缺陷态碳纳米材料的功能应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
独特的结构及优异的物理化学性质使碳纳米管、富勒烯在众多领域具有广泛的潜在应用,成为纳米材料科学研究的热点课题之一。碳纳米管、富勒烯的类石墨结构具有极高的化学稳定性和不溶性,这极大地限制了它们作为化学反应载体、复合材料组分的可操作性。如何对碳纳米管、富勒烯进行有效的功能修饰,是当前碳纳米管、富勒烯研究和应用领域中亟待解决的一个科学问题。对碳纳米管、富勒烯进行缺陷修饰,将可能赋予其全新的物理和化学性质,进而为碳纳米管、富勒烯的应用开辟新的途径。本论文以碳纳米管、富勒烯为研究对象,采用第一性原理方法计算了缺态碳纳米结构的电子性质及其应用。其目的在于为拓展碳纳米管、富勒烯的功能应用提出合理的手段。本文共分为六章,具体安排如下:
     第一章是引言,分析了碳纳米材料的结构特征和电子结构,并对碳纳米材料的功能应用做了一个简单介绍。
     第二章,分析了径向应变调制作用下的碳纳米管表面氢的脱附。我们发现,只加径向应变或者催化元素都不足以将化学吸附的氢原子脱离碳纳米管。而径向变形的Pd掺杂纳米管能有效的降低氢的脱附势垒。这可能是由于Pd与单壁碳纳米管(SWCNT)或Pd与氢分子之间的作用被加强的缘故。而Pd最高占据分子轨道(HOMO)的改变是Pd-SWCNT与Pd-H2相互作用加强的关键。计算显示, Pd与氢分子之间的结合能(十分之几电子伏特)很适合在标准条件下氢的可逆储存。储氢时,Pd可以促进氢的吸附量,在氢释放的时候,径向变形的Pd掺杂纳米管又能有效的降低氢的脱附势垒。因此加径向变形且掺杂Pd不仅可以促进纳米管对氢的吸附,又可以降低氢的脱附势垒。
     第三章,讨论了缺陷态碳纳米管表面水分子的分解。基于碳纳米管外表面可能存在C杂质和碳纳米管具有大的电负性的特点,我们采用含C吸附原子的碳纳米管模型,并在其中注入电荷来降低水的分裂势垒。结果证明带电的、有缺陷的碳纳米管能使水分子有效分解。由于局部结构的突起,C吸附原子处会积累比其它位置多得多的电荷。当水分子接近这一位置时,水分子与碳纳米管之间发生大的电荷转移,导致碳纳米管离域π电子与水分子之间存在强的静电相互作用,这是吸附产生的最主要机制。计算还发现C_SWCNT的化学活性主要来源于碳吸附原子而不是注入的电荷。被吸附官能团的吸附强度及其脱附可由注入的电荷量来控制。计算得到了反应中真实的过渡态结构,并通过过渡态搜索计算找到了过渡态与反应物之间的能量势垒仅仅为0.167 eV。
     第四章,计算了钼掺杂富勒烯表面水分子的分解。与同尺寸的碳纳米管相比富勒烯的活性更强, C 20是活性最强的富勒烯。本章研究了C 20与水之间的吸附,并通过掺入活性很强的钼元素来加强C 20与水之间的相互作用。结果表明Mo掺杂的C_(20)能有效分解水分子。而水与C_(20)之间的相互作用强度能通过注入电荷得到加强。另外,对得到的稳定结构的频率分析发现,过渡态具有唯一的虚频-309.3cm~(-1),表明找到的过渡态是一个真正的过渡态结构。
     第五章,研究了应变诱导的电荷、近自由电子态(NFE)行为,并着眼于碳纳米管体系性质的调制。通过径向变形碳纳米管及其与碱金属、极性分子、非极性分子相作用体系的电子结构的计算发现,体系分子间电荷的转移或者电荷流向的改变决定体系近自由电子态、费米能级的移动。另外,我们还发现3.4 (A|°)这一表征石墨层间相互作用的特征量与电荷转移方向、近自由电子态移动并无必然的关联作用。尽管n型、p型掺杂只能让近自由电子态相对于费米能级往下移,径向应变能使碳纳米管的近自由电子态相对于费米能级往上移。这极大的扩大了人们对材料设计的选择性。
     第六章,本文的总结及对未来工作的展望。
Due to their unique structure and physical and chemical properties, the potential application research has been briskly undertaken since the discovery of carbon nanotube and Fullerene and becomes one of current research focus. The graphitelike structures of carbon nanotubes and Fullerenes limit their flexibility in their using of catalyst substrates and composition component because of their large chemical stability and infusibility. It is an urgent scientific problem how to decorate carbon nanotubes and Fullerenes effectively for their potential application. Decorating of carbon nanotubes and Fullerenes with defects enable them possess new physical and chemical properties and bring some new applications. This thesis deals with the electronic structure and their appilications of carbon nanotubes and Fullerenes with defects by using density functional theory based on the first-principles method. The goal of this thesis is aimed at proposing available appilication methods for carbon nanotubes and Fullerenes. The thesis is organized as follows:
     In Chapter one, the appilication, structure and electronic character of nano-carbon materials are introduced.
