拟南芥耐低硫突变体高通量筛选的建立和鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫是植物生长所需要的必须营养元素,同时在植物抵御生物和非生物胁迫里起到重要作用,但是关于硫营养利用效率的分子机制的研究还少,最根本的原因在于植物对硫本身的需求量不高,所以要进行胁迫必须达到一个极低的硫浓度。在本论文里,我们利用一个理论上无硫的低硫胁迫浓度,对一个55,000独立转化株系的拟南芥激活突变体库进行高通量的筛选,获得了2株低硫耐受的突变体株系——sue3和sue4。相比较与野生型,突变体在低硫胁迫的培养基上有着更发达的主根根系,而且这种表型是对于低硫胁迫特异响应,对于其它营养胁迫都没有相应,基于以上表型我们推测也许这和硫营养的吸收能力相关。同时这两个突变体对于氧化胁迫和重金属胁迫的耐受性也远远高于野生型。对于sue3,它是一个编码VirE2-interacting蛋白1的基因,Atlg43700单基因敲除的功能缺失突变体,对于sue4,它是一个结构功能都未知的At3g55880单基因激活的功能获得性突变体,遗传试验和功能重演实验都验证了这两个突变体的低硫耐受表型,
     综上所述,我们成功的建立了一个高通量筛选耐低硫突变的筛选体系,筛选到了2个确定表型的突变体株系,这些株系不仅仅是和低硫耐受相关,还很可能和硫代谢途径中硫的利用效率有关,关于这些突变体的研究,会很好的帮助我们进一步了解清楚硫胁迫过程中植物体内所发生的各种应对机制。
     上面的筛选实验得到并确定由于体内At3g55880的表达量上调造成耐低硫表型的sue4突变体,通过启动子分析,蛋白定位等进一步的功能解析得到其空间表达模式可能和IAA的运出载体PIN1相重叠。细菌双杂交和双分子荧光互补实验确定SUE4和PIN1具有相互作用,并且通过进一步的分析确定很可能是由于SUE4蛋白的在sue4突变体中的上调,通过与PIN1互作,影响其根部IAA含量和分布的变化,从而产生了突变体根系构型以及低硫耐受性的表型。
Sulfur is an essential element for plant growth and development as well as for defense against biotic and abiotic stresses. But little is known about the genetic determinants for sulfate utilization efficiency, because of the technical difficulties imposed by low sulfur demand of plants.
     Here we report the isolation and characterization of two low-sulfur tolerant mutants, sue3 and sue4 using a high-throughput genetic screen from an activation-tagging library of approximately 55,000 individual lines where a "sulfur-free" solid medium was devised to give the selection pressure necessary to suppress the growth of the wild type seedlings. Both mutants showed improved tolerance to low sulfur conditions and markedly increased root systems. Potentially these mutants have enhanced sulfate utilization efficiency. The mutant phenotype of both sue3 and sue4 was specific to sulfate deficiency and the mutants displayed enhanced tolerance to heavy metal and oxidative stress. Genetic analysis revealed that sue3 was caused by a single recessive nuclear mutation while sue4 was caused by a single dominant nuclear mutation. The recessive locus in sue3 is the previously identified VirE2-interacting protein 1. The dominant locus in sue4 is a function-unknown locus activated by the four enhancers on the T-DNA. The function of SUE3 and SUE4 in low sulfur tolerance was confirmed either by multiple mutant alleles or by recapitulation analysis.
     Taken together, our results demonstrate that this genetic screen is a reasonable approach to isolate Arabidopsis mutants with improved low sulfur tolerance and potentially with enhanced sulfur utilization efficiency. The two loci identified in sue3 and sue4 should assist understanding the pertinent molecular mechanisms involved in low sulfur tolerance.
     To investigate further the function of SUE4, the expression patteren and protein localization was analyzed via promoter-GUS reporter and GFP tagging, respectively. It was found that SUE4 showed a similar expression pattern to PIN1. SUE4 protein localization also overlapped with PIN1. This led us to test whether SUE4 and PIN1 interact. Further analysis with bacterial two hybrid and BiFC demonstrated that SUE4 interacted with the auxin efflux carrier PIN1 in vivo. This interaction likely altered IAA distribution in roots and resulted in altered root architecture of the mutant.
引文
Alboresi, A., Gestin, C., Leydecker, M.T., Bedu, M., Meyer, C., and Truong, H.N. (2005). Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ 28,500-512.
    Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland,. C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301,653-657.
    Bearchell, S.J., Fraaije, B.A., Shaw, M.W., and Fitt, B.D. (2005). Wheat archive links long-term fungal pathogen population dynamics to air pollution. Proc Natl Acad Sci U S A 102, 5438-5442.
