叶面喷施纳米硅增强水稻抗重金属毒害机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属在土壤中的累积、迁移和形态转化,导致土壤环境质量恶化,严重影响土壤圈的物质循环,并通过食物链危害人类的生命和健康。硅是自然界中非常丰富的元素,对处于逆境胁迫的植物具有特殊的营养生理功能。本研究拟采用纳米硅制剂作为硅源,尝试寻找一种更方便、可行、有效的利用硅的方法,并研究纳米硅制剂增强水稻抗重金属毒害的机理。
     采用盆栽实验比较了6个品种水稻在重金属复合污染条件下的生长情况和重金属积累差异以及叶面喷施纳米硅制剂的影响。在重金属Cd(5 mg/kg)、Pb(200 mg/kg)、Cu(250 mg/kg)和Zn(300 mg/kg)复合污染下,在水稻的不同生育期內(苗期、分蘖期、抽穗期)叶面喷施硅酸钠和正硅酸乙酯配制的纳米硅制剂(2.5 mM),促进了6个品种水稻的生长发育,增加了水稻地上部生物量,对常规稻的百粒重、单株有效穗数影响显著(P<0.05),叶面喷施纳米有机硅也显著增加杂交稻地上部生物量。无论是否叶面喷施纳米硅,四种金属元素的籽粒吸收系数顺序基本上表现为Cd最高,Pb最低,Cu、Zn居中,显示Cd具有较强的向籽粒迁移的能力。对重金属在水稻籽粒的吸收能力,不同品种间存在显著差异(P<0.05).叶面喷施硅制剂后,所有品种水稻重金属的吸收系数均趋向下降,在杂交稻中的下降幅度大于常规稻,叶面喷施有机硅的效果好于无机硅。
     在较高污染水平下,叶面喷施两种2.5 mM纳米硅制剂,显著提高“优优128”的水稻百粒重及单株穗重(P<0.05),并且显著降低籽粒中Cd、Pb、Cu、Zn的吸收量。随着Cd处理浓度的增高,叶面喷施硅对重金属在籽粒中积累的抑制效应越显著(P<0.05)。喷施较高浓度(5和10 mM)纳米硅有利于水稻的生长,对粒重和生物量的促进效应达显著水平(P<0.05)。10 mM以下的无机硅和有机硅配制的纳米硅制剂抑制水稻对重金属的吸收表现出浓度效应。同一浓度下,喷施有机硅源的纳米硅比无机硅源纳米硅的促进作用更大。
     通过水培实验,研究了叶面喷施纳米无机硅制剂(2.5 mM)对20μM镉胁迫处理14d的水稻幼苗营养生长、光合特性、质外体运输以及处理3d和14d后抗氧化系统的影响,并利用RT-PCR技术探讨了纳米硅制剂对镉处理3d水稻幼苗γ-谷氨酰半胱氨酸合成酶(γ-ECS)基因表达的影响。结果显示,叶面施硅可以改善镉胁迫所导致的水稻养分不平衡,改善水稻的生长。使水稻幼苗的生物量增加22%,株高增长8%,根系长度增长14%。叶面喷施纳米硅降低了Ca在水稻地上部的分布,使Cd胁迫植株的Ca在地上部的浓度恢复到对照水平。叶面施硅提高了Mg在水稻幼苗体内的浓度。在微量元素中,叶面施硅显著提高Cd胁迫的幼苗地上部zn、Fe和Cu浓度(P<0.05)。叶面喷施纳米硅降低了水稻幼苗对镉的吸收,并降低了其在地上部分布的比例;施硅处理的水稻幼苗木质部汁液中镉的浓度降低了32.7%。通过膜不浸透的荧光染料PTS(tri-sodiunl-8-hydfoxy-1,3,6-pyrenesulpbonate)的吸收实验证实,施硅可以减少水稻幼苗对PTS的吸收量,说明质外体运输路径通透性变小是施硅使地上部镉积累减少的原因之一。
     叶面喷施纳米硅有提高水稻幼苗净光合速率(Pn)、降低水稻幼苗蒸腾速率(Tr)的作用,但与对照相比差异不显著。在2QμM Cd存在下,施硅可显著缓解镉胁迫引起的过度蒸腾,提高了水稻幼苗对水分的利用率(WUE)。镉胁迫提高了水稻叶片的气孔导度,但叶肉细胞的光合活性降低,胞间CO_2浓度(Ci)升高;叶面喷施纳米硅增加了水稻幼苗叶肉细胞的光合活性,提高了水稻幼苗对CO_2利用率,使净光合速率Pn升高。
     叶面喷施纳米硅显著降低了镉胁迫引起的膜质过氧化程度(P<0.05),随处理时间延长,丙二醛(MDA)含量显著下降。叶面喷施纳米硅使水稻幼苗中还原型AsA含量比对照显著提高(P<0.05);总的AsA含量也表现为上升趋势;地上部AsA含量明显高于根系中含量。在镉处理后,水稻幼苗中总谷胱甘肽(GSH+GSSG)含量较对照显著下降(P<0.05)。而氧化型谷胱甘肽(GSSG)随处理时间延长显著增加(P<0.05),施硅后,总谷胱甘肽在水稻幼苗的地上部和根系含量均显著增加,氧化型谷胱甘肽随处理时间延长显著下降(P<0.05),而且GSH/GSSG在施用纳米硅后比例上升。叶面喷施纳米硅提高GR活性,且随时间延长,可以对镉胁迫引起的GR活性下降有显著缓解作用。叶面施硅初期抑制APX活性,随处理时间延长,APX活性比对照略有上升,但对镉胁迫下幼苗影响不显著。叶面喷施纳米硅后,SOD活性表现表现为先下降后上升,根系中的上升幅度要大于地上部。叶面施硅也提高了水稻POD活性,根系中的POD活性高于地上部。无论是否喷施纳米硅,CAT活性先降后升,但后期活性降低,地上部高于根系,说明叶面喷施纳米硅提高了水稻幼苗的抗氧化能力。