     In Chapter 2, we present the effects of radial strain on desorption of hydrogen from the surface of palladium-doped carbon nanotubes. Our calculations reveal that the chemisorbed H atoms can not be desorbed by only using radial deformation or catalyst and that the Pd-doped nanotube can reduce the height of hydrogen desorption barrier upon radial deformation. This may be due to the enhanced coupling between Pd and SWCNT or molecular hydrogen. The disturbed Pd HOMO orbital is essential for the enhanced Pd-SWCNT and Pd-H2 interaction. Calculated binding energies, several tenths of an eV, are well suited to reversible storage under standard conditions for molecular hydrogen. In addition, the amount of adsorbed hydrogen can be increased, while the height of hydrogen desorption barrier can also be reduced via using Pd.
     In Chapter 3, we show that water molecule can be dissociated on the surface of carbon nanotubes with charge and defect. Considering the existing of adsorbed carbon atoms and large electronegativity character, we select a model of carbon nanotube with C dopant and charge injection is used to depress the dissociation barrier height. It is shown that charged carbon nanotubes with C dopant are very effective to the dissociation of water molecules. A large number of charges are localized around the adsorbed carbon atom which is heaved on the surface of carbon nanotube. When water molecule approaches the adsorbed carbon atom, a number of charges transfer between carbon nanotubes and water molecule because of strong electrostatic interaction between delocalizedπelectron of carbon nanotube and water, which is the main mechanism of adsorption. Furthermore, the results display that the reactivity of C_SWCNT comes mainly from adsorbed carbon atom rather than the injection of charges and that desorption and the adsorption strength between functional groups and carbon nanotube can be controlled by the injection of charges. Calculations also indicate that only barriers of 0.167 eV between transition state and reactant must be offered for the dissociation of water molecule.
     In Chapter 4, we provide a dissociation method for water molecule on the molybdenum doped fullerene. Compared with same sized carbon nanotube, the reactivity of Fullerene is larger than that of carbon nanotube. Due to the strongest reactivity of C20 among Fullerenes, the interaction between C20 and water molecule is calculated and Mo atom is adopted in this work to enhance the interaction between C20 and H2O for its large reactivity and the strong interaction between Mo and fullerene. We demonstrate that C20 with Mo dopant are very effective to the dissociation of water molecule and that the interaction strength can be strengthened by injection of charges. In addition, frequency analysis indicates that the transition state is a true minimum, which has a single imaginary frequency, -309.3cm~(-1).
     In Chapter 5, we present the calculations about charge and nearly free electron behavior induced by strain for the purpose of property tuning of carbon nanotubes. The electronic structure calculations between radial deformed carbon nanotubes and alkali metal, polar molecule and unpolar molecule exhibit that charge transfer between components and the change of charge flow direction determine the movement of nearly free electron bands. Moreover, there are no direct correspondences between the graphite interlayer distance 3.4 ? and charge transfer or the movement of nearly free electron band. Although the nearly free electron band can only downshift rapidly in energy relative to Fermi level by n- and p-type doping, the nearly free electron band of carbon nanotube can upshit rapidly in energy relative to Fermi level through radial deformation, which can expand the selectivity of material design.
     Finally, I summarize the thesis and propose the future works in Chapter 6.
引文
[1]R. E. Kroto, H. W., Heath, J.R., O'Brien, S. C., Curl, R.F. , Smalley,C60: Buck- Minsterfullerene, Nature 318 ,1985,162~163.
    [2]S. Iijima,Helical Microtubules of Graphitic Carbon, Nature 354 ,1991,56~58.
    [3]S. Iijima,T. Ichihashi,Single-Shell Carbon Nanotubes of 1-Nm Diameter, Nature 363 (6430),1993,603~605.
    [4]D. S. Bethune, C. H. Kiang,M. S. DeVries, et al.,Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls, Nature 363 (6430),1993, 605~607.
    [5]S. J. Tans, M. H. Devoret,H. J. Dai, et al.,Individual Single-Walled Carbon Nanotubes as Quantum Wires, Nature 386 ,1997,474~477.
    [6]J. W. G. Wildoer, L. C. Venema,A. G. Rinzler, et al.,Electronic Structure of Atomically Resolved Carbon Nanotubes, Nature 391 ,1998,59~62.
    [7]T. W. Odom, J. L. Huang,P. Kim, et al.,Atomic Structures and Electronic Properties of Single-Walled Carbon Nanotubes, Nature 391 ,1998,62~64.
    [8]S. J. Tans, A. R. Verschueren,C. Dekker,Room-Temperature Transistor Based On a Single Carbon Nanotube, Nature 393 (6680),1998,49~52.
    [9]J. Chen, M. A. Hamon,H. Hu, et al.,Solution Properties of Single-Walled Carbon Nanotubes, Science 282 (5386),1998,95~98.
    [10]J. Kong, N. R. Franklin,C. Zhou, et al.,Nanotube Molecular Wires as Chemical Sensors, Science 287 (5453),2000,622~625.
    [11]G. S. Duesberga, W. J. Blaua,H. J. Byrneb, et al.,Experimental Observation of Individual Single-Wall Nanotube Species by Raman Microscopy, Chem. Phys. Lett. 310 (1-2),1999,8~14.
    [12]V. Krstic, S. Roth,M. Burghard,Phase Breaking in Three-Terminal Contacted Single-Walled Carbon Nanotube Bundles, Phys. Rev. B 62 ,2000,16353~16355.