    Bechtold, N.E., J.; Pelletier, G.(1993). In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Plant genetics and breeding 316,1194-1199.
    Becker, D., Kemper, E., Schell, J., and Masterson, R. (1992). New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20,1195-1197.
    Beinert, H. (2000). A tribute to sulfur. Eur J Biochem 267,5657-5664.
    Bevan, M. (1984). Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12, 8711-8721.
    Blake-Kalff, M.M., Harrison, K.R., Hawkesford, M.J., Zhao, F.J., and McGrath, S.P. (1998). Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiol 118,1337-1344.
    Chang, S., Shu, H., Qin, G., and Wu, Y. (2005). A New Arabidopsis Phosphate-sensing Mutants Screening Method. Chinese Agricultural Science Bulletin 21,202-204.
    Chen, D.L., Delatorre, C.A., Bakker, A., and Abel, S. (2000). Conditional identification of phosphate-starvation-response mutants in Arabidopsis thaliana. Planta 211,13-22.
    Chiaiese, P., Ohkama-Ohtsu, N., Molvig, L., Godfree, R., Dove, H., Hocart, C., Fujiwara, T., Higgins, T.J., and Tabe, L.M. (2004). Sulphur and nitrogen nutrition influence the response of chickpea seeds to an added, transgenic sink for organic sulphur. J Exp Bot 55,1889-1901.
    Clough, S., and Bent, A. (1998). Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J.16,735-743
    Cobbett, C., and Goldsbrough, P. (2002). Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53,159-182.
    Csaba, K., and Jeff, S. (1986). The promoter of TL-DNA gene 5 controls the tissue specific expression of chimeric genes carried by a novel type of Agrobacterium binary Mol Gen Genet 204,383-396.
    Csaba, K., NORBERT, M., LASZLO, S., MILAN, H., and REAS, B.a.J., SCHELL. (1994). Specialized vectors for gene tagging and expression studies. Plant Molecular Biolog-Manual B2,1-22.
    Curtis, M.D., and Grossniklaus, U. (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133,462-469.
    De Block, M., Herrera-Estrella, L., Van Montagu, M., Schell, J., and Zambryski, P. (1984). Expression of foreign genes in regenerated plants and in their progeny. Embo J 3,1681-1689.
    Delhaize, E., and Randall, P.J. (1995). Characterization of a Phosphate-Accumulator Mutant of Arabidopsis thaliana. Plant Physiol 107,207-213.
    Forde, B.G., and Walch-Liu, P. (2009). Nitrate and glutamate as environmental cues for behavioural responses in plant roots. Plant Cell Environ 32,682-693.
    Foyer, C.H., Theodoulou, F.L., and Delrot, S. (2001). The functions of inter-and intracellular glutathione transport systems in plants. Trends Plant Sci 6,486-492.
    Freeman, J.L., Persans, M.W., Nieman, K., Albrecht, C., Peer, W., Pickering, I.J., and Salt, D.E. (2004). Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators. Plant Cell 16,2176-2191.
    Frendo, P., Harrison, J., Norman, C., Hernandez Jimenez, M.J., Van de Sype, G., Gilabert, A., and Puppo, A. (2005). Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Mol Plant Microbe Interact 18,254-259.
    Friedrich, J.W., and Schrader, L.E. (1978). Sulfur Deprivation and Nitrogen Metabolism in Maize Seedlings. Plant Physiol 61,900-903.
    Gerber, J., and Lill, R. (2002). Biogenesis of iron-sulfur proteins in eukaryotes:components, mechanism and pathology. Mitochondrion 2,71-86.
    Giordano, M., Pezzoni, V., and Hell, R. (2000). Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. Plant Physiol 124,857-864.
    Gomez, L.D., Noctor, G., Knight, M.R., and Foyer, C.H. (2004). Regulation of calcium signalling and gene expression by glutathione. J Exp Bot 55,1851-1859.
    Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994). The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25,989-994.
    Harrison, J., Jamet, A., Muglia, C.I., Van de Sype, G., Aguilar, O.M., Puppo, A., and Frendo, P. (2005). Glutathione plays a fundamental role in growth and symbiotic capacity of Sinorhizobium meliloti. J Bacteriol 187,168-174.
    Hartley, J.L., Temple, G.F., and Brasch, M.A. (2000). DNA cloning using in vitro site-specific recombination. Genome Res 10,1788-1795.
    Heeg, C., Kruse, C., Jost, R., Gutensohn, M., Ruppert, T., Wirtz, M., and Hell, R. (2008). Analysis of the Arabidopsis O-Acetylserine(thiol)lyase Gene Family Demonstrates Compartment-Specific Differences in the Regulation of Cysteine Synthesis. Plant Cell 20, 168-185.
