用于水煤气变换反应的大孔Pt/TiO_2和Pt/CeO_2催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池被认为是未来重要的能源设施,因此作为针对燃料电池制氢的重要反应—水煤气变换反应(WGSR)又成为了研究热点。水煤气变换反应是富氢燃料气体处理、净化过程的重要组成部分,不仅可将重整尾气中10~16%CO的浓度降低到1%以下,而且可以将这部分CO转化成H_2,进一步提高燃料电池系统的效率。负载型Pt基催化剂是最具应用潜力的一种新型水煤气变换催化剂,引起国内外研究者的广泛关注。其中Pt/TiO_2和Pt/CeO_2催化剂具有活性高、稳定性好等特点,颇具研究价值。
     针对燃料电池制氢需要解决的核心问题是小型化,变换反应器的体积约占碳氢化合物重整制氢系统体积的三分之二,所以变换反应器的小型化至关重要。本工作探索变换反应器小型化的新途径,研究其中的核心技术。本文采用两种模板法分别制备大孔Pt基催化剂和整体式Pt基催化剂,以XRD、TPR、HRTEM、SEM、TG等表征方法对所制备的催化材料进行表征,研究了催化剂性能和结构与性能的关系。主要结果如下:
     三维有序大孔(3DOM) Pt/TiO_2催化剂在3%CO, 10%H_2O, 87%N_2的气氛中在180~360℃温度区间具有很高的活性,在60,000mL×g~(-1)×h~(-1)空速下在250℃时达到平衡转化率,与相同组成的颗粒和介孔催化剂相比,大孔3DOM Pt/TiO_2催化剂表现出更好的催化性能;Pt/TiO_2催化剂反应过程中的活性组分是金属Pt纳米粒子;Pt粒子烧结是Pt/TiO_2催化剂失活的原因;王水处理后催化剂的单位表面金属Pt上的CO转化率升高,在Pt/TiO_2催化剂上的WGSR是个对金属铂结构敏感的反应;通过TPR和HRTEM知道助剂CeO_2通过改变载体与活性组分之间的相互作用来提高催化剂活性。3DOM是实现小型化的途径。
     采用反相浓乳液法以聚苯乙烯为模板制备了大孔-整体式Pt/CeO_2/Al_2O_3催化剂。通过SEM可以看到孔径在5~50μm的不规则大孔,孔径大小可以通过改变分散相体积分数和表面活性剂数量来改变。在模拟重整气条件下的性能测试结果显示,在低温区(180~300℃)单位体积单位时间大孔-整体式Pt/CeO_2/Al_2O_3催化剂上CO的转化量显著高于催化剂上CO转化量。通过比较我们可以发现整体式催化剂在低温区(180~300℃)具有体积小、活性高的特点。将催化剂研制为大孔结构-整体式是实现WGSR反应器体积小型化的很有前景的途径。
Water-gas shift (WGS) reaction as a potential pure hydrogen production reaction has recently been attracting rapidly growing interest due to fuel cell power system development, which is considered as a potentially energy source. WGS reaction is a critical process for fuel cell oriented hydrogen production, through which 10~16%CO can be reduced below 1% and excess H_2 is produced. Supported Pt-based catalysts, especially Pt/TiO_2 and Pt/CeO_2, are promising candidates for WGS reaction owing to their high activity at low-temperature and high stability.
     The key challenge for fuel cell oriented hydrogen production is the miniaturization of the process, and WGS reactor occupies almost two thirds of the volume in the hydrogen production system from hydrocarbons, so the miniaturization of WGS reactor is of great significance. The aim of this work is to develop novel techniques on WGS reactor miniaturization. Three-dimensionally ordered macroporous (3DOM) Pt/TiO_2 and macroporous - monolith Pt/CeO_2/Al_2O_3 were fabricated by using template method in this work. The so prepared macroporous catalysts were characterized with XRD, TPR, HRTEM, SEM and thermal analysis techniques, and applied to WGS reaction. The relation between catalytic performance and catalyst structure was discussed. The main results and conclusions are as follows:
     The 3DOM Pt/TiO_2 catalysts exhibited much better catalytic performance than that of both powder and mesoporous Pt/TiO_2 for WGS reaction in 3%CO, 10%H_2O, 87%N_2 feed gases and in the reaction temperature range of 180~360℃, owing to the macroporous structure favoring mass transfer. XPS and catalytic activity results suggested that the active component for the WGS reaction in 3DOM Pt/TiO_2 catalysts was metal Pt which reduced from platinum ions. The results of HRTEM and catalytic stability tests indicated that the sintering of metal Pt particles was the reason for the catalyst deactivation. Chemical adsorption analysis on different 3DOM Pt/TiO_2 catalysts indicated that WGS reaction over the catalysts was structure sensitive. Adding CeO_2 can promote the formation of interaction between Pt and the support. Catalysts with 3DOM structure are potential way to realize the miniaturization of WGS reactor.
