Shift Reaction: Catalyst Activity andStability Evaluation. Top Catal.2007,46:363-373.
    [201] Alayoglu S, Eichhorn B. Rh-Pt Bimetallic Catalysts: Synthesis, Characterization,and Catalysis of Core-Shell, Alloy, and Monometallic Nanoparticles. Journal ofthe American Chemical Society.2008,130:17479-17486.
    [202] Rostrup-Nielsen J R. Activity of nickel catalysts for steam reforming ofhydrocarbons. J Catal.1973,31:173-199.
    [203] Bengaard H S, N rskov J K, Sehested J, et al. Steam Reforming and GraphiteFormation on Ni Catalysts. J Catal.2002,209:365-384.
    [204] Mcclory M M, Gonzalez R D. The role of alkali metals as promoters in themethanation and Fischer-Tropsch reaction: An in situ study. J Catal.1984,89:392-403.
    [205] Ngantsoue-Hoc W, Zhang Y, O’brien R J, et al. Fischer-Tropsch synthesis:activity and selectivity for Group I alkali promoted iron-based catalysts. AppliedCatalysis A: General.2002,236:77-89.
    [206] Kondarides D I, Panagiotopoulou P. Effects of alkali promotion of TiO2on thechemisorptive properties and water-gas shift activity of supported noble metalcatalysts. J Catal.2009,267:57-66.
    [207] Darujati AR S, Lamont D C, Thomson W J. Oxidation stability of Mo2C catalystsunder fuel reforming conditions. Appl Catal a-Gen.2003,253:397-407.
    [208] Moulijn J A, Van Diepen AE, Kapteijn F Catalyst deactivation: is it predictable?:What to do? Appl Catal a-Gen.2001,212:3-16.
    [209] Forzatti P, Lietti L. Catalyst deactivation. Catal Today.1999,52:165-181.
    [210] Bartholomew C H. Mechanisms of catalyst deactivation. Appl Catal a-Gen.2001,212:17-60.
    [211] Fogler H S. Elements of Chemical Reaction Engineerin.Prentice Hall PTR.2005.
    [212] Lassi U. Deactivation Correlations of Pd/Rh Three-way Catalysts Designed forEuro IV Emission Limits: Effect of Ageing Atmosphere, Temperature and Time.Oulun yliopiston kirjasto.2003.
    [213] Voorhies A. Carbon Formation in Catalytic Cracking. Industrial&EngineeringChemistry.1945,37:318-322.