    [13]J. Kong, E. Yenilmez,T. W. Tombler, et al.,Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides, Phys. Rev. Lett. 87 (10),2001, 106801~106805.
    [14]V. Derycke, R. Marte,J. Appenzeller, et al.,Carbon Nanotube Inter- And Intramolecular Logic Gates, Nano Lett. 1 ,2001,453~456.
    [15]A. Bachtold, P. Hadley,T. Nakanish, et al.,Logic Circuits with Carbon Nanotube Transistors, Science 294 ,2001,1317~1320.
    [16]H. W. C. Postma, T. Teepen,Z. Yao, et al.,Carbon Nanotube Single-Electron Transistors at Room Temperature, Science 293 ,2001,76~79.
    [17]C. M. O, S. M. Bachilo,C. B. Huffman, et al.,Band Gap Fluorescence From Individual Single-Walled Carbon Nanotubes, Science 297 (5581),2002,593~ 596.
    [18]M. Freitag, V. Perebeinos,J. Chen, et al.,Hot Carrier Electroluminescence From a Single Carbon Nanotube, Nano Lett. 4 (6),2004,1063~1066.
    [19]J. Cao, Q. Wang,H. J. Dai,Electron Transport in Very Clean, as-Grown Suspended Carbon Nanotubes, Nature Materials 4 ,2005,745~749.
    [20]S. Ilani, L. A. K. Donev,M. Kindermann, et al.,Measurement of the QuantumCapacitance of Interacting Electrons in Carbon Nanotubes, Nature Physics 2 ,2006, 687~691.
    [21]B. C. Satishkumar, L. O. Brown,Y. Gao, et al.,Reversible Fluorescence Quenching in Carbon Nanotubes for Biomolecular Sensing, Nature Nanotechnology 2 ,2007,560~564.
    [22]J. Hone, M. C. Llaguno,M. J. Biercuk, et al.,Thermal Properties of Carbon Nanotubes and Nanotube-Based Materials, Applied Physics A 74 ,2002, 339~343.
    [23]A. Krishnan, E. Dujardin,T. W. Ebbesen, et al.,Young’S Modulus of Single-Walled Nanotubes, Phys. Rev. B 58 ,1998,14013~14019.
    [24]B. G. Demczyk, Y. M. Wang,J. Cumings, et al.,Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotube, Mater. Sci. Eng. 334 (1-2),2002,173~178.
    [25]B. Q. Wei, R. Vajta,P. M. Ajayan,Reliability and Current Carrying Capacity of Carbon Nanotubes, Appl. Phys. Lett. 79 ,2001,1172~1174.
    [26]T. Durkop, S. A. Getty,E. Cobas, et al.,Extraordinary Mobility in Semiconducting Carbon Nanotubes, Nano Lett. 4 ,2004,35~39.
    [27]A. C. Dillon, K. M. Jones,T. A. Bekkedahl, et al.,Storage of Hydrogen in Single-Walled Carbon Nanotubes, Nature 386 (6623),1997,377~379.
    [28]Y. Ye, C. C. Ahn,C. Witham, et al.,Hydrogen Adsorption and Cohesive Energy of Single-Walled Carbon Nanotubes, Appl. Phys. Lett. 74 (16),1999, 2307~2309.
    [29]Y. Chen, D. T. Shaw,X. D. Bai, et al.,Hydrogen Storage in Aligned Carbon Nanotubes, Appl. Phys. Lett. 78 (15),2001,2128~2130.
    [30]C. Liu, Y. Y. Fan,M. Liu, et al.,Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature, Science 286 (5442),1999,1127~1129.
    [31]S. M. Lee,Y. H. Lee,Hydrogen Storage in Single-Walled Carbon Nanotubes, Appl. Phys. Lett. 76 (20),2000,2877~2879.
    [32]P. Chen, X. Wu,J. Lin, et al.,High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures, Science 285 (5424),1999,91~93.
    [33]R. J. Chen, Y. Zhang,D. Wang, et al.,Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization, J. Am. Chem. Soc. 123 (16),2001,3838~3839.
    [34]A. Star, D. W. Steuerman,J. R. Heath, et al.,Starched Carbon Nanotubes, Angew. Chem., Int. Ed. 41 ,2002,2508~2512.
    [35]F. Balavione, P. Schultz,C. Richard, et al.,Helical Crystallization of Proteins On Carbon Nanotubes: A First Step Towards the Development of New Biosensors, Angew. Chem. Int. Ed. 38 (13-14),1999,1912~1915.
    [36]J. Chen, A. M. Rao,S. Lyuksyutov, et al.,Dissolution of Full-Length Single-Walled Carbon Nanotubes, J. Phys. Chem. B 105 (13),2001,2525~2528.
    [37]A. Kukovecz, C. Kramberger,M. Holzinger, et al.,On the Stacking Behavior of Functionalized Single-Wall Carbon Nanotubes, J. Phys. Chem. B 106 (25),2002, 6374~6380.
    [38]A. Hashimoto, K. Suenaga,A. Gloter, et al.,Direct Evidence for Atomic Defects in Graphene Layers, Nature (London) 430 ,2004,870~873.
    [39]J. R. Hahn, H. Kang,S. Song, et al.,Observation of Charge Enhancement Induced by Graphite Atomic Vacancy: A Comparative Stm and Afm Study, Phys. Rev. B 53 (4),1996,1725~1728.