     Macroporous-monoliths of Pt/CeO_2/Al_2O_3 were prepared through inverse concentrated emulsions synthesis route. The macroporous materials exhibited a bimodal meso-macroporosity with macropores in size of 5~50μm, as shown in SEM images. The pore size can be adjusted by the volume fraction of dispersed phase and the amount of surfactant added. The macroporous monolith Pt/CeO_2/Al_2O_3 exhibited better catalytic performance that that of micro-channel Pt/CeO_2/Al_2O_3 catalyst for WGS reaction in simulating reformate gases. The converted amount of CO over monolith Pt/CeO_2/Al_2O_3 was much higher than that over micro-channel Pt/CeO_2/Al_2O_3 on per volume of catalysts, showing that the catalysts of the macroporous monolith are promising and much potential materials for the miniaturization of WGS reactor.
引文
[1]衣宝廉,燃料电池,北京:北京化学工业出版社,2000,1~10
    [2]燃料电池汽车氢源基础设施工程前期研究课题验收总报告,2002
    [3]欧晓佳,程极源,铁格系高(中)温变换催化剂的研究现状,化学研究与应用,1999, 11( 2), 126~131
    [4]陈五平,无机化工工艺学(一),合成氛,北京:化学工业出版社,1981, 10
    [5] Salmi T, Hakkarainen R, Kinetic Study of the Low-Temperature Water-Gas Shift Reaction over a Cu-ZnO Catalyst, Applied Catalysis,1989, 49( 2), 285~306
    [6] Takafumi Shido, Yasuhiro lwasawa, Reactant-promoted reaction mechanism for water-gas shift reaction on ZnO, as the genesis of surface catalysis, Journal of Catalysis,1991,129(2), 343~355
    [7] Vlaic G, Bart J C J, Cavigiolo W, et al., EXAFS study of Cu-ZnO/Al2O3 catalysts for the low-temperature CO shift reaction, Jounral of Catalysis,1985, 96(2), 314~325
    [8] Kusˇar H, Hocˇevar S, Levec J, Kinetics of the water-gas shift reaction over nanostructured copper-ceria catalysts, Applied Catalysis B: Environ, 2006, 63(3-4), 194~200
    [9] Quiney A S, Schuurman Y, Kinetic modeling of CO conversion over a Cu/ceria catalyst, Chemical Engieering Science, 2007, 62(18~20), 5026~5032
    [10] Boccuzzi F, Chiorino A, Manzoli M, et al., Gold, silver and copper catalysts supported on TiO2 for pure hydrogen production, Catalysis Today, 2002, 75(1-4),169~175
    [11] Ko J B, Bae C M, Jung Y S, et al., Cu-ZrO2 catalysts for water-gas-shift reaction at low temperatures, Catalysis Letters, 2005, 105(3~4),157~161
    [12] Basinska A, Domka F, Iron-ruthenium catalysts for the water-gas shift reaction, Catalysis Letters, 1993,17(3~4), 327~339
    [13] Utaka T, Okanishi T, Takeguchi T, Water gas shift reaction of reformed fuel over supported Ru catalysts, Applied Catalysis A: Gen, 2003, 245(2), 343~351
    [14] Andreeva D, Idakiev V, Tabakova T, et al., Low-temperature water-gas shift reaction on Au/α-Fe2O3 catalyst, Applied Catalysis A: Gen, 1996, 134(2),275~283
    [15] Andreeva D, Idakiev V, Tabakova T, Low-Temperature Water-Gas Shift Reaction over Au/α-Fe2O3, Journal of Catalysis, 1996, 158(1), 354~355
    [16] AndreevaD ,Tabakova T, Idakiev V, et al., Au/α-Fe2O3 catalysts for water-gas shift reaction prepared by deposition-precipitation, Applied Cataysis A:Gen,1998, 169(1), 9~14
    [17] Boccuzzi F, Chiorino A, Manzoi M, et al., FTIR Study of the Low-Temperature Water-Gas Shift Reaction on Au/ Fe2O3 and Au/ TiO2 Catalysts, Journal of Catalysis, 1999, 188(1), 176~185
    [18] Sakurai H, Ueda A, Kobay shi T, et al., Low-temperature water-gas shift reaction over gold deposited on TiO2, Chemical Communications, 1997, (3), 271~272