    Helliwell, C., and Waterhouse, P. (2003). Constructs and methods for high-throughput gene silencing in plants. Methods 30,289-295.
    Higgins, T.J., Chandler, P.M., Randall, P.J., Spencer, D., Beach, L.R., Blagrove, R.J., Kortt, A.A., and Inglis, A.S. (1986). Gene structure, protein structure, and regulation of the synthesis of a sulfur-rich protein in pea seeds. J Biol Chem 261,11124-11130.
    Hirai, M.Y., and Saito, K. (2004). Post-genomics approaches for the elucidation of plant adaptive mechanisms to sulphur deficiency. J Exp Bot 55,1871-1879.
    Hirai, M.Y., Fujiwara, T., Awazuhara, M., Kimura, T., Noji, M., and Saito, K. (2003). Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-1-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J 33,651-663.
    Hooykaas, P.J., and Schilperoort, R.A. (1992). Agrobacterium and plant genetic engineering. Plant Mol Biol 19,15-38.
    Jost, R., Altschmied, L., Bloem, E., Bogs, J., Gershenzon, J., Hahnel, U., Hansch, R., Hartmann, T., Kopriva, S., Kruse, C., Mendel, R.R., Papenbrock, J., Reichelt, M., Rennenberg, H., Schnug, E., Schmidt, A., Textor, S., Tokuhisa, J., Wachter, A., Wirtz, M., Rausch, T., and Hell, R. (2005). Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynth Res 86,491-508.
    Karimi, M., Inze, D., and Depicker, A. (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7,193-195.
    Kassis, E.E., Cathala, N., Rouached, H., Fourcroy, P., Berthomieu, P., Terry, N., and Davidian, J.C. (2007). Characterization of a Selenate-resistant Arabidopsis Mutant. Root Growth as a Potential Target for Selenate Toxicity. Plant Physiol.
    Kataoka, T., Hayashi, N., Yamaya, T., and Takahashi, H. (2004a). Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant physiology 136,4198-4204.
    Kataoka, T., Watanabe-Takahashi, A., Hayashi, N., Ohnishi, M., Mimura, T., Buchner, P., Hawkesford, M.J., Yamaya, T., and Takahashi, H. (2004b). Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. The Plant cell 16,2693-2704.
    Kempin, S.A., Liljegren, S.J., Block, L.M., Rounsley, S.D., Yanofsky, M.F., and Lam, E. (1997). Targeted disruption in Arabidopsis. Nature 389,802-803.
    Kim, H., Hirai, M.Y., Hayashi, H., Chino, M., Naito, S., and Fujiwara, T. (1999). Role of O-acetyl-1-serine in the coordinated regulation of the expression of a soybean seed storage-protein gene by sulfur and nitrogen nutrition. Planta 209,282-289.
    Kolthoff, I.M., E.B. Sandell, E.J. Meehan and S. Bruckenstein. (1969). Quantitative Chemical Analysis. (London:Macmillan).
    Kopriva, S., Mugford, S.G., Matthewman, C., and Koprivova, A. (2009). Plant sulfate assimilation genes:redundancy versus specialization. Plant Cell Rep 28,1769-1780.
    Kranner, I., Birtic, S., Anderson, K.M., and Pritchard, H.W. (2006). Glutathione half-cell reduction potential:a universal stress marker and modulator of programmed cell death? Free Radic Biol Med 40,2155-2165.
    Krishnan, H.B., Jiang, G., Krishnan, A.H., and Wiebold, W.J. (2000). Seed storage protein composition of non-nodulating soybean (Glycine max (L.) Merr.) and its influence on protein quality. Plant Science 157,191-199.
    Kutz, A., Muller, A., Hennig, P., Kaiser, W.M., Piotrowski, M., and Weiler, E.W. (2002). A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J 30,95-106.
    Lappartient, A.G., Vidmar, J.J., Leustek, T., Glass, A.D., and Touraine, B. (1999). Inter-organ signaling in plants:regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18,89-95.
    Lei, Z.-Y., Zhao, P., Cao, M.-J., Cui, R., Chen, X., Xiong, L.-Z., Zhang,Q.-F., Oliver, D.J., and Xiang, C.-B. (2007). High-throughput binary vectors for plant gene function analysis. J. Integr.Plant Biol.49,556-567.
    Leustek, T., Martin, M.N., Bick, J.A., and Davies, J.P. (2000). Pathways and Regulation of Sulfur Metabolism Revealed through Molecular and Genetic Studies. Annu Rev Plant Physiol Plant Mol Biol 51,141-165.