    [40]Q. Li, S. Fan,W. Han, et al.,Coating of Carbon Nanotube with Nickel by Electroless Plating Method, Jpn. J. Appl. Phys. 36 ,1997,501~503.
    [41]X. H. Chen, J. T. Xia,J. Peng, et al.,Carbon-Nanotube Metal-Matrix Composites Prepared by Electroless Plating, Compos. Sci. Technol. 60 (2),2000, 301~306.
    [42]J. M. Planeix, N. Coustel,B. Coq, et al.,Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis, J. Am. Chem. Soc. 116 (17),1994,7935~ 7936.
    [43]T. W. Ebbesen, N. H. Hiura,M. E. Bisher, et al.,Decoration of Carbon Nanotubes, Advanced Materials 8 (2),1996,155~157.
    [44]B. C. Satishkumar, M. G. Chapline,E. M. Vogl, et al.,The Decoration of Carbon Nanotubes by Metal Nanoparticles, J. Appl. Phys D: Appl. Phys. 29 , 1996, 3173~ 3176.
    [45]W. Q. Han,A. Zett,Coating Single-Walled Carbon Nanotubes with Tin Oxide, Nano Lett 3 (5),2003,681~683.
    [46]Q. Fu, C. Lu,J. Liu,Selective Coating of Single Wall Carbon Nanotubes with Thin SiO2 Layer, Nano Lett. 2 (4),2002,329~332.
    [47]L. M. Ang, T. S. A. Hor,G. Q. Xu, et al.,Decoration of Activated Carbon Nanotubes with Copper and Nickel, Carbon 38 (2000),1999,363~372.
    [48]W. X. Chen, J. P. Tu,L. Y. Wang, et al.,Tribological Application of Carbon Nanotubes in Metal-Based Composite Coating and Composites, Carbon 41 (2),2003,215~222.
    [49]谢希德,陆栋,上海,复旦大学出版社,1998:351.
    [50]R. Saito, G. Dresselhaus,M. S. Dresselhaus,Physical Properties of Carbon Nanotubes,London,Imperial College Press,1998:35~53.
    [51]J. X. Cao, X. H. Yan,J. W. Ding, et al.,Electronic Properties of Carbon Nanotubes, J. Phys. Soc. Jpn 71 ,2002,1339~1345.
    [52]J. X. Cao, X. H. Yan,J. W. Ding, et al.,Band Structure of Carbon Nanotubes: The Sp3s* Tight-Binding Model, J. Phys.: Condens. Matter 13 ,2001,271~275.
    [53]V. Zolyomi,J. Kurti,First-Principles Calculations for the Electronic Band Structures of Small Diameter Single-Wall Carbon Nanotubes, Phys. Rev. B 70 (8), 2004,085403-1~8.
    [54]毛宗强,如何把氢储存起来?太阳能3 ,2007,17~19.
    [55]唐有根,万伟华,李民善,储氢材料的研究进展,高层论坛:功能材料信息3 (6),2006,15~20.
    [56]V. Sazonova, Y. Yaish,H. Ustunel, et al.,A Tunable Carbon Nanotube Electromechanical Oscillator, Nature 431 (7006),2004,284~287.
    [57]E. Yoo, L. Gao,T. Komatsu, et al.,Atomic Hydrogen Storage in Carbon Nanotubes Promoted by Metal Catalysts, J. Phys. Chem. B 108 ,2004,18903~ 18907.
    [58]T. Yildirim,S. Ciraci,Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium, Phys. Rev. Lett. 94 ,2005,175501~175514.
    [59]A. N. Ans, M. Benham,J. Jagiello, et al.,Hydrogen Adsorption on a Single-Walled Carbon Nanotube Material: A Comparative Study of Three Different Adsorption Techniques, Nanotechnology 15 ,2004,1503~1508.
    [60]夏建白,朱邦芬,上海,上海科学技术出版社,1995:146.
    [61]R. Heyd, A. Charlier,E. McRae,Uniaxial-Stress Effects on the Electronic Properties of Carbon Nanotubes, Phys. Rev. B 55 ,1997,6820~6824.
    [62]L. Yang,J. Han,Electronic Structure of Deformed Carbon Nanotubes, Phys. Rev. Lett. 85 (1),2000,154~157.
    [63]A. Kleiner,S. Eggert,Band Gaps of Primary Metallic Carbon Nanotubes, Phys. Rev. B 63 ,2001,73408~73412.
    [64]J. W. Ding, X. H. Yan,J. X. Cao, et al.,Curvature and Strain Effects on Electronic Properties of Single-Wall Carbon Nanotubes, J. Phys.: Condens. Matter 15 ,2003,439~445.
    [65]O. G, T. Yildirim,S. Ciraci, et al.,Reversible Band-Gap Engineering in Carbon Nanotubes by Radial Deformation, Phys. Rev. B 65 (15),2002,1554101 ~1554114.
    [66]S. Dag, Y. Ozturk,S. Ciraci, et al.,Adsorption and Dissociation of Hydrogen Molecules On Bare and Functionalized Carbon Nanotubes, Phys. Rev. B 72 ,2005, 155404-1~12.
    [67]J. P. Perdew,Y. Wang,Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy, Phys. Rev. B 45 (23),1992,13244~13249.