    [19] Andreeva D, Idakiev V, Tabakova T, et al., Low-temperature water-gas shift reaction over Au/CeO2 catalysts, Catalysis Today, 2002, 72(1-2), 51~57
    [20] Boccuzzi F, Chiorino A, Manzoi M, Gold, silver and copper catalysts supported on TiO2 for pure hydrogen production, Catalysis Today, 2002, 75(1-4), 169~175
    [21] Tabakova T, Idakiev V, Andreeva D, et al., Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO,Au/Fe2O3-ZrO2 catalysts for the WGS reaction, Applied Catalysis A: Gen, 2000, 202(1), 91~97
    [22]岳伟,张益群,周伟等,汽车尾气催化净化过程中的水煤气反应和蒸汽转换反应,工业催化,2 000,8 (5),29~30
    [23] Ihitington B, Jiang C J, Trimm D L, Vehicle exhaust catalysis:I , The relative importance of catalytic oxidation, steam reforming and water-gas shift reactions, Catalysis Today, 1995, 26( 1), 41~45
    [24]程极源,王龙书,助剂对铁系CO变换催化剂结构和稳定性影响的X-射线衍射研究,工业催化,1999, 7 (6), 57~61
    [25] Andreeva D, Idakiev V, Tabakova T, et al., Low-temperature water-gas shift reaction over Au/CeO2 catalysts, Catalysis Today, 2002, 72 (1-2),51-54
    [26] Li Yue, Qi,Fu Maria Flytzani-Stephanopoulos, Low-temperature water-gas shift reaction Over Cu- and Ni-loaded cerium oxide catalysts, Applied Catalysis B: Environ, 2000, 27 (3), 179~191
    [27] Qi F, Weber A, Flyizani-Stephanopoulos M, Nanosturctured Au-CeO2 Catalysts for Low-Temperature Water-Gas Shift, Catalysis Letters, 2001, 77(1-3), 87~95
    [28] Qi F, Saltsburg H, Flytzani-Stephanopoulos M, Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts, Science, 2003, 301, 935~938
    [29] Hilaire S, Wang X, Gorte R J, A comparative study of water-gas-shift reaction over ceria supported metallic catalysts, Applied Catalysis A: General, 2001, 215(1-2), 271~278
    [30] Wang X, Gorte R J, Wanger J P, Deactivation Mechanisms for Pd/Ceria during the Water-Gas-Shift Reaction, Journal of Catalysis, 2002, 212(2), 225~230
    [31] Ahmed S, Lee Sheldon H D, Carter J D, US 6713 040, 2003
    [32] URL: http://www.gmfuelcell.com/w_shoop/pdf/Andrew Bosco Gasoline (E) pdf Andrew Bosco, Current Status of Gasoline Reforming Activities
    [33]华金铭,郑起,林性贻等,水煤气变换催化剂研究新进展,分子催化, 2004, 18(1), 68~80
    [34]朱洪法,催化剂成型[M],北京:中国石化出版社, 1992, 184~189
    [35] Nakatsuji Tadao, Miyamoto Akira, Removal technology for nitrogen oxides and sulfur Oxides from exhaust gases, Catalysis Today, 1991, 10(1), 21~31
    [36] Baiker A, Dollenmeier P, et al., Selective catalytic reduction of nitric oxide with ammonia:Ⅱ.Monolayers of Vanadia Immobilized on Titania-Silica Mixed Gels, Applied Catalysis, 1987, 35(2), 365~380
    [37] Cybulski A, Moulijn J A, Structured catalysts and reactors., New York :Marcel Dekker, 1998
    [38] Zhu Hong -fa (朱洪法), Shaping Catal (催化剂成型), Beijin (北京): SIN OPEC Publisher (中国石化出版社), 1992, 184~189
    [39] Min En-ze (闵恩泽), Wu Wei (吴巍), GreenChemistry and Chemical (绿色化学与化工), Beijing (北京): Chem Ind Press (化学工业出版社), 2000, 117~128
    [40] Ciam belli P, Palma V, Tikhov F S, et al., Catalytic activity of powder and monolith perovskites in methane combustion, Catalysis Today, 1999, 47(1-4), 199~207
    [41] Hilmen M-A, Bergene E, Lindvag A O, et al., Fischer-Tropsch synthesis on monolithic catalysts of different materials, Catalysis Today, 2001, 69(1-4), 227~232
    [42] Sauer L M, Ollis F D, Acetone Oxidation in a Photocatalytic Monolith Reactor, Journal of Catalysis, 1994, 149(1), 81~91