     镉胁迫使水稻幼苗的NPT含量上升(P<0.05),但增加幅度小于施硅对幼苗体内NPT含量的影响。利用半定量RT-PCR技术以及特异引物,扩增了水稻品种“优优128”根和叶片中γ-谷氨酰半胱氨酸合成酶(γ-ECS)基因转录产物。扩增片段经序列测定以及通过基因Bank Blast相似性检测分析,证实上述基因片段序列与水稻的gamma-glutamylCysteine synthctase基因序列具有很高的同源性,为99%。结果表明:Cd胁迫可以诱导水稻幼苗根部和叶片中γ-ECs基因的过量表达,而且这种诱导在根部更为显著,而叶面喷施纳米硅对γ-ECS基因表达的诱导作用说明叶面喷施纳米硅有利于水稻幼苗合成GSH提高对镉毒害的抗性。
The contamination of soils with metals is a major environmental problem throughout the world.Soils polluted with metals may threaten ecosystems and human health.Silicon is the second most abundant element on the surface of the earth,and there is increasing evidence that Si has a number of beneficial effects on plant growth under biotic and abiotic stresses.The crossing of inorganic chemistry,environmental chemistry,material chemistry and life science has formed a new study field to utilize environment matter and bio-nanometer matter in agriculture.In the present study,we try to use different nanometer silicon preparation sprayed onto the leaves of rice(Oryza sativa L.) under heavy metal stress,to find a efficient method in the utilize of silicon to reduce the uptake of heavy metal, and discover the mechanism.
     In pot experiment 1,six rice cultivars were planted in the soil artificially amended with multi-metals(Cd,5 mg/kg;Pb,200 mg/kg;Cu,250 mg/kg,Zn,300 mg/kg),and two kinds of nanometer Si preparation(from TEOS and sodium silicate were foliarly applied to investigate their effects on the growth of rice and heavy metals uptake in rice grains.Foliar application of nanometer silicon preparation can improve the growth of rice,significantly increase the biomass,weight of per 100 grains and spike number of per plant.The distribution of heavy metal in rice was root>shoot>grain.The uptake coefficient of heavy metal is Cd>Zn>Cu>Pb whether with or without silicon.Hybridize cultivars accumulated more Cd in grains than that of general cultivars but there is little difference between hybridize cultivars and general cultivars on the accumulation of Zn and Cu.Foliar application of nanometer silicon reduced the accumulation of all heavy metals and effect was more pronounced on hybride than on general cultivars.