    [68]M. D. Segall, P. L. D. Lindan,M. J. Probert, et al.,First-Principles Simulation: Ideas, Illustrations and the Castep Code, J. Phys.: Condens. Matter 14 ,2002, 2717~2744.
    [69]D. Vanderbilt,Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Phys. Rev. B 41 (11),1990,7892~7895.
    [70]H. J. Monkhorst,J. D. Pack,Special Points for Brillouin-Zone Integrations, Phys. Rev. B 13 ,1976,5188~5192.
    [71]Z. H. Guo, X. H. Yan,Y. R. Yang,Effects of Radial Strain on the Desorption of Hydrogen From the Surface of Palladium-Doped Carbon Nanotubes, Appl. Phys. Lett. 89 ,2006,83104~83107.
    [72]R. C. Haddon,Chemistry of the Fullerenes: The Manifestation of Strain in a Class of Continuous Aromatic Molecules, Science 261 ,1993,1545~1550.
    [73]O. Gulseren, T. Yildirim,S. Ciraci,Tunable Adsorption on Carbon Nanotubes, Phys. Rev. Lett. 87 (11),2001,116802~116806.
    [74]Y. Zhang, N. W. Franklin,R. J. Chen, et al.,Metal Coating on Suspended Carbon Nanotubes and its Implication to Metal-Tube Interaction, Chemical Physics Letters 331 (1),2000,35~41.
    [75]M. K. Kostov, E. E. Santiso,A. M. George, et al.,Dissociation of Water On Defective Carbon Substrates, Phys. Rev. Lett. 95 ,2005,136105~136109.
    [76]O. Bikondoa, C. L. Pang,R. Ithnin, et al.,Direct Visualization of Defect- Mediated Dissociation of Water on Tio2(110), Nature materials 5 ,2006, 189~192.
    [77]P. J. Feibelman,Partial Dissociation of Water on Ru(0001), Science 295 ,2002,99~102.
    [78]A. Tilocca,A. Selloni,Reaction Pathway and Free Energy Barrier for Defect-Induced Water Dissociation on the (101) Surface of Tio2-Anatase, J. Chem. Phys. 119 ,2003,7445~7450.
    [79]N. Yoneya, K. Tsukagoshi,Y. Aoyagi,Charge Transfer Control by Gate Voltage in Crossed Nanotube Junction, Appl. Phys. Lett. 81 (12),2002,2250 ~2252.
    [80]J. P. Perdew, K. Burke,M. Ernzerhof,Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (18),1996,3865~3868.
    [81]J. L. Bahr,M. J. Tour,Covalent Chemistry of Single-Wall Carbon Nanotubes, a Review, J. Mater. Chem. 12 ,2002,1952~1958.
    [82]V. N. Khabashesku, W. E. Billups,J. L. Margrave,Fluorination of Single-Wall Carbon Nanotubes and Subsequent Derivatization Reactions, Acc. Chem. Res. 35 , 2002,1087~1095.
    [83]J. Kotakoski, A. V. Krasheninnikov,Y. Ma, et al.,B and N Ion Implantation Into Carbon Nanotubes: Insight From Atomistic Simulations, Phys. Rev. B 71 ,2005, 205408~2054014.
    [84]A. S. I. Lunhui Guan, Kazu Suenaga, Zujin Shi, Zhennan Gu,Direct Imaging of the Alkali Metal Site in K-Doped Fullerene Peapods, Phys. Rev. Lett. 94 ,2005,45502~45502.
    [85]J. J. Zhao, A. Buldum,J. Han, et al.,Gas Molecule Adsorption in Carbon Nanotubes and Nanotube Bundles, Nanotechnology 13 ,2002,195~200.
    [86]Z. Zhang,K. Cho,Ab Initio Study of Hydrogen Interaction with Pure and Nitrogen-Doped Carbon Nanotubes, Phys. Rev. B 75 ,2007,75420~75426.
    [87]L. H. Lu, Y. T. Lee,H. W. Chen, et al.,The Possible Mechanisms of the Antiproliferative Effect of Fullerenol, Polyhydroxylated C60, On Vascular Smooth Muscle Cells, J. Pharmacol 123 ,1998,1097~1102.
    [88]T. Tamura,M. Tsukada,Electronic States of the Cap Structure in the Carbon Nanotube., Phys. Rev. B 52 ,1995,6015~6026.
    [89]A. De Vita, J. -. Charlier,X. Blase, et al.,Electronic Structure at Carbon Nanotube Tips., Appl. Phys. A 68 ,1999,283~286.
    [90]M. Ouyang, J. Huang,C. L. Cheung, et al.,Atomically Resolved Single- Walled Carbon Nanotube Intramolecular Junctions., Science 291 ,2001, 97~100.
    [91]X. Liu, T. Pichler,M. Knupfer, et al.,Electronic and Optical Properties of Alkali-Metal-Intercalated Single-Wall Carbon Nanotubes, Phys. Rev. B 67 (12), 2003,125403~125411.
    [92]L. Kavan, P. Rapta,L. Dunsch, et al.,Tuning of Electronic Properties of Single Walled Carbon Nanotubes: In-Situ Raman and Vis-Nir Study, J. Phys. Chem. B 105 ,2001,10764~10771.