    [43] Avila P, Bahamonde A, Blanco J, et al., Gas-phase photo-assisted mineralization of volatile organic compounds by monolithic titania catalysts, Applied Catalysis B: Environ, 1998, 17(1-2), 75~88
    [44] Tonkovich Y A, Zilka L J, La mont J M, et al., Microchannel reactor for fuel processing applications.Ⅰ. Water gas shift reactor, Chemical Engineering Science, 1999, 54(13-14), 2947~2951
    [45] Quiney A S, Germani G, Schuurman Y, Optimization of a water–gas shift reactor over a Pt/ceria/alumina monolith, Journal of Power Sources, 2006,160,1163~1169
    [46] Wolfgang R, Oleg I, Robert J, et al., A new generation of water gas shift catalysts for fuel cell applications Journal of Power Sources, 2003,118(1-2), 61~65
    [47] Srinivasan, Hsing R I, Berger P, et al., Micromachined reactors for catalytic partial oxidation re actions, AIChE Journal, 1997, 43 (11), 3059~3069
    [48] Janicke M T, Kestenbaum H, Hagendorf U, et al., The Controlled Oxidation of Hydrogen from an Explosive Mixtuer of Gases Using a Micorstructured Reactor/Heat Exchanger and Pt/Al_2O_3 Catalyst, Journal of Catalysis, 2000, 191(2), 282~293
    [49] Hsing I M, Srinivasan R, Harold M P, et al., Simulation of Micromachined Chemical Reactors for Heterogeneous Partial Oxidation Reactions, Chemical Engineering Science, 2000,55 (1), 3~13
    [50] Pfeifer P, Schubert K, Emig G,, Preparation of copper catalyst washcoats for methanol steam reforming in microchannels based on nanoparticles, Applied Catalysis A, 2005, 286(2), 175~185
    [51] Yu X H, Tu S T, Wang Z D, et al., On-board production of hydrogen for fuel cells over Cu/ZnO/Al_2O_3 catalyst coating in a micro-channel reactor, Journal of Power Sources, 2005,150, 57~66
    [52] Chen G. W, Yuan Q, Li S L, Microchannel Reactor for Methanol Autothermal Reforming, Chinese Journal of Catalysis, 2002, 23(6), 491~492
    [53] Dupont N, Germani G., Specificities of micro-structured reactors for hydrogen production and purification, International Journal of Hydrogen Energy, 2007,32, 1443~1449
    [54] Commenge J M, PhD thesis, Institute National Polytechnique de Lorraine, 2001
    [55] Gunther Kolb, Helmut Pennemann, Ralf Zapf, Water-gas shift reaction in micro-channels-Results from catalyst screening and optimization, Catalysis Today, 2005, 110(1-2), 121~131
    [56] Li K, Fu Q, Flytzani-Slephanopoulos M, Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts, Applied CatalysisB: Environ, 2000, 27(3), 179~191
    [57] Bunluesin T, Gorte R J, Graham G W, Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties, Applied Catalysis: B Environ, 1998, 15(1-2), 107~114
    [58] Hilaire S, Wang X, Luo T, et al., A comparative study of water-gas-shift reaction over ceria supported metallic catalysts, Applied Catalysis:A General, 2001,215(1-2), 271~278
    [59] Wang X, Gorte R J, The effect of Fe and other promoters on the activity ofPd/ceria for the water-gas shift reaction, Applied Catalysis: A General, 2003, 247(1), 157~162
    [60] Gorte R J, Zhao S, Studies of the water-gas-shift reaction with ceria-supported precious metals, Catalysis Today, 2005, 104(1), 18~24
    [61] Shido T, Iwasawa Y, Reactant-Promoted Reaction Mechanism for Water-Gas Shift Reaction on Rh-Doped CeO2, Journal of Catalysis, 1993, 141(1):71~81
