焦炉煤气催化转化制氢镍基催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效、大规模和低成本的制氢技术是实现质子交换膜燃料电池在能源和交通等领域广泛应用的前提。作为炼焦过程的副产品,焦炉煤气富含氢气且量大价廉,被认为是一种优质的制氢原料,已引起人们广泛的关注。利用催化剂对焦炉煤气中的焦油组分进行处理,是实现终端氢组分大幅度增加和科学有效利用焦炉煤气物理显热、化学能的重要过程。本文以甲苯为焦油模型化合物,在MgO-Al_2O_3复合氧化物为载体的Ni基催化剂上开展焦油催化转化研究。在常压、富氢和低水碳比条件下,着重考察了催化剂焙烧温度、化学组成、助剂和评价条件对催化剂加氢和蒸汽重整反应性能的影响,开发了一些具有应用前景的催化剂体系。同时,对焦炉煤气蒸汽重整和部分氧化重整制氢过程进行了初步探索,得到了一些有意义的结果。
     焙烧温度对NiO/30%Al_2O_3-MgO催化剂的催化活性有较大的影响。BET、XRD、H_2-TPR和TEM表征结果显示,随着焙烧温度的升高,催化剂的比表面积急剧下降,(Ni,Mg)Al_2O_4尖晶石相逐渐增多,金属与载体之间的相互作用逐渐增强。但是,当焙烧温度高于950℃时,催化剂上有游离态或与载体相互作用较弱的NiO出现。在较低和较高温度下焙烧的催化剂还原后金属颗粒容易聚集。催化剂活性评价实验结果表明,850℃焙烧的NiO/30%Al_2O_3-MgO催化剂具有最好的活性和稳定性。在NiO/x%Al_2O_3-MgO催化剂中,当载体中Al_2O_3的含量为30%时,载体的前体可以形成结构完整、晶相单一的典型类水滑石结构。前体具有类水滑石结构的催化剂比表面积较大,催化活性好。H_2-TPR、TG-TPO和TG-TPR表征结果显示,添加CeO_2、La_2O_3和ZrO_2能增强金属与载体之间的相互作用,使Ni/Mg_3(Al)O催化剂的甲苯加氢催化活性和抗积碳性能明显得到改善。
     在采用共沉淀法制备的双金属催化剂Ni_(0.25)-Me_(0.25)/Mg_(2.5)(Al)O(Me=Co, Fe, Cu, Zn, Mn)中,850℃焙烧的Ni_(0.25)Co_(0.25)/Mg_(2.5)(Al)O催化剂比表面积较大,形成了尖晶石和固溶体相,且活性金属与载体之间的相互作用较强,还原后活性金属颗粒小、且均匀分布,具有优异的活性和稳定性。在常压、800℃、水碳比0.7和体积空速12,000 mL/(g·h)的条件下,甲苯被完全转化为CH_4和CO,且具有较好的稳定性。活性评价实验后,SEM和TEM表征结果显示催化剂上有少量须状碳生成,但绝大部分的积碳可以被H_2消除,反应过程中催化剂上的积碳是一个可逆的过程。少量贵金属Pd引入Ni/Mg_3(Al)O后,在甲苯的加氢和蒸汽重整反应中显现出优良的催化性能,在800 oC、空速为3,000 mL/(g·h)、水碳比为0.42的条件下,0.5%Pd-12%Ni催化剂对甲苯的转化率、CH_4和CO的产率分别为94%、53%和41%。
     采用尿素分解均匀共沉淀法制备的Ni_x/Mg_(2.33-x)(Al)O催化剂在焦炉煤气蒸汽重整制氢过程中具有优良的催化活性。H_2-TPR、SEM和TEM表征结果显示,当催化剂中的Ni含量较低时,金属与载体之间的相互作用较强,活性金属颗粒细小且分布均匀,并具有较好的抗积碳能力。反应温度对催化剂的反应性能影响显著,当反应温度高于800 oC时,实验结果与热力学计算值能较好的吻合。较高的水碳比有利于甲苯和CH4的转化,当水碳比为1.7时,甲苯和CH4被完全转化为H_2和CO,反应后出口气中H_2的量是实验前反应气中的4倍以上。同时,NiO/30%Al_2O_3-MgO催化剂具有较好的耐硫性能,在焦炉煤气中H_2S含量为500 ppm的条件下仍具有较好的活性。
     最后,在BaCo_(0.7)Fe_90.2)Nb_(0.1)O_(3-δ)(BCFNO)混合导体透氧膜反应器中对焦炉煤气部分氧化重整制氢进行了初步探索。实验结果表明,膜片的透氧量随着空气流量的增加而增大,但当空气流量超过300 mL/min后继续增大时,其对膜片透氧量的影响较小。反应温度对膜反应器性能的影响显著,较高的温度可以获得较大的透氧量。催化剂对膜片的透氧量有很大的影响,以类水滑石结构为前体的Ni/Mg(Al)O催化剂具有优异的活性和抗积碳性能。催化剂经稀土氧化物改性后,活性金属颗粒较小且分布更加弥散,可以显著提高催化剂的活性和抗积碳能力。在875℃和采用La_2O_3改性的Ni/Mg(Al)O催化剂时,BCFNO膜片的透氧量高达15.1 mL/cm~2/min,此时,甲苯、CH_4和CO_2的转化率分别为100%、88.5%和92.7%,而H_2和CO的产率则分别为86.8%和87.2%。同时,出口气中H_2的量是实验前反应气体中的2倍以上。实验后,膜片渗透侧表面的钙钛矿结构遭到损坏,但被破坏的厚度较小,不影响膜反应器的安全运行。
High efficiency, large scale, and low-cost technologies for producing hydrogen are urgently demanded to meet the needs of the development of proton exchange membrane fuel cells as the power source for power, transportation and other applications. As a by-product generated in the process of producing coke from coal, coke oven gas (COG) is gaining increasing attention as one of the most attractive sources of hydrogen production. The treatment of tar in COG over catalyst is the key issue for the hydrogen amplification and rational utilization of energy. This thesis investigated the catalytic conversion of toluene as a model tar compound over nickel-based catalysts with the mixed MgO-Al_2O_3 as the support. Under the conditions of atmospheric pressure, hydrogen-rich atmosphere and low steam/carbon molar ratio, the influences of calcination temperature, compositions, promoters and the evaluation condition on the catalyst performance of hydrogenation and steam reforming were systematically studied. Also, the hydrogen production by steam reforming and partial oxidation reforming of COG were explored preliminarily. Based on these experimental results, several conclusions were drawn from the investigations.