     Pot experiment 2 was conducted to investigate the effects of foliar application of Si on heavy metals uptake in rice(cv.youyou 128) grain under Cd,Pb,Cu and Zn stress.Foliar. application of Si alleviated the toxicity of heavy metals on rice.Compared with application of inorganic Si,the application of organic Si was more positive in alleviating heavy metal toxicity.With the application of Si,the weight of per 100 grains,and weight of per spike were increased significantly(P<0.05),the accumulation of Cd,Pb,Cu,Zn in the grain were decreased significantly(P<0.05).The uptake coefficient and the accumulation of heavy metals in grains were also decreased.With the increasing of Cd concentration in soil,the alleviating of heavy metal toxicity by Si application increased.These results indicated that foliar application of Si was a propriety method of alleviating heavy metal toxicity and decreasing metals accumulation in rice.
     Foliar application of nanometer silicon at 5 mM and 10 mM significantly increased the weight of per 100 grains and biomass were significantly increased.The uptake of heavy metal decreased with increasing application rate of nanometer silicon preparation.The content of Zn and Pb was lower than the threshold concentrations for safely edible food. The application of Si reduced Cu concentration,which was lower than the safely edible threshold.But the Cd concentrion was slightly higher than the safely edible threshold.At the same application rate,organic nanometer silicon was more effective than inorganic nanometer silicon for improving rice growth and decreasing heavy metal accumulation.
     In the present study,solution culture experiments were also conducted to investigate the influence of 2.5 mM nanometer silicon preparation on growth of rice seedlings under 20μM Cd stress.The results showed that.Si application significantly alleviated the toxicity of Cd in rice.Si reduced the distribution of Ca in the shoots,increased the Mg,Zn,Fe and Cu concentration(P<0.05),increased chlorophyll content,promoted the growth of rice and increased the biomass of the plants.Application of Si increased Pn and WUE,but decreased Tr,Gs and Ci in leaves of rice seedlings under Cd stress.
     Si decreased Cd content in the shoots and roots of rice.The concentration of Cd in xylem and the translocation of Cd from roots to shoots were decreased by Si application. The results of applastic fluorescence tracer PTS(trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid) showed the significant reduction of apoplastic transport in nanometer silicon preparation applied plants,and the reduction of fluorescence was more than that of Tr reduced by the application of nanometer silicon,this suggested that Si restrained the apoplastic transport of Cd and alleviated the toxicity of Cd.
     Si decreased the content of MDA content and affected the activity of activities of SOD, POD,CAT,APX and GR.Activity of SOD in shoots was increased under short-time Cd stress,but decreased later.Activity of SOD in roots was decreased under short-time Cd stress,but increased later.The application of silicon decreased the activity of SOD.Cd stress and silicon increased activity of POD.The activity of POD in roots was higher than that in shoots.Activity of CAT in shoots was increased under short-time Cd stress,but decreased later.Application of silicon increased the activity of CAT in both of shoots and roots.Activity of GR was decreased by Cd,but was increased by silicon.Activity of APX was little affected by Cd or silicon.Total ascorbate,total GSH,the ration of GSH/GSSG was increased by the application of silicon.
     NPT content was increased in the nanometer silicon preparation applied rice seedlings. So transcription amount for the key enzyme regulating GSH production(γ-ECS) was detected and the result showed that transcription amount forγ-ECS was increased both under Cd stress and silicon application.GSH played a role in Cd tolerance and silicon increased GSH production.