    [62] Jacobs G, Chenu E, Patterson P M, et al., Water-gas shift: comparative screening of metal promoters for metal/ceria systems and role of the metal, Applied Catalysis A: Gen, 2004, 258(2), 203~214
    [63] Jacobs G, Crawford A, Williams L, et al., Low temperature water-gas shift: comparison of thoria and ceria catalysts, Applied Catalysis A: Gen, 2004, 267(1-2), 27~33
    [64] Choung S Y, Ferrandon M, Krause T, Pt-Re bimetallic supported on CeO2-ZrO2 mixed oxides as water-gas shift catalysts, Catalysis Today, 2005, 99(3-4), 257~262
    [65] Jacobs G, Graham U M, Chenu E, et al., Low-temperature water-gas shift: impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design, Journal of Catalysis, 2005, 229(2), 499~512
    [66] Goguet A, Shekhtman S O, Burch R, et al., Pulse-response TAP studies of the reverse water-gas shift reaction over a Pt/CeO2 catalyst, Journal of Catalysis, 2006, 237(1), 102~110
    [67] Sakurai H, Akita T, Tsubota S, et al., Low-temperature activity of Au/CeO2 for water gas shift reaction, and characterization by ADF-STEM, temperature-programmed reaction, and pulse reaction, Applied Catalysis A: Gen, 2005, 291(1-2), 179~187
    [68] Jacobs G, Chenu E, Patterson P M, et al., Water-gas shift: comparative screening of metal promoters for metal/ceria systems and role of the metal, Applied Catalysis A: Gen, 2004, 258(2), 203~214
    [69] Jacobs G, Ricote S, Graham U M, et al., Low temperature water gas shift: Type and loading of metal impacts forward decomposition of pseudo-stabilized formate over metal/ceria catalysts, Catalysis Today, 2005, 106(1-4), 259~264
    [70] Jacobs G, Patterson P A, Graham U M, et al., Low temperature water-gas shift: kinetic isotope effect observed for decomposition of surface formates for Pt/ceria catalysts, Applied CatalysisA: Gen, 2004, 269(1-2), 63~73
    [71] Derouane E G, Lenos F, Naccache C, et al., Zeolite Microporous Solids: Synthesis, Structure and Selectivity, Kluwer Academic,1992
    [72] Breck D W, Zeolite Molecular Sieves, John Wiley&Sons: New York, 1974
    [73] Beck J S, Vartuli J C, Roth W J, et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of America Chemistry Society , 1992, 114, 10834~10843
    [74] Takeichi T, Yamazaki Y, Zuo M, et al., Preparation of porous carbon films by the pyrolysis of poly(urethane-imide) films and their pore characteristics. Carbon, 2001, 39(2), 257~265
    [75] Velev O D, Jede T A, Lobo R F, et al., Porous silica via colloidal crystallization, Nature, 1999, 389, 447~448
    [76] Orlin D, Velev, Kaler E W, Structured Porous Materials via Colloidal Crystal Templating: From Inorganic Oxides to Metals, Advanced Materials, 2000(12), 531~534
    [77] Dmitry G, Shchukin, Rachel A C, Inorganic Macroporous Film from Preformed Nanoparticles and Membrane Templates: Synthesis and Investigation of Photocatalytic and Photoelectrochemical Properties, Advanced Functional Materials, 2003(13), 789~794
    [78] Zakhidov A A, Baughman R H, Igbal Z, et al., Carbon Structures with Three Dimensional Periodicity at Optical Wavelengths, Science,1998, 282, 897~901
    [79] Dong W, Bongard H J, Marlow F, New Type of Inverse Opals: Titania with Skeleton Structue, Chemistry of Materials, 2004,15(2), 568~574