     The catalytic performance of the NiO/30%Al_2O_3-MgO catalyst was sensitive to calcination temperature. The characterization results of BET, XRD, H_2-TPR and TEM techniques indicated that the BET surface area dramatically decreased, the (Ni,Mg)Al_2O_4 spinel phase and the interaction between the metals and carrier both increased with increasing the calcination temperature. However, free NiO and those of weak interaction with the carrier appeared when the calcination temperature was higher than 950 oC; and the metals particles agglomerated obviously when the catalyst was calcined at a lower or higher temperature. NiO/30%Al_2O_3-MgO calcined at 850 oC had the best activity and stability. When the content of Al_2O_3 was 30% in the NiO/x%Al_2O_3-MgO catalysts, the precursor of the carrier had the typical hydrotalcite structure and the catalyst showed higher specific surface area and good activity. The addition of CeO_2, La_2O_3 and ZrO_2 enhanced the interaction between the metals and carrier and improved the performance of toluene hydrogenation and resistance to carbon formation.
     The Ni_(0.25)-Me_(0.25)/Mg_(2.5)(Al)O(Me=Co, Fe, Cu, Zn, Mn) bimetallic catalysts were synthesized with the coprecipitation method. The Ni_(0.25)Co_(0.25)/Mg_(2.5)(Al)O catalyst calcined at 850 oC showed higher specific surface area, stronger interaction between metals and carrier due to the formation of spinel and solid solution phases as well as smaller particulates and highly homogeneous dispersion of active metals. A toluene conversion of 100% had been achieved for 35 h over the catalyst at 800 oC under atmospheric pressure and GHSV of 12,000 mL/(g·h) with a steam/carbon molar ratio of 0.7. After the activity test, a small amount of whisker carbon was observed on the used catalyst, and most of them could be removed in the hydrogen-rich atmosphere, indicting that the carbon deposition on catalysts was a reversible process. Furthermore, with the addition of a small amount of noble metals Pd, the Ni/Mg_3(Al)O catalyst presented excellent catalytic performance for the hydrogenation and steam reforming of toluene. A toluene conversion of 94%, a CH_4 yield of 53% and a CO yield of 41% had been achieved over the 0.5%Pd-12%Ni catalyst at 800 oC and GHSV of 3,000 mL/(g·h) with a steam/carbon molar ratio of 0.42.
     The Ni_x/Mg_(2.33-x)(Al)O catalysts were prepared by a homogeneous precipitation method using urea hydrolysis and had good activity in the process of steam reforming of COG. H_2-TPR, SEM and TEM results showed that the catalyst with low Ni content had higher specific surface area, stronger interaction between metals and carrier, and highly homogeneous dispersion of active metals. Reaction temperature had obvious influence on the performance of the catalysts. And when the temperature was higher than 800 oC, the experimental results agreed well with the calculated results. The increase of the steam/carbon molar ratio promoted the conversion of toluene and CH4 to H_2 and CO. The toluene and CH4 could completely be converted to H_2 and CO in the catalytic reforming of COG, and H_2 in the reaction effluent gas was about 4 times more than that in original COG when steam/carbon molar ratio was 1.7. Moreover, the NiO/30%Al_2O_3-MgO catalyst showed excellent sulfur resistant character so that it still had good activity when the H_2S content in the COG was 500 ppm.
     Hydrogen production by partial oxidation reforming of COG in BaCo_(0.7)Fe_(0.2)Nb_(0.1)O_(3-δ)(BCFNO) membrane reactor was also investigated in this thesis. The experimental results showed that the increase of air flow rate was beneficial to improve the oxygen permeation flux. However, it had little influence on the oxygen permeation flux when the air flow rate was more than 300 mL/min. The oxygen permeation flux increased with the increase of the reaction temperature. And the oxygen permeation flux was sensitive to the catalysts. The Ni/Mg(Al)O catalyst with the precursor of hydrotalcite structure had good activity and resistance to coking. The rare earth added to the Ni/Mg(Al)O catalysts could improve the activity, resistance to coking, and dispersion of active metals. At optimized reaction conditions, the dense oxygen permeable membrane had an oxygen permeation flux around 15.1 mL/cm~2/min and a H_2 yield of 86.8% and a CO yield of 87.2% had been achieved over the La_2O_3 modified Ni/Mg(Al)O catalyst at 875°C. And the conversions of toluene, CH_4 and CO_2 were 100%, 88.5% and 92.7%, respectively. The amount of H_2 in the reaction effluent gas was about 2 times more than that of original H_2 in the reactant gas. The permeation sides of the used membrane were destroyed after the experiments, but the structure changes were only up to several micrometers, which had no effect on the safety work of the membrane reactor.
引文
[1] Sartbaeva A, Kuznetsov V L, Wells S A, Edwards P P. Hydrogen nexus in a sustainable energy future [J]. Energy Environ. Sci., 2008, 1: 79-85.
    [2] Pischinger S. The future of vehicle propulsion-combustion engines and alternatives [J]. Top. Catal., 2004, 30-31: 5-16.
    [3] Song C. Fuel processing for low-temperature and high-temperature fuel cells challenges and opportunities for sustainable development in the 21st century [J]. Catal. Today, 2002, 77: 17-49.
    [4] Thomas C E, James B D, LomaxJr F D, KuhnJr I F. Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline? [J] Int. J. Hydrogen Energy, 2000, 25: 551-567.
    [5] Brown L F. A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles [J]. Int. J. Hydrogen Energy, 2001, 26: 381-397.
    [6] Ahmed S, Krumpelt M. Hydrogen from hydrocarbon fuels for fuel cells [J]. Int. J. Hydrogen Energy, 2001, 26: 291-301.
    [7] Bobrova L, Zolotarsky I, Sadykov V, Sobyanin V. Hydrogen-rich gas production from gasoline in a short contact time catalytic reactor [J]. Int. J. Hydrogen Energy, 2007, 32: 3698-3704.
    [8] Qi C X, Amphlett J C, Peppley B A. Hydrogen production by methanol reforming on NiAl layered double hydroxide derived catalyst: Effect of the pretreatment of the catalyst [J]. Int. J. Hydrogen Energy, 2007, 32: 5098-5102.