引文
1. Agarie S H U, Hanaoka N, Ucho O. Effect of silicon on transpiration and leaf conductance in rice plants, Plant Prod Sci. 1998,2: 89-95
    2. Ahmad R, Zahccr SH, Ismail S. Role of silicon in salt tolerance of wheat, Plant Sci. 1992, 85: 43-50
    3. Baker A J M. Metal tolerance, New Phytol. 1987,106 (Suppl): 93-111
    4. Baker AJM. McGrath SP, Sidoli CM D, et al. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants Resources , Conservation and Recycling. 1994,11:41-49
    5. Barcelo J, Guevara P, Poschenrieder C. Silicon amelioration ofalumium toxicity in teosinte ( Zea mays L. ssp. Mexicana), Plant Soil. 1993,154: 245-255
    6. Belanger R R, Bowen P A, Ehret D.L. Soluble silicon: its role in crop and disease management of greenhouse crops, Plant Dise. 1995, 79: 329-336
    7. Blaylock M J, Salt D E, Dushenkov S. et al. Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents, Environmental Science and Technology. 1997,31: 860-865
    8. Bleecker A B, Kende H. Ethykene: A gaseous signal moleculer in plants, Annu Rev Cell Dev Boil. 2000,16:1-18
    9. Bowen P, Menzies J G, Emartin FG. Multi-yeat response of sugarcane to calcium silicate slag on Everglades Histosols, Arron J. 1991,117: 371-375
    10. Brune A, Yrbach W, Dietz K J. Copartmentation and transport of zinc tolerance, Plant Cell Environ. 1994,17:153-162
    11. Brune A, Yrbach W, Dietz K-J. Differential toxicity of heavy metal is partly related to a loss of preferential extraplasmic compartmentation: a comparison of Cd-, Mo-, Ni- and Zn-stress, New phytol. 1995,129: 403-409
    12. Calyvez LA. Science Technologie de france, Numero Special. Environment. 1994,1: 30
    13. Chen H J, Hou W, Yang C Y, et al. Molecular cloning of two metalothionein -like protein genes with differential expression patterns from sweet potato (Ipomoea batatas) leaves, J Plant Physiol. 2003,160: 547-555
    14. Chen H M, Zheng C R, C Tu, et al. Chemical methods and phytoreme-diation of soil contaminated with heavy metals, Chemosphere. 2000, 41: 229-234
    15. Chen J, Goldsbrough PB. Increase activity of γ-glutamylcysteine synthetase in tomato cells seleted for cadmium tolerance.Plant Physiol,1994,106:233-239
    16.Cherif M,Asse lin A,BelangerR R.Defense responses induced bu soluble silion in cucumber roots infectedc by Pythium spp,Phytopathology.1994,84:236-242
    17.Clemens S.Molecular mechanisms of plant metal tolerance and homeostasis,Planta.2001,212:475-486
    18.Cocker K M,Evans D E,Hodson E M.The amelioration of aluminium toxicity by silicon in wheat:malate exudation and evidence for an in planta mechanism,Planta.1998,204:318-323
    19.Das P,Samantaray S,Rout GR.Studies on cadmium toxicity in plants:a review,Environ Pollut.1997,98:29-36
    20.Datnoff L E,Deren C W,Snyder G H.Silicon fertilization for disease management of rice in Glorida,CropProtect.1997,16:525-531
    21.David C H,Janick F A,Raina M M.Removal of cadmium,lead,and zinc from soil by a rhamnolipid biosurfactant.Environ.Sci.Technol.1995,29:2280-2285
    22.Di M T.Delfine S.Pizzute R,et al.Free amino acids and glycine betaine in leaf osmoregulation of eninnrh rPCnnndino to increasing salt stress,New Phytologist.2003,158:455-463
    23.Epstein E.Silicon Annual Review.Plant Physiol.Plant Mol Biol,1999,50:641- 664
    24.Epstein E.The anomaly of silicon in plant biology,Pro Natl Acad Sci USA.1994,91:11-17
    25.Eva-Mari A,Mccaffery S,Anderson J M.Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances,Plant Physiol.1993,103:835-843
    26.Foy C D,Chaney R L,White M C.The physiology of metal toxicity in plants.Annual Review of Plant Physiology.1978,29:511-566
    27.Galvez L,Clark R B,Gourley L M,et al.Silicon interaction with manganese and aluminium toxicity in sorghumb,Journal of Plant Nutrition.1987,10:1139-1147
    28.Gassman W,Ruvio F,Schroeder J I.Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1,Plant J.1996,10:869-952
    29.GB15201 -94,食品中铅限量标准[S]
    30.GB2713 -81,食品中铜限量标准[S]
    31.GB2715-81,食品中锌限量标准[S]
    32.GB5199 -94,食品中镉限量标准[S]
    33.Grcman H,Velikonja-Bolta S,Vodnik D,et al.EDTAenhanced heavy metal phytoextration:metal accumulation,leaching and toxicity,Plnat Soil.2001,235:105-114