    [80] Zhu G, Qiu S, Gao F, et al., Template-assisted Self-assembly of Macro-micor Bifunctional Porous Materials, Journal of Materials Chemistry, 2001,11(6), 1687~1693
    [81] Stein A, Schroden R C, Colloidal crysta1temPating of three-dimensionally ordered macroporous solids-materials for photonics and beyond, Current Opinion Solid State & Materials Science, 2001, 5(6), 553~564
    [82] Yan H W, Blandford C F, Holland BT, et al., General synthesis of Peirodic macroporous solids by templated salt precipitation and chemical conversion, Chemistry of Materials, 2002, 12(4), 1134~1141
    [83]邻泉周,尹强,廖菊芳等,硝酸盐制备三维有序大孔金属氧化物材料研究, .化学学报,2005,63(10),891~896
    [84]仪桂云,董鹏,王晓冬,三维有序大孔聚苯乙烯的制备及表征,物理学报,2004,53(10),3311~3315
    [85] Kuai S, Badilescu S, Bader G, et al., Preparation of Large–Area 3D Ordered Macroporous Titania Films by Silica ColloidalCrystal Templating, Advanced Materials, 2003,15(1), 73~75
    [86]郭伊荇,杨宇,胡长文等,三维有序大孔杂化材料SiW1l O 398 -SiO2和γ-S iWl0036'-S iO2的制备与表征,高等学校化学学报,2002, 23(11),2035~2039
    [87] Schroden R C, AI-Daous M, Sokolv Set al., Hybrid Macroporous Materials forHeavy Metal Ion Adsorption, Journal of Materials Chemistry, 2002,12, 3261~3267
    [88] Guan G Q, Ralf, Zapf, et al., Preferential CO oxidation over catalysts with well-defined inverse opal structure in microchannels, International Journal of Hydrogen Energy, 2008, 33(2),797~801
    [89] Lissant K J, A study of medium and high internal phase ratio water/polymer emulsions, Journal of Colloid Interface Science,1973, 42(1), 201~206
    [90] Princen H M, Highly concentrated emulsionsⅡReal systems, The effect of film thickness and contact angle on the volume fraction in creamed emulsions, Journal of Colloid Interface Science, 1979, 71(1), 55~66
    [91] Ruckenstein E, Kim K J, Polymerization in gel-like emulsions, Journal of Applied Polymer Science, 1988, 36(4), 907~920
    [92] Zhang C, Du Z, Li H, et al., High-rate polymerization of acrylonitrile And butyl acrylate based on a concentrated emulsion, Polymer 2002, 43(20), 5391~5396
    [93] Lissant K J, The geometry of high-intenral-phase-ratio emulsions, Journal of Colloid Interface Science, 1966, 22(5), 462~468
    [94] Ruckenstein E, Chen J H, Kinetically caused saturation in the deposition of cells-effects of saturation at the secondary minimum and of excluded area, Journal of Colloid Interface Science,1989,128 (2), 596~601
    [95] Sun F, Ruckenstein E, Preparation of high molecular weight monodisperse polystyrene la texes by concentrated emulsion polymerization, Journal of Applied Polymer Science, 1993, 48 (7), 1279~1288
    [96]杜中杰,张晨,励杭泉,反相浓乳液态法制备聚苯乙烯/二乙烯基苯结构型泡孔聚合物,高等学校化学学报,2002,23(8),1614~1617
    [97] Ruckenstein E, Li H, Toughened polystyrene composites by the concentrated emulsion patyway, Journal of Applied Polymer Science, 1994, 53(12), 1949~1958
    [98] Ruckenstein E, Park J S, New method for the preparation of thick conducting polumer composites, Journal of Applied Polymer Science, 1991, 42(4), 925~934
    [99] Park J S, Ruckenstein E, Selective permeation through hydrophobic-hydrophilic membranes, Journal of Applied Polymer Science, 1989, 38(3), 453~461
    [100] Sung H K, Suk-Woo Nam, Tae-Hoon Lim, et al., Effect of pretreatment on the activity of Ni catalyst for CO removal reaction by water–gas shift and methanation, Journal of Applied Catalysis B: Environ, 2008,81(1-2), 97~104