    [9] Murray M L, Seymour E H, Rogut J, Zechowska S W. Stakeholder perceptions towards the transition to a hydrogen economy in Poland [J]. Int. J. Hydrogen Energy, 2008, 33: 20-27.
    [10] Joseck F, Wang M, Wu Y. Potential energy and greenhouse gas emission effects of hydrogen production from coke oven gas in U.S. steel mills [J]. Int. J. Hydrogen Energy, 2008, 33: 1445-1454.
    [11]郑文华,刘洪春,周科.中国焦化工业现状及发展[J].钢铁, 2004, 39: 67-73.
    [12]高志军,张瑞刚,杜然,张志涛.焦炉煤气制取氢气后的利用[J].燃料与化工. 2007, 38: 41-43.
    [13]任润厚.“五代一变”——现代煤化工技术的发展[J].现代化工, 2007, 27: 20-25.
    [14]郑文华,张兴柱.焦炉煤气的使用现状与应用前景[J].燃料与化工. 2004, 35: 1-3.
    [15]王太炎.焦炉煤气开发利用的问题与途径[J].燃料与化工. 2004, 35: 1-3.
    [16] Onozaki M, Watanabe K, Hashimoto T, Saegusa H, Katayama Y. Hydrogen production by the partial oxidation and steam reforming of tar from hot coke oven gas [J]. Fuel, 2006, 85: 143-149.
    [17] Miura K, Kawase M, Nakagawa H, Ashida R, Nakai T, Ishikawa T. Conversion of tar in hot coke oven gas by pyrolysis and steam reforming [J]. J. Chem. Eng. Jpn., 2003, 36: 735-741.
    [18] Kirton P J, Ellis J, Crisp P T. The analysis of organic matter in coke oven emissions [J]. Fuel, 1991, 70: 1383-1389.
    [19] Cheng H W, Zhang Y W, Lu X G, Ding W Z, Li Q. Hydrogen production from simulated hot coke oven gas by using oxygen-permeable ceramics [J]. Energy Fuels, 2009, 23: 414-421.
    [20] Vermeiren W J M, Blomsma E, Jacobs P A. Catalytic and thermodynamic approach of the oxyreforming reaction of methane [J].Catal.Today,1992, 13: 427-436.
    [21]姜圣阶.合成氨工学第一卷(第二版)[M].北京:石油化学工业出版社, 1978: 197-233.
    [22] Lu Y, Xue J Z, Yu C C. Mechanistic investigations on the partial oxidation of methane to synthesis gas over a nickel-on-alumina catalyst [J]. Appl. Catal. A: Gen., 1998, 174: 121-128.
    [23] Schwiedernoch R, Tischer S, Correa C. Experimental and numerical study on the transient behavior of partial oxidation of methane in a catalytic monolith [J]. Chem. Eng. Sci., 2003, 58: 633-642.
    [24] Weng W Z, Chen M S, Yan Q G. Mechanistic study of partial oxidation of methane to synthesis gas over supported rhodium and ruthenium catalysts using in situ time-resolved FTIR spectroscopy [J].Catal.Today, 2000, 63: 3l7-326.
    [25] Passos F B, Oliveira E R, Mattos L V. Effect of the support on the mechanism of partial oxidation of methane on platinum catalysts [J]. Catal. Lett., 2006, 110: 161-167.
    [26] Ge L, Zhou W, Ran R, Liu S M, Shao Z P, Jin W Q, Xu N P. Properties and performance of A-site deficient (Ba0.5Sr0.5)1-xCo0.8Fe0.2O3-δfor oxygen permeating membrane [J]. J. Membr. Sci., 2007, 306: 318-328.
    [27] Wang Y F, Hao H S, Jia J F, Yang D L, Hu X. Improving the oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3-δmembranes by a surface-coating layer of GdBaCo2O5+δ[J]. J. Eur. Ceram. Soc., 2008, 28: 3125-3130.
    [28] Anikina P V, Markov A A, Patrakeev M V, Leonidov I A, Kozhevnikov V L. High-temperature transport and stability of SrFe1-xNbxO3-δ[J]. Solid State Sci., 2009, 11: 1156-1162.
    [29] Waindich A, Mobius A, Muller M. Corrosion of Ba1-xSrxCo1-yFeyO3-δand La0.3Ba0.7Co0.2Fe0.8O3-δmaterials for oxygen separating membranes under oxycoal conditions [J]. J. Membr. Sci., 2009, 337: 182-187.
    [30] Chen Z H, Ran R, Shao Z P, Yu H, Costa J C D D, Liu S M. Further performance improvement of Ba0.5Sr0.5Co0.8Fe0.2O3-δperovskite membranes for air separation [J]. Ceram. Int., 2009, 35: 2455-2461.
    [31] Turpeinen E, Raudaskoski R, Pongracz E, Keiski R L. Thermodynamic analysis of conversion of alternative hydrocarbon-based feedstocks to hydrogen. [J]. Int. J. Hydrogen Energy, 2008, 33: 6635-6643.
    [32] Foster E P, Tijm P J A, Bennett D L.. Advanced gas-to-liquids processes for syngas and liquid-phase conversion [J]. Stud. Surf. Sci. Catal., 1998, 119: 867-874.
    [33] Delgado J, Aznar M P, Corella J. Calcined dolomite, magnesite, and calcite for cleaning hot gas from a fluidized bed biomass gasifier with ateam: life and usefulless [J]. Ind. Eng. Chem. Res., 1996, 35: 3637-3643.
    [34] Simell P A, Leppalahti J K, Bredenberg J B. Catalytic purification of tarry fuel gas with carbonate rocks and ferrous materials [J]. Fuel, 1992, 71: 211-218.
    [35]周劲松,王铁柱,骆仲泱,张晓东,王树荣,岑可法.生物质焦油的催化裂解研究[J].燃料化学学报, 2003, 31: 144-148.
    [36] Orio A, Corella J, Narvaz I. Performance of different dolomites on hot raw gas cleaning from biomass gasification with air [J]. Ind. Eng. Chem. Res., 1997, 36: 3800-3808
    [37]候斌,吕子安,李晓辉,李定凯.生物质热解产物中焦油的催化裂解[J].燃料化学学报, 2001, 29: 70-75.
    [38] Wang T J, Chang J, Wu C Z, Fu Y, Chen Y. The steam reforming of naphthalene over a nickel-dolomite cracking catalyst [J]. Biomass and Bioenergy, 2005, 28: 508-514.