    34.Grill E,Winnacker E-L,Zenk MH.Phytochelatins,a class of heavy-metal-binding peptides from plants are functionally analogous to metallothioneins,Proc Natl Acad Sci USA.1987,84:439-443
    35. Hall J L. Cellular mechanism for heavy metal detoxification and tolerance, J Exp Bot. 2002, 53: 1-11
    36. Hammond K E, Evans D E, Hodson M J. Aluminum /silicon interaction in barley (Hordeum vulgare L.) seedlings, Plant Soil. 1995,173: 89-95
    37. Hanson A, David T, Sabatin A. Transport and Remediation of Subsurface Contaminants, Washington D C: American Chemical Society. 1992:108-120
    38. Hartje S, Zimmermann S, Klonus D, et al. Functional characterization of LKT1, a K~+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K~+ channel SKT1 after expression in Xenopus oocytes, Planta. 2000,210: 723-731
    39. Hassanin A S E. Potential Pb, Zn, Cd and B contamination of sandy soil after different irrigation periods with sewage effluent, Water Air Soil Pollution. 1993,66:239-249
    40. Hell R, Bergmann L. γ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular location.1990,180: 603-612
    41. Hendny G A F, Beker A J M, Wart C F E. Cadmium tolerance and toxicity: Oxygen radical processes and molecular damage in cadmium tolerant and cadmium sensitive of Holcus lanatus L, Acta Bol Necrl. 1992, 41: 271-281
    42. Horiguchi T, Morita S. Mechanism of manganese toxicity and tolerance of plants .IV.Effectof silicon on alleviation of manganese toxiciry of barley, J Plant Nutr. 1987,10: 2299-2310
    43. Horst W J, Marschner H. Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.), Plant and Soil. 1978, 50: 287-303
    44. Horst WJ, Fecht M, Naumann A, et al. Physiology of manganese toxiciry and tolerance in vigan unguiculaa, J Plant Nutr Soil Sci. 1999,162: 263-274
    45. Iwasaki K, Matsushima A. Effect of solicon on alleviation fomanganese toxitity in pumpkin, Soil Sci Plant Nutr. 1999, 45: 909-920
    46. Iwasaki K, Maier P, Fecht M, et al. Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata L. walp), Plant Soil. 2002,238: 281-288
    47. Iwasski K, Matsumura A. Effect of silicon on alleviation of manganese toxicity in pumpkin (Cucurbita moschata Duch cv. Shintosa), Soil Sci Plant Nutr. 1999, 45: 909- 920
    48. Jones L H P, Handrech K A. Silica in Soils, plants and animals, Adv Aron. 1967,19: 107-149
    49. Kidd P S, Llugany M, Poschenrieder C, et al. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.), J Exp Bot. 2001, 52: 1339-1352
    50. Kinrade SD. Stable five-and six-coordinated silicate anions in aqueous solution, Science. 1999, 285: 1542-1545
    51. Knight B, Zhao F J, McGrath S P, et al. Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soils solution, Plant and Soil. 1997,197: 71-78
    52. Kozo I, Peter M, Marion F, et al. Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.)Walp.), Plant and Soil. 2002,238: 281-288
    53. Kramer U, Cotter-Howells J D, Charock JM, et al. Free histidine as a metal chelator in plants that accumulation nickel, Nature. 1996, 379: 635-638
    54. Lageman R. Electroreclamation: Applications in the Netherlands, Environ Sci Thechnol. 1993, 27 13: 2648-2650
    55. Lavid N, Barkay Z, Tel-Or E. Accumulation of heavy metals in epidermal glands of the waterlily (Nymphaeaceae), Planta. 2001, 212: 313-322
    56. Liang Y C, Shen Q R, Shen ZG, et al. Effect of silicon on salinity tolerance of two barley cultivars, J Plant Nutr. 1999,19:173-183
    57. Liang Y C, Yang C, Shi H. Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminium, Journal of Plant Nutrition. 2001, 24:1-15
    58. Liang Y C. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress, Plant Soil. 1999, 209: 217-224
    59. Liang Y C, Wong J W C, Wei L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil, Chemosphere. 2005, 58: 475-483
    60. Lin C C, Kao C H. Effect of NaCl stress on H_2O_2 metabolism in rice leaves, Plant Growth Regul. 2000, 30:151-155
    61. Lou L Q, Shen Z G, Li X D. The copper tolerance mechanism of Elsholtzia haichowensis, a plant from copper-enriched soils, Environ Exp Bot. 2004, 51:111-120.