    Li, Y., Dhankher, O.P., Carreira, L., Balish, R.S., and Meagher, R.B. (2005). Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial gamma-glutamylcysteine synthetase. Environ Toxicol Chem 24,1376-1386.
    Ling, H.Q., Pich, A., Scholz, G, and Ganal, M.W. (1996). Genetic analysis of two tomato mutants affected in the regulation of iron metabolism. Mol Gen Genet 252,87-92.
    Ling, H.Q., Koch, G, Baumlein, H., and Ganal, M.W. (1999). Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci U S A 96,7098-7103.
    Ling, H.Q., Bauer, P., Bereczky, Z., Keller, B., and Ganal, M. (2002). The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci U S A 99, 13938-13943.
    Lopez-Bucio, J., Cruz-Ramirez, A., and Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6,280-287.
    Marquet, A. (2001). Enzymology of carbon-sulfur bond formation. Curr Opin Chem Biol 5,541-549.
    Maruyama-Nakashita, A., Nakamura, Y., Yamaya, T., and Takahashi, H. (2004a). Regulation of high-affinity sulphate transporters in plants:towards systematic analysis of sulphur signalling and regulation. J Exp Bot 55,1843-1849.
    Maruyama-Nakashita, A., Nakamura, Y., Yamaya, T., and Takahashi, H. (2004b). A novel regulatory pathway of sulfate uptake in Arabidopsis roots:implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J 38,779-789.
    Maruyama-Nakashita, A., Inoue, E., Watanabe-Takahashi, A., Yamaya, T., and Takahashi, H. (2003). Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132,597-605.
    Maruyama-Nakashita, A., Nakamura, Y., Tohge, T., Saito, K., and Takahashi, H. (2006). Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18,3235-3251.
    Maruyama-Nakashita, A., Nakamura, Y., Watanabe-Takahashi, A., Inoue, E., Yamaya, T., and Takahashi, H. (2005). Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42,305-314.
    Meyer, A.J., and Hell, R. (2005). Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86,435-457.
    Miao, Z.H., and Lam, E. (1995). Targeted disruption of the TGA3 locus in Arabidopsis thaliana. Plant J 7,359-365.
    Miyake, T., Sammoto, H., Kanayama, M., Tomochika, K., Shinoda, S., and Ono, B. (1999). Role of the sulphate assimilation pathway in utilization of glutathione as a sulphur source by Saccharomyces cerevisiae. Yeast 15,1449-1457.
    Mullins, I.M., and Hilu, K.W. (2004). Amino acid variation in the 10 kDa Oryza prolamin seed storage protein. J Agric Food Chem 52,2242-2246.
    Nikiforova, V., Freitag, J., Kempa, S., Adamik, M., Hesse, H., and Hoefgen, R. (2003).
    Transcriptome analysis of sulfur depletion in Arabidopsis thaliana:interlacing of biosynthetic pathways provides response specificity. Plant J 33,633-650.
    Noctor, G., and Foyer, C.H. (1998). ASCORBATE AND GLUTATHIONE:Keeping Active Oxygen Under Control. Annu Rev Plant Physiol Plant Mol Biol 49,249-279.
    Noctor, G., Gomez, L., Vanacker, H., and Foyer, C.H. (2002). Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53,1283-1304.
    Ogo, Y., Itai, R.N., Nakanishi, H., Kobayashi, T., Takahashi, M., Mori, S., and Nishizawa, N.K. (2007). The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J 51,366-377.
    Poirier, Y., Thoma, S., Somerville, C., and Schiefelbein, J. (1991). Mutant of Arabidopsis Deficient in Xylem Loading of Phosphate. Plant Physiol 97,1087-1093.
    Potters, G., Pasternak, T.P., Guisez, Y., Palme, K.J., and Jansen, M.A. (2007). Stress-induced morphogenic responses:growing out of trouble? Trends Plant Sci 12,98-105.
    Ravanel, S., Gakiere, B., Job, D., and Douce, R. (1998). The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci U S A 95,7805-7812.
    Rotte, C., and Leustek, T. (2000). Differential subcellular localization and expression of ATP sulfurylase and 5'-adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiol 124,715-724.
    Rouached, H., Secco, D., and Arpat, A.B. (2009). Getting the most sulfate from soil:Regulation of sulfate uptake transporters in Arabidopsis. J Plant Physiol 166,893-902.
    Samardzic, J.T., Milisavljevic, M., Brkljacic, J.M., Konstantinovic, M.M., and Maksimovic, V.R. (2004). Characterization and evolutionary relationship of methionine-rich legumin-like protein from buckwheat. Plant Physiol Biochem 42,157-163.