    [39] Simell P A, Leppalahti J K, Kurkela E A. Tar-decomposing activity of carbonate rocks under high CO2 pressure [J]. Fuel, 1995, 74: 938-945.
    [40] Rapagna S, Jand N, Kiennemann A, Foscolo P U. Steam gasification of biomass in a fluidized-bed of olivine particals [J]. Biomass Bioenergy, 2000, 19: 187-197.
    [41] Courson C, Makaga, E, Petit, C, Kiennemann A. Development of Ni catalysts for gasproduction from biomass gasification reactivity in steam and dry reforming [J]. Catal. Today, 2000, 63: 427-437.
    [42] Adjaye J D, Bakhski N N. Production of hydrocarbons by catalytic upgrading of a fast pyrolyis bio-oil. partⅡ: comarative catalyst performance and reaction pathways [J]. Fuel Process. Technol., 1995, 45: 185-202.
    [43] Simell P A, Bredenberg J B. Catalytic purification of tarry fuel gas [J]. Fuel, 1990, 69: 1219-1225.
    [44]豆斌林,高晋生,沙兴中,赵国靖,李海涛.不同催化剂条件下高温煤气中焦油组分的催化裂解[J].燃料化学学报, 2000, 28: 577-579.
    [45] Cypers R, Souden-Moinet C. Pyrolysis of coal and iron oxides mixtures, 1. influence of iron oxides on the pyrolysis of coal [J]. Fuel, 1980, 59: 48-54.
    [46] Irusta S, Munera J, Carrara C. A stable, novel catalyst improves hydrogen production in a membrane reactor [J]. Appl. Catal. A: Gen., 2005, 287:147-158.
    [47] Hickman D A, Schmidt L D. Synthesis gas formation by direct oxidation of methane over Pt monoliths [J]. J.Catal., 1992, 138: 267-274.
    [48] Hickman D A, Schmidt L D. Production of syngas by direct catalytic oxidation of methane [J]. Science, 1993, 259: 343-346.
    [49] Claridge J B, York A P E, Brungs A J. New catalysts for the conversion of methane to synthesis sas: molybdenum and tungsten carbide [J]. J. Catal., 1998, 180: 85-100.
    [50] Yang M, Helmut P. CO2 reforming of methane to syngas over highly active and stable Pt/MgO catalysts [J]. Catal. Today, 2006, 115:199-204.
    [51] Asamia K, Li X H, Fujimoto K. CO2 reforming of CH4 over ceria-supported metal catalysts [J]. Catal. Today, 2003, 84: 27-31.
    [52] Roh H S, Jun K W, Dong W S. Highly stable Ni catalyst supported on Ce–ZrO2 for oxy-steam reforming of methane [J]. Catal. Lett., 2001, 74: 31-36.
    [53] Zhang Z L, Verykios X E. Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts [J]. Appl. Catal., A: Gen., 1996, 138: 109-133.
    [54] Ruckenstein E, Wang H Y. Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/γ-Al2O3 catalysts [J]. J. Catal., 2002, 205: 289-293.
    [55] Dong W S, Roh H S, Jun K W. Methane reforming over Ni/Ce-ZrO2 catalysts: effect ofnickel content [J]. Appl. Catal., A: Gen., 2002, 226: 63-72.
    [56]李增喜,陈霄榕.贵金属铂对镍基催化剂上萘转化性能的影响[J].催化学报, 2003, 24: 253-258.
    [57]李增喜,陈霄榕,王日杰.生物质热裂解气中模型化合物萘的催化转化研究[J].燃料化学学报, 2003, 31: 53-57.
    [58] Shiraga M, Li D L, Atake I. Partial oxidation of propane to synthesis gas over noble metals-promoted Ni/Mg(Al)O catalysts—high activity of Ru-Ni/Mg(Al)O catalyst [J]. Appl. Catal. A: Gen., 2007, 318: 143-154.
    [59] Li D L, Shiraga M, Atake I. Partial oxidation of propane over Ru promoted Ni/Mg(Al)O catalysts self-activation and prominent effect of reduction—oxidation treatment of the catalyst [J]. Appl. Catal. A: Gen., 2007, 321: 155-164.
    [60] Chen H W, Wang C Y, Yu C H. Carbon dioxide reforming of methane reaction catalyzed by stable nickel copper catalysts [J].Catal. Today, 2004, 97: 173-180.
    [61] Takanabe K, Nagaoka K, Nariai K. Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane [J]. J. Catal., 2005, 232: 268-275.
    [62]黎先财,陈娟荣. Ni-Co双金属催化剂在二氧化碳重整甲烷反应中的催化活性研究[J].现代化工, 2005, 25: 37-39.
    [63] Zhang J G, Wang H, Dalai A K. Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4 [J]. Appl. Catal. A: Gen., 2008, 339: 121-129.
    [64] Zhang J G, Wang H, Dalai A K. Development of stable bimetallic catalysts for carbon dioxide reforming of methane [J]. J. Catal., 2007, 249: 300-310.
    [65] Yao H C, Yu Yao Y F. Ceria in automotive exhaust catalysts: I. oxygen storage [J]. J. Catal., 1984, 86: 254-265.
    [66]余林,袁书华,田久英,王升,储伟.甲烷部分氧化制合成气载体及助剂对Ni系催化剂活性的影响[J].催化学报, 2001, 22: 383-386.
    [67]严前古,于作龙,远松月.稀土氧化物对Ni/α-Al2O3催化甲烷部分氧化制合成气反应的影响[J].应用化学, 1997, 14: 70-73.
    [68] Chang J S, Hong D Y, Li X S. Thermogravimetric analyses and catalytic behaviors of zirconia-supported nickel catalysts for carbon dioxide reforming of methane [J]. Catal. Today, 2006, 115: 186-190.
    [69] Hori C E,Permana H,Simon K Y,et al.Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system [J]. Appl. Catal. B: Environ., 1998, 16: 105-117.
    [70] Xu S, Wang X L. Highly active and coking resistant Ni/CeO2-ZrO2 catalyst for partial oxidation of methane [J].Fuel, 2005, 84: 563-567.
    [71] Eriksson S, Nilsson M, Boutonnet M. Partial oxidation of methane over rhodium catalyst ower for power generation [J]. Catal. Today, 2005, 100: 447-451.