    [101] Luengnaruemitchai A, Osuwan S, Gulari E, Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2,Au/CeO2, and Au/Fe2O3catalysts, Catalysis Communication, 2003, 4(5), 215~221
    [102] Andreeva D, Idakiev V, Tabakova T, et al., Low-temperature water-gas shift reaction over Ai/CeO2 catalysts, Cataysis Today, 2002, 72(1-2), 51~57
    [103] Goerke O, Pfeifer P, Schubert K, Water gas shift reaction and selective oxidation of CO in microreactors, Applied Catalysis A: Gen, 2004, 263(1), 11~18
    [104] Shido T, Iwasawa Y, Reactant-Promoted Reaction Mechanism for Water-Gas Shift Reaction on Rh-Doped CeO2, Journal of Catalysis, 1993, 141(1), 71~81
    [105] Panagiotopoulou P, Papavasiliou J, Avgouropoulos G, et al., Water-gas shift activity of doped Pt/CeO2 catalysts, Chemical Engineering Journal, 2007, 134(1-3), 16~22
    [106] Goguet A, Meunier F C, Breen J P, et al., Study of the origin of the deactivation of a Pt/CeO2 catalyst during reverse water gas shift (RWGS) reaction, Journal of Catalysis, 2004, 226(2), 382~392
    [107] Xue E, O’Keeffe M, Ross J R H, Water-gas shift conversion using a feel with a low steam to carbon monoxide ratio and containing sulphur, Catalysis Today, 1996, 30(1-3), 107~118
    [108] Panagiotopoulou P, Kondarides D I, Effect of morphological characteristics of TiO2-supported noble catalysts on their activity for the water-gas shift reaction, Journal of Catalysis, 2004, 225(2), 327~336
    [109] Basin′skaa A, Manieckib T P, Jo′z′wiakb W K, Catalytic activity in water-gas shift reaction of platinum group metals supported on iron oxides, Reaction Kinetics and Catalysis Letters 2006, 89 (2),319~324
    [110]杨卫亚,郑经堂,张艳姝等,模板法制备三维有序大孔CeO2,中国稀土学报,2006,24(增刊),128~131
    [111] Hajime I, Akira I, Characterization of a Pt/TiO2(rutile) catalyst for water gas shift reaction at low-temperature, Applied Catalysis A: Gen 2006, 298, 152~160
    [112] Grenoble D C, Estadt M M, Ollis D F, The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts, Journal of Catalysis, 1981, 67(1), 90~102
    [113] Panagiotopoulou P, Kondarides D I, Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water-gas shift reaction, Catalysis Today, 2006, 112(1-4), 49~52
    [114] Wang W, Gorte R J, Wagner J P, Deactication Mechanisms for Pd/Ceria during the Water-Gas-Shift Reaction, Journal of Catalysis, 2002, 212(2), 225~230
    [115] Zhang C, He H, Tanaka K, et al., Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature,Applied Catalysis B: Environ, 2006, 65(1-2), 37~43
    [116] Panagiotopoulou P, Christodoulakis A, Kondarides D I, et al., Particle size effects on the reducibility of titanium dioxide and its relation to the water-gas shift activity of Pt/TiO2 catalysts, Journal of Catalysis, 2006(2), 240, 114~125
    [117] Epling W S, Cheekatamarla P K, Lane A M, Reaction and surface characterization of titania-supported Co, Pt and Co/Pt catalysts for the selective oxidation of CO in H2-containing streams, Chemical Engineering Journal, 2003, 93(1), 61~68
    [118] Pe′rez-Herna′ndez R, Go′mez-Corte′s A, Arenas-Alatorre J, et al., SCR of NO by CH4 on Pt/ZrO2-TiO2 sol-gel catalysts, Catalysis Today, 2005, 107-108, 149~156
    [119] Peng J, Wang S, Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures, Applied Catalysis B: Environ, 2007, 73(3-4), 282~291