    Sanchez-Calderon, L., Lopez-Bucio, J., Chacon-Lopez, A., Gutierrez-Ortega, A., Hernandez-Abreu, E., and Herrera-Estrella, L. (2006). Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiol 140,879-889.
    Schachtman, D.P., and Shin, R. (2006). Nutrient Sensing and Signaling:NPKS. Annu Rev Plant Biol.
    Schardl, C.L., Byrd, A.D., Benzion, G., Altschuler, M.A., Hildebrand, D.F., and Hunt, A.G. (1987). Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61,1-11.
    Shibagaki, N., Rose, A., McDermott, J.P., Fujiwara, T., Hayashi, H., Yoneyama, T., and Davies, J.P. (2002). Selenate-resistant mutants of Arabidopsis thaliana identify Sultrl;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29,475-486.
    Signora, L., De Smet, I., Foyer, C.H., and Zhang, H. (2001). ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28,655-662.
    Simoens, C., Alliotte, T., Mendel, R., Muller, A., Schiemann, J., Van Lijsebettens, M., Schell, J., Van Montagu, M., and Inze, D. (1986). A binary vector for transferring genomic libraries to plants. Nucleic Acids Res 14,8073-8090.
    Sunarpi, and Anderson, J.W. (1996). Effect of Sulfur Nutrition on the Redistribution of Sulfur in Vegetative Soybean Plants. Plant Physiol 112,623-631.
    Tabe, L., Hagan, N., and Higgins, T.J. (2002). Plasticity of seed protein composition in response to nitrogen and sulfur availability. Curr Opin Plant Biol 5,212-217.
    Tabe, L.M., and Droux, M. (2001). Sulfur assimilation in developing lupin cotyledons could contribute significantly to the accumulation of organic sulfur reserves in the seed. Plant Physiol 126,176-187.
    Tabe, L.M., and Droux, M. (2002). Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol 128,1137-1148.
    Takahashi, H., Watanabe-Takahashi, A., Smith, F.W., Blake-Kalff, M., Hawkesford, M.J., and Saito, K. (2000). The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23,171-182.
    Takahashi, H., Yamazaki, M., Sasakura, N., Watanabe, A., Leustek, T., Engler, J.A., Engler, G, Van Montagu, M., and Saito, K. (1997). Regulation of sulfur assimilation in higher plants:a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci U S A 94,11102-11107.
    Tsay, Y.F., Schroeder, J.I., Feldmann, K.A., and Crawford, N.M. (1993). The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72,705-713.
    Tzfira, T., Tian, GW., Lacroix, B., Vyas, S., Li, J., Leitner-Dagan, Y., Krichevsky, A., Taylor, T., Vainstein, A., and Citovsky, V. (2005). pSAT vectors:a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol Biol 57, 503-516.
    Vernoux, T., Wilson, R.C., Seeley, K.A., Reichheld, J.P., Muroy, S., Brown, S., Maughan, S.C., Cobbett, C.S., Van Montagu, M., Inze, D., May, M.J., and Sung, Z.R. (2000). The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12,97-110.
    Vert, G, Grotz, N., Dedaldechamp, F., Gaymard, F., Guerinot, M.L., Briat, J.F., and Curie, C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14,1223-1233.
    Wagner, U., Edwards, R., Dixon, D.P., and Mauch, F. (2002). Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49,515-532.
    Wang, R., Xing, X., Wang, Y., Tran, A., and Crawford, N.M. (2009). A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiol 151,472-478.
    Weigel, D., Ahn, J.H., Blazquez, M.A., Borevitz, J.O., Christensen, S.K., Fankhauser, C., Ferrandiz, C., Kardailsky, L, Malancharuvil, E.J., Neff, M.M., Nguyen, J.T., Sato, S., Wang, Z.Y., Xia, Y., Dixon, R.A., Harrison, M.J., Lamb, C.J., Yanofsky, M.F., and Chory, J. (2000). Activation tagging in Arabidopsis. Plant Physiol 122,1003-1013.
    Weising, K., Schell, J., and Kahl, G.(1988). Foreign genes in plants:transfer, structure, expression, and applications. Annu Rev Genet 22,421-477.
    Xiang, C., and Oliver, D.J. (1998). Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10,1539-1550.
    Xiang, C., Werner, B.L., Christensen, E.M., and Oliver, D.J. (2001). The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126,564-574.
    Xiang, C., Han, P., Lutziger, I., Wang, K., and Oliver, D.J. (1999). A mini binary vector series for plant transformation. Plant Mol Biol 40,711-717.