    [72]张兆斌,余长春.甲烷部分氧化制合成气的La2O3助Ni/MgA12O4催化剂[J].催化学报, 2000, 21: 14-18.
    [73] Li X C, Wu M, Lai Z H. Studies on nickel-based catalysts for carbon dioxide reforming of methane [J]. Appl. Catal., A: Gen., 2005, 290: 81–86.
    [74] Ballarini A D, Miguel S R, Jablonski E L. Reforming of CH4 with CO2 on Pt-supportedcatalysts: Effect of the support on the catalytic behaviour [J]. Catal. Today, 2005, 107-108: 481-486.
    [75] Rezaei M, Alavi S M, Sahebdelfar S. CO2 reforming of CH4 over nano-crystalline zirconia-supported nickel catalysts [J]. Appl. Catal. B: Environ., 2007, 77: 346-354.
    [76] Rezaei M, Alavi S M, Sahebdelfar S. Mesoporous nanocry stalline zirconia powders: a promising support for nickel catalyst in CH4 reforming with CO2 [J]. Mater. Lett., 2007, 61: 2628-2631.
    [77] Jeong H, Kim K I, Kim D. Effect of promoters in the methane reforming with carbon dioxide to synthesis gas over Ni/HY catalysts [J]. J. Mol. Catal., A: Chem., 2006, 246: 43–48.
    [78]李振花,张翔宇.载体对甲烷部分氧化制合成气反应的影响[J].四川大学学报, 2002, 34: 24-27.
    [79] Sahli N, Petit C, Roger A C, Kiennemann A, Libs S, Bettahar M M. Ni catalysts from NiAl2O4 spinel for CO2 reforming of methane [J], Catal.Today, 2006, 113: 187-193.
    [80] Mehr Y J, Jozani J K, Pour N A, Zamani Y. Influence of MgO in the CO2-steam reforming of methane to syngas by NiO/MgO/α-Al2O3 catalyst [J]. React. Kinet. Catal. Lett., 2002, 75: 267-273.
    [81] Guo J J, Lou H, Zhao H. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels [J].Appl. Catal. A: Gen., 2004, 273: 75-82.
    [82] Takeguchi T, Furukawa S, Inoue M. Hydrogen spillover from NiO to the large surface area CeO2–ZrO2 solid solutions and activity of the NiO/CeO2–ZrO2 catalysts for partial oxidation of methane [J], J. Catal., 2001, 202: 14-24.
    [83] Dong W, Jun K, Roh H, Liu Z-W, Park S-E. Comparative study on partial oxidation of methane over Ni/ZrO2, Ni/CeO2 and Ni/Ce-ZrO2 catalysts [J], Catal. Lett., 2002, 78: 215-222.
    [84] Seo H J, Yu E Y. Partial oxidation of methane to syngas over Rh and Ni catalysts impregnated on CeO2, SiO2, and Al2O3 [J]. J. Ind. Eng. Chem., 2005, 11: 681-687.
    [85] Roh H S, Potdar H S, Jun K W. Carbon dioxide reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce-ZrO2 catalysts [J]. Catal. Today, 2004, 93-95: 39-44.
    [86] Roh H S, Potdar H S, Jun K W. Carbon dioxide reforming of methane over Ni incorporated into Ce-ZrO2 catalysts [J]. Appl. Catal. A: Gen., 2004, 276: 231-239.
    [87] Ruckenstein E, Wang H Y. Carbon dioxide reforming of methane to synthesis gas over supported cobalt catalysts [J].Appl. Catal. A: Gen., 2000, 204: 257-263.
    [88] Nagai M, Nakahira K, Ozawa Y. CO2 reforming of methane on Rh/Al2O3 catalyst [J]. Chem. Eng. Sci., 2007, 62: 4998-5000.
    [89] Li H S, Wang J F. Study on CO2 reforming of methane to syngas over Al2O3-ZrO2 supported Ni catalysts prepared via a direct sol-gel process [J]. Chem. Eng. Sci., 2004, 59: 4861-4867.
    [1] Cheng Y F, Zhao H L, Teng D Q, Li F S, Lu X G, Ding W Z. Investigation of Ba fully occupied A-site BaCo0.7Fe0.3-xNbxO3-δperovskite stabilized by low concentration of Nb for oxygen permeation membrane [J]. J. Membr. Sci., 2008, 322: 484-490.
    [2] Zhang Y W, Li Q, Shen P J, Liu Y, Yang Z B, Ding W Z, Lu X G. Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor [J]. Int. J. Hydrogen Energy, 2008, 33: 3311-3319.
    [3] Cheng H W, Zhang Y W, Lu X G, Ding W Z, Li Q. Hydrogen production from simulated hot coke oven gas by using oxygen-permeable ceramics [J]. Energy Fuels, 2009, 23: 414-421.
    [4] Cheng H W, Lu X G, Zhang Y W, Ding W Z. Hydrogen production by reforming of simulated hot coke oven gas over nickel catalysts promoted with lanthanum and cerium in a membrane reactor [J]. Energy Fuels, 2009, 23 (6): 3119-3125.
    [5] Takehira K, Shishido T, Wang P, Kosaka T, Takaki K. Autothermal reforming of CH4 over supported Ni catalysts prepared from Mg-Al hydrotalcite-like anionic clay [J]. J. Catal., 2004, 221: 43-54.
    [6] Sangeetha P, Seetharamulu P, Shanthi K, Narayanan S, Rama Rao K S. Studies on Mg-Al oxide hydrotalcite supported Pd catalysts for vapor phase hydrogenation of nitrobenzene [J]. J. Mol. Catal. A: Chem., 2007, 273: 244-249.
    [1] Tsiakaras P, Demin A. Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol [J]. J. Power Sources, 2001, 102: 210–217.
    [2] Jankhah S, Abatzoglou N, Gitzhofer F. Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nanofilaments’production [J]. Int. J. Hydrogen Energy, 2008, 33: 4769–79.
    [3] Zhang Y W, Li Q, Shen P J, Liu Y, Yang Z B, Ding W Z, Lu X G. Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor [J]. Int. J. Hydrogen Energy, 2008, 33: 3311-3319.
    [1] Rostrup-Nielsen J R, Trimm D L. Mechanisms of carbon formation on nickel-containing catalysts [J]. J. Catal., 1977, 48: 155-165.
    [2] Tang S, Lin J, Tan K L. Partial oxidation of methane to syngas over Ni/MgO, Ni/CaO and Ni/CeO2 [J]. Catal. Lett., 1998, 51: 169-175.