    [93]Y. Miyamoto, A. Rubio,X. Blase, et al.,Ionic Cohesion and Electron Doping of Thin Carbon Tubules with Alkali Atoms, Phys. Rev. Lett. 74 ,1995,2993 ~2996.
    [94]S. Kazaoui, N. Minami,R. Jacquemin, et al.,Amphoteric Doping of Single-Wall Carbon-Nanotube Thin Films as Probed by Optical Absorption Spectroscopy, Phys. Rev. B 60 ,1999,13339~13342.
    [95]X. Fan, E. C. Dickey,P. C. Eklund, et al.,Atomic Arrangement of Iodine AtomsInside Single-Walled Carbon Nanotubes, Phys. Rev.Lett. 84 ,2000,4621 ~4624.
    [96]E. Durgun, S. Dag,V. M. K. Bagci, et al.,Systematic Study of Adsorption of Single Atoms on a Carbon Nanotube, Phys. Rev. B 67 ,2003,201401~201414.
    [97]J. Luo, L. -. Peng,Z. Q. Xue, et al.,Density-Functional-Theory Calculations of Charged Single-Walled Carbon Nanotubes, Phys. Rev. B 66 (11),2002, 115415.
    [98]J. C. Charlier,Defects in Carbon Nanotubes, Acc. Chem. Res. 35 ,2002, 1063~1069.
    [99]P. Keblinski, S. K. Nayak,P. Zapol, et al.,Charge Distribution and Stability of Charged Carbon Nanotubes, Phys. Rev. Lett. 89 ,2002,255503~255507.
    [100]J. Kong,H. Dai,Full and Partial Chemical Gating of Nanotubes by Organic Amine Compounds, J. Phys. Chem. B 105 (15),2001,2890~2893.
    [101]R. G. Pearson,Concerning Jahn-Teller Effects, Proc. Nat. Acad. Sci. USA 72 (6), 1975,2104~2106.
    [102]R. M. D. Stevens, N. A. Frederick,B. L. Smith, et al.,Carbon Nanotubes as Probes for Atomic Microscopy, Nanotechnology 11 (1),2000,1~5.
    [103]R. Pati, Y. Zhang,S. K. Nayak, et al.,Effect of H2O Adsorption on Electron Transport in a Carbon Nanotube, Appl. Phys. Lett. 81 (14),2002,2638~2640.
    [104]G. Mills, HJónsson,G. K. Schenter,Reversible Work Transition-State Theory - Application to Dissociative Adsorption of Hydrogen, Surface Science 324 , 1995,305~337.
    [105]T. A. Halgren,W. N. Lipscomb,The Synchronous Transit Method for Determining Reaction Pathways and Locating Transition States, Chem. Phys. Lett. 49 ,1977,225~232.
    [106]N. Govind, M. Petersen,G. Fitzgerald, et al.,A Generalized Synchronous Transit Method for Transition State Location, Comput. Mater. Sci. 28 ,2003,250~258.
    [107]W. C. Van,J. Neugebauer,First-Principles Calculations for Defects and Impurities: Applications to Iii-Nitrides, J. Appl. Phys. 95 (8),2004,3851~3879.
    [108]E. Durgun, S. Dag,V. M. K. Bagci, et al.,Systematic Study of Adsorption of Single Atoms on a Carbon Nanotube, Phys. Rev. B 67 ,2003,201401~201414.
    [109]舒玉瑛,田丙伦,马丁,等,不同方法制备的Mo/Hzsm-5催化剂上甲烷的芳构化反应,催化学报22 (2),2001,109~112.
    [110]Y. D. Xu,L. W. Lin,Recent Advances in Methane Dehydro-Aromatization over Transition Metal Ion Modified Zeolite Catalysts Under Non-oxidative Conditions, Appl. Cata. A: General 188 ,1999,53~67.
    [111]陶跃武,钟顺和,铋钼复合氧化物表面上激光促进异丁烷选择氧化制甲基丙烯酸,催化学报22 (2),2001,129~132.
    [112]程伟,张继炎,王日杰,等,加氢脱硫催化剂各组分相互作用与催化性能,物理化学学报15 (7),1999,647~651.
    [113]张新堂,纵秋云,毛鹏生,等,钛促进的钴钼耐硫变换催化剂性能的研究,催化学报22 (1),2001,95~98.
    [114]王桂轮,李成岳,以合成气合成甲醇催化剂及其进展,化工进展20 (3),2001, 42~46.
    [115]S. Niyogi, M. A. Hamon,H. Hu,Chemistry of Singlewalled Carbon Nanotubes, ACC Chem Res 35 (12),2002,1105~1113.
    [116]D. Y. Lyon, L. K. Adams,J. C. Falkner, et al.,Antibacterial Activity of Fullerene Water Suspensions: Effect of Preparation Method and Particle Size, Environ. Sci. Technol. 40 (14),2006,4360~4366.
    [117]P. J. Benning, J. L. Martins,J. H. Weaver, et al.,Electronic States of KxC60: Insulating, Metallic and Superconducting Character, Science 252 ,1991,1417 ~1419.
    [118]R. C. Haddon, A. F. Hebard,M. J. Rosseinsky, et al.,Conducting Films of C60 and C70 by Alkali-Metal Doping, Nature 350 ,1991,320~322.
    [119]J. E. Fischer, P. A. Heiney,A. R. Mcghie, et al.,Iii Compressibility of Solid C60, Science 252 ,1991,1288~1290.