    Xu, J., Li, H.D., Chen, L.Q., Wang, Y., Liu, L.L., He, L., and Wu, W.H. (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125,1347-1360.
    Yang, Y. (2006). T-DNA tagging and its application in plant functional genome research. Journal of Qing-University (Nature Science) 24,34-39.
    Yoshimoto, N., Takahashi, H., Smith, F.W., Yamaya, T., and Saito, K. (2002). Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29,465-473.
    Yoshimoto, N., Inoue, E., Saito, K., Yamaya, T., and Takahashi, H. (2003). Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131,1511-1517.
    Yu, X.M., Fang, P., and Xiang, C.B. (2004). Screening of low-nitrogen tolerant mutants of Arabidopsis thaliana. Plant Nutrition and Fertilizer Science 10,441-443.
    Yuan, Y.X., Zhang, J., Wang, D.W., and Ling, H.Q. (2005). AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res 15,613-621.
    Zhao, F., Hawkesford MJ, Warrilow HGS (1996). Response of two wheat va-rieties to sulpher addition and diagnosis of sulphur deficiency. Plant and Soil 181,317-327.
    王庆仁.(1996).硫肥对双低油菜产量与品质的影响.植物生理与分子生物学学报,Journal of Plant Physiology and Molecular Biology 2,57-67.
    王庆仁,and Hocking, P. (1998).油菜-(35)S分配与再分配的研究.土壤通报1.
    林葆,李书田,and周卫.(2000).土壤有效硫评价方法和临界指标的研究.
    刘崇群.(1995a).中国南方土壤硫的状况和对硫肥的需求.磷肥与复肥10,14-18.
    刘崇群.(1995b).硫肥的重要性和我国对硫肥的需求趋势.硫酸工业5,20-23.
    刘崇群,and曹淑卿.(1990).中国南方农业中的硫.土壤学报27,398-404.
    刘勤,张新,赖辉比,and曹志洪.(2000).土壤烤烟系统硫素营养研究-土壤硫素营养状况及对烤烟生长发育的影响.中国烟草科学4,20-22.
    谢瑞芝.(2002).玉米基因型的硫效率差异及氮硫互作对产量、品质影响的研究.In农学(济南:山东农业大学),pp.101.
    谢瑞芝,董树亭,and胡昌浩.(2002).植物硫素营养研究进展.中国农学通报18.
    邓纯章,and龙碧云.(1994)).我国南方部分地区农业中硫的状况及硫肥的效果.土壤肥料3,25-28.
    陈国安.(1994).我国东北黑土地区农业中的硫素问题.中国农学通报10,36-38.
    Aloni, R., Aloni, E., Langhans, M., and Ullrich, C.I. (2006). Role of auxin in regulating Arabidopsis flower development. Planta 223,315-328.
    Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301,653-657.
    Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G, and Friml, J. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115,591-602.
    Blakeslee, J.J., Peer, W.A., and Murphy, A.S. (2005). Auxin transport. Curr Opin Plant Biol 8, 494-500.
    Bleecker, A.B., and Kende, H. (2000). Ethylene:a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16,1-18.
    Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., and Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433,39-44.
    Boerjan, W., Cervera, M.T., Delarue, M., Beeckman, T., Dewitte,.W., Bellini, C., Caboche, M., Van Onckelen, H., Van Montagu, M., and Inze, D. (1995). Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7,1405-1419.
    Buchner, P., Stuiver, C.E., Westerman, S., Wirtz, M., Hell, R., Hawkesford, M.J., and De Kok, L.J. (2004). Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H(2)S and pedospheric sulfate nutrition. Plant Physiol 136, 3396-3408.
    Burstenbinder, K., Rzewuski, G, Wirtz, M., Hell, R., and Sauter, M. (2007). The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J 49,238-249.
    Campbell, E.J., Schenk, P.M., Kazan, K., Penninckx, I.A., Anderson, J.P., Maclean, D.J., Cammue, B.P., Ebert, P.R., and Manners, J.M. (2003). Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol 133, 1272-1284.
    Casimiro, I., Beeckman, T., Graham, N., Bhalerao, R., Zhang, H., Casero, P., Sandberg, G, and Bennett, M.J. (2003). Dissecting Arabidopsis lateral root development. Trends Plant Sci 8, 165-171.
    Celenza, J.L., Jr., Grisafi, P.L., and Fink, GR. (1995). A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9,2131-2142.
    Dan, H., Yang, G, and Zheng, Z.L. (2007). A negative regulatory role for auxin in sulphate deficiency response in Arabidopsis thaliana. Plant Mol Biol 63,221-235.