    [3] Michael C J B, Vannice M A, Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics [J]. Appl. Catal. A: Gen., 1996, 142: 73-96.
    [4] Zhang Y, Smith K J. Carbon formation thresholds and catalyst deactivation during CH4 decomposition on supported Co and Ni catalysts, Catal. Lett., 2004, 95: 7-l2.
    [5] Coq B, Tichit D, Ribet S. Co/Ni/Mg/Al layer double hydroxides as precursors of catalysts for the hydrogenation of nitriles: hydrogenation of acetonitrile [J]. J. Catal., 2000, 189: 117-128.
    [6] Lucredio A F, Jerkiewickz G, Assaf E M. Nickel catalysts promoted with cerium and lanthanum to reduce carbon formation in partial oxidation of methane reactions [J]. Appl. Catal. A: Gen., 2007, 333: 90-95.
    [7] Takehira K, Shishido T, Wang P, Kosaka T, Takaki K. Autothermal reforming of CH4 over supported Ni catalysts prepared from Mg-Al hydrotalcite-like anionic clay [J]. J. Catal., 2004, 221: 43-54.
    [8] Shiraga M, Li D L, Atake I, Shishido T, Oumi Y, Sano T, Takehira K. Partial oxidation of propane to synthesis gas over noble metals-promoted Ni/Mg(Al)O catalysts—High activity of Ru- Ni/Mg(Al)O catalyst [J]. Appl. Catal. A: Gen., 2007, 318: 143-154.
    [9] Li D L, Shiraga M, Atake I, Shishido T, Oumi Y, Sano T, Takehira K. Partial oxidation of propane over Ru promoted Ni/Mg(Al)O catalysts: Self-activation and prominent effect of reduction—oxidation treatment of the catalyst [J]. Appl. Catal. A: Gen., 2007, 321: 155-164.
    [10] Lucredio A F, Filho G T, Assaf E M. Co/Mg/Al hydrotalcite-type precursor, promoted with La and Ce, studied by XPS and applied to methane steam reforming reactions [J]. Appl. Surf. Sci., 2009, 255: 5851-5856.
    [11] Cruz I O, Ribeiro N F P, Aranda D A G, Souza M M V M. Hydrogen production by aqueous-phase reforming of ethanol over nickel catalysts prepared from hydrotalcite precursors [J]. Catal. Commun., 2008, 9: 2606-2611.
    [12] Lucredio A F, Assaf E M. Cobalt catalysts prepared from hydrotalcite precursors and tested in methane steam reforming [J]. J. Power Sources, 2006, 159: 667-672.
    [13] Miyata T, Shiraga M, Li D L, Atake I, Shishido T, Oumi Y, Sano T, Takehira K. Promoting effect of Ru on Ni/Mg(Al)O catalysts in DSS-like operation of CH4 steam reforming [J]. Catal. Commun., 2007, 8: 447-451.
    [14] Cheng H W, Zhang Y W, Lu X G, Ding W Z, Li Q. Hydrogen production from simulated hot coke oven gas by using oxygen-permeable ceramics [J]. Energy Fuels, 2009, 23: 414-421.
    [15] Bellido J D A, Assaf E M. Effect of the Y2O3–ZrO2 support composition on nickel catalyst evaluated in dry reforming of methane [J]. Appl. Catal. A: Gen., 2009, 352: 179-187.
    [16] Corthals S, Nederkassel J V, Geboers J, Winne H D, Noyen J V, Moens B, Sels B, Jacobs P. Influence of composition of MgAl2O4 supported NiCeO2ZrO2 catalysts on coke formation and catalyst stability for dry reforming of methane [J]. Catal. Today, 2008, 138: 28-32.
    [17] Zhang R Q, Wang Y C, Brown R C. Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2 [J]. Energy Convers. and Manage., 2007, 48: 68-77.
    [18] Bona S, Guillen P, Alcalde J G, Garcia L, Bilbao R. Toluene steam reforming using coprecipitated Ni/Al catalysts modified with lanthanum or cobalt [J]. Chem. Eng. J., 2008, 137: 587-597.
    [19] Sanchez-Sanchez M C, Navarro R M, Fierro J L G. Ethanol steam reforming over Ni/MxOy-Al2O3 (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production [J]. Int. J. Hydrogen Energy, 2007, 32: 1462-1471.
    [20] Veronica M, Graciela B, Norma A, Miguel L. Ethanol steam reforming using Ni(Ⅱ)-Al(Ⅲ) layered double hydroxide as catalyst precursor: Kinetic study [J]. Chem. Eng. J., 2008, 138: 602-607.
    [21] Tichit D, Medina F, Coq B, Dutartre R. Activation under oxidizing and reducing atmospheres of Ni-containing layered double hydroxides [J]. Appl. Catal. A: Gen., 1997, 159: 241-258.
    [22] Bona S, Guillen P, Alcalde J G, Garcia L, Bilbao R. Toluene steam reforming using coprecipitated Ni/Al catalysts modified with lanthanum or cobalt [J]. Chem. Eng. J., 2008, 137: 587-597.
    [23] Basile F, Basini L, Amore M D, Fornasari G, Guarinoni A, Matteuzzi D, Piero G D, Trifiro F,Vaccari A. Ni/Mg/Al anionic clay derived catalysts for the catalytic partial oxidation of methane: Residence time dependence of the reactivity features [J]. J. Catal., 1998, 173: 247-256.
    [24] Znak L, Stolecki K, Zielinski J. The effect of cerium, lanthanum and zirconium on nickel/alumina catalysts for the hydrogenation of carbon oxides [J]. Catal. Today, 2005, 101: 65-71.
    [25] Otsuka K, Wang Y, Nakamura M. Direct conversion of methane to synthesis gas through gas–solid reaction using CeO2–ZrO2 solid solution at moderate temperature [J]. Appl. Catal. A: Gen., 1999, 183: 317-324.
    [26] Li K Z, Wang H, Wei Y G, Yan D X. Direct conversion of methane to synthesis gas using lattice oxygen of CeO2–Fe2O3 complex oxides [J]. Chem. Eng. J. doi: 10.1016/j.cej. 2009.04.038.
    [27] Otsuka K, Wang Y, Sunada E, Yamanaka I. Direct partial oxidation of methane to synthesis gas by cerium oxide [J]. J. Catal., 1998, 175: 152-160.