    [120]X. D. Shi, A. R. Kortan,J. M. Williams, et al.,Sound Velocity and Attenuation in Single-Crystal C60, Phys. Rev. Lett. 68 ,1992,827~830.
    [121]R. Sijbesma, G. Srdanov,F. Wudl, et al.,Synthesis of a Fullerene Derivative for the Inhibition of Hiv Enzymes, J. Am. Chem. Soc. 115 ,1993,6510~6512.
    [122]R. F. Schinazi, R. Sijbesma,G. Srdanov, et al.,Synthesis and Virucidal Activity of a Water-Soluble, Configurationally Stable, Derivatized C60 Fullerene, Antimicrob Agents Chemother 37 (8),1993,1707~1710.
    [123]L. Y. Chiang, F. J. Lu,J. T. Lin,Free Radical Scavenging Activity of Water- Soluble Fullerenols, J. Chem. Soc., Chem Commun 12 ,1995, 1283~ 1284.
    [124]C. Toniolo, A. Bianco,M. Maggini, et al.,A Bioactive Fullerene Peptide, J. Med. Chem. 37 ,1994,4558~4562.
    [125]B. X. Chen, S. R. Wilson,M. Das, et al.,Antigenicity of Fullerenes: Antibodies Specific for Fullerenes and their Characteristics, Proc. Natl. Acad. Sci. 95 ,1998, 10809~10813.
    [126]S. Deguchi, R. G. Alargova,K. Tsujii,Stable Dispersions of Fullerenes, C60 and C70, in Water. Preparation and Characterization, Langmuir 17 ,2001,6013~6017.
    [127]B. Vileno, A. Sienkiewicz,M. Lekka, et al.,In Vitro Assay of Singlet Oxygen Generation in the Presence of Water-Soluble Derivatives of C60, Carbon 42 ,2004,1195~1198.
    [128]C. Y. Shu, L. H. Gan,C. R. Wang, et al.,Synthesis and Characterization of a New Water-Soluble Endohedral Metallofullerene for Mri Contrast Agents, Carbon 44 ,2006,496~500.
    [129]M. Saito,Y. Miyamoto,Theoretical Identification of the Smallest Fullerene, C20, Phys. Rev. Lett. 87 ,2001,35503~35514.
    [130]S. Park, D. Srivastava,K. C. K,Local Reactivity of Fullerenes and Nano Device Design, Nanotechnology 12 ,2001,245~249.
    [131]M. C. Payne, M. P. Teter,D. C. Allan, et al.,Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients, Rev. Mod. Phys. 64 ,1992,1045~1097.
    [132]B. Delley,An All-Electron Numerical-Method for Solving the Local Density Functional for Polyatomic-Molecules, J. Chem. Phys. 92 ,1990,508~517.
    [133]B. Delley, D. E. Ellis,A. J. Freeman, et al.,Binding Energy and Electronic Structure of Small Copper Particles, Phys. Rev. B 27 (4),1983,2132~2144.
    [134]J. P. Perdew, K. Burke,M. Ernzerhof,Generalized Gradient Approximation MadeSimple, Phys. Rev. Lett.,1996,773865-1~3.
    [135]P. Keblinski, S. K. Nayak,P. Zapol, et al.,Charge Distribution and Stability of Charged Carbon Nanotubes, Phys. Rev. Lett. 89 ,2002,255503~255514.
    [136]Z. H. Guo, X. H. Yan,Y. R. Yang, et al.,Dissociation of Water Molecule Induced by Charged-Defective Carbon Nanotubes, accepted by J. Phys. Chem. B,2007.
    [137]R. Klingeler, P. S. Bechthold,M. Neeb, et al.,Mass Spectra of Metal-Doped Carbon and Fullerene Clusters, J. Chem. Phys. 113 (4),2000,1420~1425.
    [138]李书平,王仁智,金属-半导体超晶格中界面电荷的生成机理,物理学报(9),2004,2925~2930.
    [139]S. Peng,S. Yuan-Hua,Studies of Charge Transfer Processes at the Liquid/Liquid Interfaces by Scanning Electrochemical Microscopy and Nanoelectrodes, Journal of the Graduate School of the Chinese Academy of Sciences(3),2006,427~431.
    [140]徐四川,孙照勇,艾希成,等,不同植物叶绿体中电子转移和能量传递超快过程,中国科学B辑(3),2001,279~288.
    [141]W. Yu-Xiang, Z. Lei,Y. Jian, et al.,Distance-Dependent Long-Range Electron Transfer in Protein:a Case Study of Photosynthetic Bacterial Light-Harvesting Antenna Complex LH2 Assembled on TiO2 Nanoparticle by Femto-Second Time-Resolved Spectroscopy, Acta Botanica Sinica(4), 2003,488~493.
    [142]N. B. Hannay, T. H. Geballe,B. T. Matthias, et al.,Superconductivity in Graphitic Compounds, Phys. Rev. Lett. 14 (7),1965,225~226.
    [143]A. F. Hebard, M. J. Rosseinsky,R. C. Haddon, et al.,Superconductivity at 18 K in Potassium-Doped C60, Nature 350 (6319),1991,600~601.