    Dhonukshe, P., Tanaka, H., Goh, T., Ebine, K., Mahonen, A.P., Prasad, K., Blilou, I., Geldner, N., Xu, J., Uemura, T., Chory, J., Ueda, T., Nakano, A., Scheres, B., and Friml, J. (2008). Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456,962-966.
    Fischer, D., and Eisenberg, D. (1999). Finding families for genomic ORFans. Bioinformatics 15, 759-762.
    Fontecave, M., Atta, M., and Mulliez, E. (2004). S-adenosyhnethionine:nothing goes to waste. Trends Biochem Sci 29,243-249.
    Friml, J. (2003). Auxin transport-shaping the plant. Curr Opin Plant Biol 6,7-12.
    Friml, J., and Palme, K. (2002). Polar auxin transport--old questions and new concepts? Plant Mol Biol 49,273-284.
    Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., and Jurgens, G. (2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426,147-153.
    Fujita, H., and Syono, K. (1996). Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana. Plant Cell Physiol 37,1094-1101.
    Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A., and Palme, K. (1998). Regulation of polar auxin transport by AtPINl in Arabidopsis vascular tissue. Science 282,2226-2230.
    Geisler, M., and Murphy, A.S. (2006). The ABC of auxin transport:the role of p-glycoproteins in plant development. FEBS Lett 580,1094-1102.
    Geisler, M., Kolukisaoglu, H.U., Bouchard, R., Billion, K., Berger, J., Saal, B., Frangne, N., Koncz-Kalman, Z., Koncz, C., Dudler, R., Blakeslee, J.J., Murphy, A.S., Martinoia, E., and Schulz, B. (2003). TWISTED DWARF1, a unique plasma membrane-anchored. immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell 14,4238-4249.
    Gollery, M., Harper, J., Cushman, J., Mittler, T., and Mittler, R. (2007). POFs:what we don't know can hurt us. Trends Plant Sci 12,492-496.
    Gollery, M., Harper, J., Cushman, J., Mittler, T., Girke, T., Zhu, J.K., Bailey-Serres, J., and Mittler, R. (2006). What makes species unique? The contribution of proteins with obscure .features. Genome Biol 7, R57.
    Himanen, K., Vuylsteke, M., Vanneste, S., Vercruysse, S., Boucheron, E., Alard, P., Chriqui, D., Van Montagu, M., Inze, D., and Beeckman, T. (2004). Transcript profiling of early lateral root initiation. Proc Natl Acad Sci U S A 101,5146-5151.
    Hirai, M.Y., and Saito, K. (2004). Post-genomics approaches for the elucidation of plant adaptive mechanisms to sulphur deficiency. J Exp Bot 55,1871-1879.
    Hobbie, L., and Estelle, M. (1995). The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J 7,211-220.
    Horan, K., Jang, C., Bailey-Serres, J., Mittler, R., Shelton, C., Harper, J.F., Zhu, J.K., Cushman, J.C., Gollery, M., and Girke, T. (2008). Annotating genes of known and unknown function by large-scale coexpression analysis. Plant Physiol 147,41-57.
    Hrycyna, C.A., and Gottesman, M.M. (1998). Multidrug ABC transporters from bacteria to man:an emerging hypothesis for the universality of molecular mechanism and function. Drug Resist Updat 1,81-83.
    Hu, C.D., and Kerppola, T.K. (2003). Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21, 539-545.
    Hu, C.D., Chinenov, Y., and Kerppola, T.K. (2002). Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9,789-798.
    Jost, R., Altschmied, L., Bloem, E., Bogs, J., Gershenzon, J., Hahnel, U., Hansch, R., Hartmann, T., Kopriva, S., Kruse, C., Mendel, R.R., Papenbrock, J., Reichelt, M., Rennenberg, H., Schnug, E., Schmidt, A., Textor, S., Tokuhisa, J., Wachter, A., Wirtz, M., Rausch, T., and Hell, R. (2005). Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynth Res 86,491-508.
    Joung, J.K., Ramm, E.I., and Pabo, C.O. (2000). A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc Natl Acad Sci U S A 97, 7382-7387.
    Kepinski, S., and Leyser, O. (2005). Plant development:auxin in loops. Curr Biol 15, R208-210.
    Kutz, A., Muller, A., Hennig, P., Kaiser, W.M., Piotrowski, M., and Weiler, E.W. (2002). A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J 30,95-106.
    Ladant, D., and Karimova, G. (2000). Genetic systems for analyzing protein-protein interactions in bacteria. Res Microbiol 151,711-720.