    [1] Veronica M, Graciela B, Norma A. Ethanol steam reforming using Ni(Ⅱ)-Al(Ⅲ) layered double hydroxide as catalyst precursor: kinetic study [J]. Chem. Eng. J., 2008, 138: 602-607.
    [2]汤颖,刘晔,路勇. CuZnAl水滑石衍生催化剂上甲醇水蒸气重整制氢I.催化剂焙烧温度的影响[J].催化学报, 2006, 27: 857-862.
    [3]程文萍,王雯娟,赵月昌. ZnMgAl复合氧化物催化合成丙二醇苯醚[J].化工学报, 2007, 58: 3072-3076.
    [4] Li D L, Atake I, Shishido T. Self-regenerative activity if Ni/Mg(Al)O catalysts with trace Ru during daily start-up and shut-down operation of CH4 steam reforming [J]. J. Catal., 2007, 250: 299-312.
    [5] Koo K Y, Roh H S, Seo Y T, Seo D J, Yoon W L, Park S B. A highly effective and stable nano-sized Ni/MgO-Al2O3 catalyst for gas to liquids (GTL) process [J]. Int. J. Hydrogen Energy, 2008, 33(8): 2036-2043.
    [6] Guo J J, Lou H, Zhao H, Chai D F, Zheng X M. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels [J]. Appl. Catal. A: Gen., 2004, 273: 75-82.
    [7] Tomishige K, Chen Y G, Fujimoto, K. Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts [J]. J. Catal., 1999, 181: 91-103.
    [8] Pompeo F, Nichio N N, Ferretti O A. Study of Ni catalysts on different supports to obtain synthesis gas [J]. Int. J. Hydrogen Energy, 2005, 30: 1399-1405.
    [9] Cheng H W, Zhang Y W, Lu X G, Ding W Z, Li Q. Hydrogen production from simulated hot coke oven gas by using oxygen-permeable ceramics [J]. Energy Fuels, 2009, 23: 414-421.
    [10] Guo J Z, Hou Z Y, Gao J, Zheng X M. Production of syngas via partial oxidation and CO2 reforming of coke oven gas over a Ni catalyst [J]. Energy Fuels, 2008, 22: 1444-1448.
    [11] Pradhan A R, Wu J F, Jong S J, Tsai T C, Liu S B. An ex situ methodology for characterization of coke by TGA and 13C CP-MAS NMR spectroscopy [J]. Appl. Catal. A: Gen., 1997, 165: 489-497.
    [1] Tang S, Lin J, Tan K L. Partial oxidation of methane to syngas over Ni/MgO, Ni/CaO and Ni/CeO2 [J]. Catal. Lett., 1998, 51: 169-175.
    [2] Michael C J B, Vannice M A, Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics [J]. Appl. Catal. A: Gen., 1996, 142: 73-96.
    [3] Solymosi F, Erdohelyi A, Cserenyi J. A comparative study on the activation and reactions of CH4 on supported metals [J]. Chem. Lett., 1992, 16: 399-405.
    [4] Shiraga M, Li D L, Atake I, Shishido T, Oumi Y, Sano T, Takehira K. Partial oxidation of propane to synthesis gas over noble metals-promoted Ni/Mg(Al)O catalysts—High activity of Ru- Ni/Mg(Al)O catalyst [J]. Appl. Catal. A: Gen., 2007, 318: 143-154.
    [5] Li D L, Shiraga M, Atake I, Shishido T, Oumi Y, Sano T, Takehira K. Partial oxidation of propane over Ru promoted Ni/Mg(Al)O catalysts: Self-activation and prominent effect of reduction—oxidation treatment of the catalyst [J]. Appl. Catal. A: Gen., 2007, 321: 155-164.
    [6] Lucredio A F, Filho G T, Assaf E M. Co/Mg/Al hydrotalcite-type precursor, promoted with La and Ce, studied by XPS and applied to methane steam reforming reactions [J]. Appl. Surf. Sci., 2009, 255: 5851-5856.
    [7] Cruz I O, Ribeiro N F P, Aranda D A G, Souza M M V M. Hydrogen production by aqueous-phase reforming of ethanol over nickel catalysts prepared from hydrotalcite precursors [J]. Catal. Commun., 2008, 9: 2606-2611.
    [8] Lucredio A F, Assaf E M. Cobalt catalysts prepared from hydrotalcite precursors and tested in methane steam reforming [J]. J. Power Sources, 2006, 159: 667-672.
    [9] Shishido T, Yamamoto M, Li D L, Tian Y, Morioka H, Honda M, Sano T, Takehira K. Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation [J]. Appl. Catal. A: Gen., 2006, 303: 62-71.
    [10] Atake I, Nishida K, Li D L, Shishido T, Oumi Y, Sano T, Takehira K. Catalytic behavior of ternary Cu/ZnO/Al2O3 systems prepared by homogeneous precipitation in water-gas shift reaction [J]. J. Mol. Catal. A: Chem., 2007, 275: 130-138.
    [11] Takehira K, Shishido T, Wang P, Kosaka T, Takaki K. Autothermal reforming of CH4 over supported Ni catalysts prepared from Mg-Al hydrotalcite-like anionic clay [J]. J. Catal., 2004, 221: 43-54.
    [12] Zhang J G, Wang H, Dalai A K. Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4 [J]. Appl. Catal. A: Gen., 2008, 339: 121-129.
    [13] Shu X, Zhang W H, He J, Gao F X, Zhu Y X. Formation of Ni-Ti-layered double hydroxides using homogeneous precipitation method [J]. Solid State Sci., 2006, 8: 634-639.
    [14] Tomishige K, Chen Y G, Fujimoto, K. Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts [J]. J. Catal., 1999, 181: 91-103.
    [15] Guo J Z, Hou Z Y, Gao J, Zheng X M. Production of syngas via partial oxidation and CO2 reforming of coke oven gas over a Ni catalyst [J]. Energy Fuels, 2008, 22: 1444-1448.
    [1] Steele B C H. Oxygen ion conductors and their technological applications [J]. Mater. Sci. Eng. B, 1992, 13: 79-87.
    [2] Hendriksen P V, Larsen P H, Mogensen M, Poulsen F W, Wiik K. Prospects and problems of dense oxygen permeable membranes [J]. Catal. Taday, 2000, 56: 283-295.
    [3] Xu S J, Thomson W J. Oxygen permeation rates through ion-conducting perovskite membranes [J]. Chem. Eng. Sci., 1999, 54: 3839-3850.