    [144]C. Jo, C. Kim,Y. H. Lee,Electronic Properties of K-Doped Single-Wall Carbon Nanotube Bundles, Phys. Rev. B 65 (3),2002,035420-1~5.
    [145]R. S. Lee, H. J. Kim,J. E. Fischer, et al.,Transport Properties of a Potassium-Doped Single-Wall Carbon Nanotube Rope, Phys. Rev. B 61 (7),2000, 4526~4529.
    [146]B. Ruzicka, L. Degiorgi,R. Gaal, et al.,Optical and Dc Conductivity Study of Potassium-Doped Single-Walled Carbon Nanotube Films, Phys. Rev. B 61 (4),2000,2468~2471.
    [147]T. Inoshita, K. Nakao,H. Kamimura,Electronic Structure of Potassium- Graphite Intercalation Compound: C8K, Journal of the Physical Society of Japan 43 (4),1977, 1237~1243.
    [148]S. Saito,A. Oshiyama,Ionic Metal KXC60: Cohesion and Energy Bands, Phys. Rev. B 44 (20),1991,11536~11539.
    [149]T. Miyake,S. Saito,Electronic Structure of Potassium-Doped Carbon Nanotubes, Phys. Rev. B 65 (16),2002,165419-1~6.
    [150]J. Lu, S. Nagase,S. Zhang, et al.,Energetic, Geometric, and Electronic Evolutions of K-Doped Single-Wall Carbon Nanotube Ropes with K Intercalation Concentration, Phys. Rev. B 69 (20),2004,205304~205314.
    [151]E. Jouguelet, C. Mathis,P. Petit,Controlling the Electronic Properties of Single-Wall Carbon Nanotubes by Chemical Doping, Chemical Physics Letters 318 (6),2000,561~564.
    [152]E. R. Margine,H. V. Crespi,Universal Behavior of Nearly Free Electron States inCarbon Nanotubes, Phys. Rev. Lett. 96 (19),2006,196803~196814.
    [153]W. Zhou, J. Vavro,N. M. Nemes, et al.,Charge Transfer and Fermi Level Shift in P-Doped Single-Walled Carbon Nanotubes, Phys. Rev. B 71 (20),2005, 205423- 1~7.
    [154]J. V. Lauritsen, M. Nyberg,R. T. Vang, et al.,Chemistry of One-Dimensional Metallic Edge States in MoS2 Nanoclusters, Nanotechnology 14 (3),2003,385~389.
    [155]A. T. Bell,The Impact of Nanoscience on Heterogeneous Catalysis, Science 299 (5613),2003,1688~1691.
    [156]J. A. Rodriguez,D. W. Goodman,The Nature of the Metal-Metal Bond in Bimetallic Surfaces, Science 257 (5072),1992,897~903.
    [157]A. Roudgar,A. Gro,Local Reactivity of Metal Overlayers: Density Functional Theory Calculations of Pd on Au, Phys. Rev. B 67 (3),2003,33409~33414.
    [158]A. Schlapka, M. Lischka,A. Gro, et al.,Surface Strain Versus Substrate Interaction in Heteroepitaxial Metal Layers: Pt on Ru(0001), Phys. Rev. Lett. 91 (1),2003,16101~16114.
    [159]M. Posternak, A. Baldereschi,A. J. Freeman, et al.,Prediction of Electronic Interlayer States in Graphite and Reinterpretation of Alkali Bands in Graphite Intercalation Compounds, Phys. Rev. Lett. 50 (10),1983,761~764.
    [160]T. F. Cavani F,Alternative Processes for the Production of Styrene., Applied Catalysis A: General 133 ,1995,219~239.
    [161]M. P. Meima G,Catalyst Deactivation Phenomena in Styrene Production., Applied Catalysis A: General 212 ,2001,239~245.
    [162]周健,张继炎,王继龙,等,Lh-365m型乙苯脱氢催化剂的开发及工业应用,石化技术与应用24 (2),2006,115~117.
    [163]英国剑桥大学凝聚态理论小组,Castep 3.0 Version软件帮助文档, .
    [164]R. M. Martin,Electronic structure basic theory and practical methods,London, Cambridge university press,2003:122.
    [165]W. Kohn,L. J. Sham,Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 ,1965,1133~1140.
    [166]A. D. Becke,Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior, Phys. Rev. A 38 (6),1988,3098~3100.
    [167]J. P. Perdew,Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas, Phys. Rev. B 33 (12),1986,8822~8824.
    [168]J. P. Perdew,W. Yue,Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation, Phys. Rev. B 33 (12),1986,8800~8802.
    [169]B. Hammer, L. B. Hansen,J. K. N,Improved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals, Phys. Rev. B 59 (11),1999,7413~7421.
    [170]毛宇亮,碳纳米管的第一性原理研究,[硕士学位论文],湘潭大学材料与光电物理学院,湘潭大学,2004.
    [171]V. Milman, M. H. Lee,M. C. Payne,Ground-State Properties of CoSi2 Determined by a Total-Energy Pseudopotential Method, Phys. Rev. B 49 (23),1994,16300~16308.
    [172]D. R. Hamann, M. Schl,C. Chiang,Norm-Conserving Pseudopotentials, Phys. Rev. Lett. 43 (20),1979,1494~1497.
    [173]Http://Www.Quantumchemistry.Net/Foundation/Otherresources/Coordinatedatabase/Nanotubecoord/200701/1177.Html .