    Laskowski, M.J., Williams, M.E., Nusbaum, H.C., and Sussex, I.M. (1995). Formation of lateral root meristems is a two-stage process. Development 121,3303-3310.
    Leeds, J.A., and Beckwith, J. (1998). Lambda repressor N-terminal DNA-binding domain as an assay for protein transmembrane segment interactions in vivo. J Mol Biol 280,799-810.
    Lei, Z.-Y., Zhao, P., Cao, M.-J., Cui, R., Chen, X., Xiong, L.-Z., Zhang,Q.-F., Oliver, D.J., and Xiang, C.-B. (2007). High-throughput binary vectors for plant gene function analysis. J. Integr.Plant Biol.49,556-567.
    Leyser, O. (2006). Dynamic integration of auxin transport and signalling. Curr Biol 16, R424-433.
    Lopez-Bucio, J., Cruz-Ramirez, A., and Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6,280-287.
    Luschnig, C., Gaxiola, R.A., Grisafi, P., and Fink, G.R. (1998). EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12,2175-2187.
    Malamy, J.E. (2005). Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28,67-77.
    Maruyama-Nakashita, A., Nakamura, Y., Yamaya, T., and Takahashi, H. (2004). Regulation of high-affinity sulphate transporters in plants:towards systematic analysis of sulphur signalling and regulation. J Exp Bot 55,1843-1849.
    McIntyre, G.I. (2001). Control of plant development by limiting factors:A nutritional perspective. Physiol Plant 113,165-175.
    Multani, D.S., Briggs, S.P., Chamberlin, M.A., Blakeslee, J.J., Murphy, A.S., and Johal, G.S. (2003). Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302,81-84.
    Nikiforova, V., Freitag, J., Kempa, S., Adamik, M., Hesse, H., and Hoefgen, R. (2003). Transcriptome analysis of sulfur depletion in Arabidopsis thaliana:interlacing of biosynthetic pathways provides response specificity. Plant J 33,633-650.
    Noh, B., Murphy, A.S., and Spalding, E.P. (2001). Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13,2441-2454.
    Noh, B., Bandyopadhyay, A., Peer, W.A., Spalding, E.P., and Murphy, A.S. (2003). Enhanced gravi-and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature 423,999-1002.
    Ohkama, N., Goto, D.B., Fujiwara, T., and Naito, S. (2002). Differential tissue-specific response to sulfate and methionine of a soybean seed storage protein promoter region in transgenic Arabidopsis. Plant Cell Physiol 43,1266-1275.
    Pickett, F.B., Wilson, A.K., and Estelle, M. (1990). The auxl Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. Plant Physiol 94,1462-1466.
    Potters, G., Pasternak, T.P., Guisez, Y., Palme, K.J., and Jansen, M.A. (2007). Stress-induced morphogenic responses:growing out of trouble? Trends Plant Sci 12,98-105.
    Rahman, A., Bannigan, A., Sulaman, W., Pechter, P., Blancaflor, E.B., and Baskin, T.I. (2007). Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J 50,514-528.
    Reed, R.C., Brady, S.R., and Muday, G.K. (1998). Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118,1369-1378.
    Roberts, R.J. (2004). Identifying protein function--a call for community action. PLoS Biol 2, E42.
    Sasaki-Sekimoto, Y., Taki, N., Obayashi, T., Aono, M., Matsumoto, F., Sakurai, N., Suzuki, H., Hirai, M.Y., Noji, M., Saito, K., Masuda, T., Takamiya, K., Shibata, D., and Ohta, H. (2005). Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44, 653-668.
    Setya, A., Murillo, M., and Leustek, T. (1996). Sulfate reduction in higher plants:molecular evidence for a novel 5'-adenylylsulfate reductase. Proc Natl Acad Sci U S A 93,13383-13388.
    Sidler, M., Hassa, P., Hasan, S., Ringli, C., and Dudler, R. (1998). Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light. Plant Cell 10,1623-1636.
    Siew, N., and Fischer, D. (2003). Analysis of singleton ORFans in fully sequenced microbial genomes. Proteins 53,241-251.
    Siew, N., and Fischer, D. (2004). Structural biology sheds light on the puzzle of genomic ORFans. J Mol Biol 342,369-373.
    Timpte, C., Lincoln, C., Pickett, F.B., Turner, J., and Estelle, M. (1995). The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. Plant J 8,561-569.
    Xiang, C., and Oliver, D.J. (1998). Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10,1539-1550.
    Xiang, C., and Oliver, D.J. (2002). Multilevel regulation of glutathione homeostasis in higher plants. In Handbook of Plant and Crop Physiology, M. Pessarakli, ed (NY, NY:Marcel Dekker, Inc.), pp.539-548.