    [4] Arakawa T, Ohara N, Shiokawa J. Reduction of perovskite oxide LnCoQ3 (Ln=La-Eu) in a hydrogen atmosphere [J]. J. Mater. Sci., 1986, 21:1824-1827.
    [5] Nakamura T, Petzow G, Gauckler L J. Stability of the perovskite phase LaBO3 (B=V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere. 1. experimental results [J]. Mater. Res. Bull., 1979, 14: 649-659.
    [6] Zhu X F, Cong Y, Yang W S. Oxygen permeability and structural stability of BaCe0.15Fe0.85O3-δmembranes [J]. J. Membr. Sci., 2006, 283: 38-44.
    [7] Chen Z H, Shao Z P, Ran R, Zhou W, Zeng P Y, Liu S M. A dense oxygen separation membrane with a layered morphologic structure [J]. J. Membr. Sci., 2007, 300: 182-190.
    [8] Leo A, Liu S, Diniz da Costa J C, Shao Z. Oxygen permeation through perovskitemembranes and the improvement of oxygen flux by surface modification [J]. Sci. Technol. Adv. Mater., 2006, 7: 819-825.
    [9] Teraoka Y, Honbe Y, Ishii J, Furukawa H, Moriguchi I. Catalytic effects in oxygen permeation through mixed-conductive LSCF perovskite membrane [J]. Solid State Ionics, 2002, 152-153: 681-687.
    [10] Jin W Q, Li S G, Huang P. Tobular lanthanum cobaltite perovskite-type membrane reactors for partial oxidation of methane to syngas [J]. J. Membr. Sci., 2000, 166: 13-22.
    [11] Hendriksen P V, Larsen P H, Mogensens M. Prospects and problems of dense oxygen permeable membranes [J]. Catal. Today, 2000, 56: 283-295.
    [12] Diethelm S, Van herle J, Middleton P H. Oxygen permeation and stability of La0.4Ca0.6Fe1-xCoxO3-δ(x=0, 0.25, 0.5) membranes [J]. J. Power Sources, 2003, 118: 270-275.
    [13] Kim S, Yang Y L, Christoffersen R. Oxygen permeation, electrical conductivity and stability of the pervoskite oxide La0.2Sr0.8Cu0.4Co0.6O3-δ[J].Solid state ionics, 1997, 104: 57-65.
    [14] Harada K, Domen K, Hara M, Tatsumi T. Oxygen-permeable membrances of Ba1.0Co0.7Fe0.2Nb0.1O3-δfor preparation of synthesis gas from methane by partial oxidation [J]. Chem. Lett., 2006, 35: 968-969.
    [15] Harada M, Domen K, Hara M, Tatsumi T. Ba1.0Co0.7Fe0.2Nb0.1O3-δdense ceramic as an oxygen permeable membrane for partial oxidation of methane to synthesis gas [J]. Chem. Lett., 2006, 35:1326-1327.
    [16] Cheng H W, Zhang Y W, Lu X G, Ding W Z, Li Q. Hydrogen production from simulated hot coke oven gas by using oxygen-permeable ceramics [J]. Energy Fuels, 2009, 23: 414-421.
    [17] Zhang Y W, Li Q, Shen P J, Liu Y, Yang Z B, Ding W Z, Lu X G. Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor [J]. Int. J. Hydrogen Energy, 2008, 33: 3311-3319.
    [18] Cheng Y F, Zhao H L, Teng D Q, Li F S, Lu X G, Ding W Z. Investigation of Ba fully occupied A-site BaCo0.7Fe0.3-xNbxO3-δperovskite stabilized by low concentration of Nb for oxygen permeation membrane [J]. J. Membr. Sci., 2008, 322: 484-490.
    [19] Zhang Y W, Liu Y, Wang C L, Yang Z B, Ding W Z, Lu X G. Total conductivity, oxygen permeability and stability of perovskite-type oxide BaCo0.7Fe0.2Nd0.1O3-δ[J]. Rare Metals, 2009, 28:12-16.
    [20] Ikeguchi M, Mimura T, Sekine Y, Kikuchi E, Matsukata M. Reaction and oxygen permeation studies in Sm0.4Ba0.6Fe0.8Co0.2O3?δmembrane reactor for partial oxidation of methane to syngas [J]. Appl. Catal. A: Gen., 2005, 290: 212-220.
    [21] Lein H L, Wiik K, Grande T. Kinetic demixing and decomposition of oxygen permeable membranes [J]. Solid State Ionics, 2006, 177: 1587-1590.
    [22] Bouwmeester H J M. Dense ceramic membranes for methane conversion [J]. Catal. Today, 2003, 82: 141-150.
    [23] Akin F T, Lin J Y S. Oxygen permeation through oxygen ionic or mixed-conducting ceramic membranes with chemical reactions [J]. J. Membr. Sci., 2004, 231: 133-146.
    [24] Sanchez-Sanchez M C, Navarro R M, Fierro J L G. Ethanol steam reforming overNi/MxOy-Al2O3 (M=Ce, La, Zr and Mg) catalysts: Influence of support on the hydrogen production [J]. Int. J. Hydrogen Energy, 2007, 32: 1462-1471.
    [25] Lucredio A F, Jerkiewickz G, Assaf E M. Nickel catalysts promoted with cerium and lanthanum to reduce carbon formation in partial oxidation of methane reactions [J]. Appl. Catal. A: Gen., 2007, 333: 90-95.
    [26] Wei J M, Iglesia E. Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals [J]. J. Phys. Chem. B, 2004, 108: 4094–4103.
    [27] Wei J M, Iglesia E. Reaction pathways and site requirements for the activation and chemical conversion of methane on Ru?based catalysts [J] J. Phys. Chem. B, 2004, 108: 7253–7262.
    [28] Guo J Z, Hou Z Y, Gao J, Zheng X M. Production of syngas via partial oxidation and CO2 reforming of coke oven gas over a Ni catalyst [J]. Energy Fuels, 2008, 22: 1444-1448.
    [29] Zhang J G, Wang H, Dalai A K. Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4 [J]. Appl. Catal. A: Gen., 2008, 339: 121-129.
    [30] Wachsman E D, Clites T L. Stable mixed-conducting bilayer membranes for direct conversion of methane to syngas [J]. J. Electrochem. Soc., 2002, 149: 242-246.