    [120] de Resende N S, Eon J G, Schmal M, Pt-TiO2-γAl_2O_3 Catalyst:Ⅰ.Dispersion of Platinum on Alumina-Grafted Titanium Oxide, Journal of Catalysis, 1999, 183(1), 6~13
    [121] Iida H, Igarashi A, Structure characterization of Pt-Re/TiO2 (rutile) and Pt-Re/ZrO2 catalysts for water gas shift reaction at low-temperature, Applied Catalysis A: Gen, 2006, 303(2), 192~198
    [122] Azzam K G, Babich I V, Seshan K, et al., Single stage water gas shift conversion over Pt/TiO2-Problem of catalyst deactivation, Applied Catalysis A:Gen, 2008, 338(1-2), 66~71
    [123] Tabakova T, Boccuzzi F, Manzoli M, et al., FTIR study of low-temperature water-gas shift reaction on gold/ceria catalyst, Applied Catalysis A: Gen, 2003,252(1-2), 385~397
    [124] Wang X, Rodriguez J A, Hanson J C, et al., In situ time-resolved characterization of Au-CeO2 and AuOx-CeO2 catalysts during the water-gas shift reaction: Presence of Au and O vacancies in the active phase, Journal of Chemical Physics, 2005, 123, 221101-05
    [125] Fu Q, Deng W, Saltsburg H, Activity and stability of low-content gold–cerium oxide catalysts for the water–gas shift reaction, Applied Catalysis B: Environ, 2005, 56(1-2), 57~68
    [126] Jacobs G, Ricote S, Patterson P M, et al., Low temperature water-gas shift: Examining the efficiency of Au as a promoter for ceria-based catalysts prepared by CVD of a Au precursor, Applied Catalysis A: Gen, 2005, 292, 229~243
    [127] Bunluesin T, Gorte R J, Graham G W, Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties,Applied Catalysis B: Environ, 1998, 15(1-2),107~114
    [128] Epling W S, Cheekatamarla P K, Lane A M, Reaction and surface characterization studies of titania-supported Co, Pt and Co/Pt catalysts for the selective oxidation of CO in H2-containing streams, Chemical Engineering Journal, 2003, 93(1), 61~68
    [129] de Resende, N S, Eon J G, et al., Pt-TiO2-γAl_2O_3 Catalyst I Dispersion of Platinum on Alumina-Grafted Titanium Oxide, Journal of Catalysis, 1999, 183(1), 6~13
    [130] Tabakova T, Boccuzzi F, Manzoli M, Effect of synthesis procedure on the low-temperature WGS activity of Au/ceria catalysts, Applied Catalysis B: Environ, 2004, 49(2), 73~81
    [131] Goguet A, Meunier F, Breen J P, Study of the origin of the deactivation of a Pt/CeO2 catalyst during reverse water gas shift (RWGS) reaction, Journal of Catalysis, 2004, 226(2), 382~392
    [132] Wang X, Gorte R J, Wagner J P, Deactivation Mechanisms for Pd/Ceria during the Water-Gas-Shift Reaction, Journal of Catalysis, 2002, 212(2), 225~230
    [133] Wang X, Gorte R J, The effect of Fe and other promoters on the activity of Pd/ceria for the water-gas shift reaction, Applied Catalysis A : Gen, 2003, 247(1),157~162
    [134] Kundakovic L, Flytzani-Stephanopoulos M, Reduction characteristics of copper oxide in cerium and zirconium oxide systems, Applied Catalysis A:Gen, 1998, 171(1), 13~29
    [135] Qi X, Flytzani-Stephanopoulos M, Activity and Stability of Cu-CeO Catalysts in High-Temperature Water-Gas Shift for Fuel-Cell Applications, Industrial Engineering Chemistry Research, 2004, 43(12), 3055
    [136] Panagiotopoulou P, Papavasiliou J, Avgouropoulos G, et al., Water-gas shift activity of doped Pt/CeO2 catalysts, Chemical Engineering Journal, 2007,134(1-3),16~22