    62. Loupassaki M H, Chartzoulakis K S, Digalaki N B, et al. Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots, of cix olive cnltivar, J Plant Nutr. 2002, 25 (11): 2457-2482
    63. Lovely D R. Microbial reduction of iron, manganese, and other metals, Advances in Agronomy. 1995,54:175-23
    64. Lu C M, Qiu N W, Lu Q T. Photoinhibition and the xanthophyll cycle are not enhanced in the salt-accumulated halophyte Artimisia anethifilia, Physiol Plant. 2003, 118: 532-537
    65. Luo CL, Shen ZG, Li XD. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS, Chemosphere. 2005,59:1-11
    66. Ma J F, Goto S, Tamai K, et al. Role of root hairs and lateral roots in silicon uptake by rice, Plant Physiol. 2001,127:1773-1780
    67. Ma J F, Ryan P R, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids, Trends Plant Sci. 2001, 6: 273-278.
    68. Ma J F, Takahashi E. Effect of silicic acid on phosphorus uptake by rice plant, Soil Sci Plant and Nutr. 1989,35:227-234
    69. Ma J F, Takahashi E. Effect of silicon on the growth and phosphorus uptake of rice, Plant Soil. 1990, 126:115-119
    70. Ma J F, Takahashi E. Soil, fertilizer, and plant silicon research in Japan. Elsevier Science. 2002
    71. Ma J F, Takahashi E. The effect of silicic acid on rice in a P-deficient soil, Plant Soil. 1990, 126: 121-125
    72. Ma J F, Yamaji N. Silicon uptake and accumulation in higher plants, Trends in Plant Sci. 2006,11: 392-397
    73. Ma J F, Zheng S J, Mastsmmoto H. Detoxifying aluminium with buckwheat, Nature. 1997, 390: 569-570
    74. Ma J F, Tamai K, Yamaji N,et al. A silicon transporter in rice, Nature. 2006,440: 688-691
    75. Ma J F, Takahashi E. Effect of silicic acid on phosplunrus uptake by rice plant, Soil Sci. Plant Nutr. 1989, 35: 227-234
    76. Marschner H, Part I. Nutritional physiology. In: Mineral Nutrition of Higher Plants. Marschner H. (ed), Aca-demic Press Limited, London. Second edition. 1995: 18-30, 406-417, 299-300, 662-665
    77. Matoh T, Kairusmee P, Takahashi E. Salt -induced damage to rice plants and alleviation effect of silicate, Soil Sci Plant Nutr. 1997, 32: 295-304
    78. Menzies J, Bowen P, Ehret D. Foliar application of potassium silicate reduces severity of powdery mildew on cucumber,muskmelon,and zucchini aquash, Am Soc Hortic Sci. 1992,117: 902-905
    79. Mera M U, Beveridge T J. Mechanism of silicate binding to the bacterial cell wall in bacillus subtilis, Journal of Bacteriology. 1993,175: 1936-1945
    80. Mitsui S, Takatoh H. Nutritional study of silicon in graminaceous crop (Part2) Studies in the preparation of radioactive silicon and its utilization for the cvaluation of silicon function in crops, Sci.Soil and Manure. Jpn. 1961, 32: 338-341
    81. Mitsui S, Takatoh H. Nutritional study of silicon in graminaceous crop (Part3). The effect of metabolic inhibitors on the silicon uptake by rice plants, J. Sci.Soil and Manure.Jpn. 1962, 33: 449-452
    82. Miyake K, Takahashi E. Effect silicon on the growth of silicophile plant. Comparative studies on the silica nutrition in plants (Part 9). J Soil Sci. Manure, Jpn. 1976,47: 375-382
    83. Monni S, Salemaa M, White C. Copper resistance of Calluna Vulgaris originationg from the pollution gradient of a Cu-Ni Smelter, in Southwest Finland. Eviron Pollut. 2000,109: 211-219
    84. Monni S, Uhlig C, Hansen E, et al. Ecophysiological responses of Empetrum nigrum to heavy metal pollution, Environ Pollut. 2001,112:121-129
    85. Neumann D, Nieden U Z, Schwieger W, et al. Heavy metal tolerance of Minuartis Verna, J Plant Physiol. 1997, 151:101-108
    86. Neumann D, Zurnieden U. Silicon and heavy metal tolerance of higher plants, Phytochemistry. 2001, 56: 685-692
    87. Noctor G, Strohm M, Jouanin L, et al. Synthesis of glutathione in leaves of thansgenic poplar overexpressing γ-glutamulcucteine synthetase, Planta. 1996,112:1071-1078
    88. Ohyama N. Amelioration of cold weather damage of rice by silicate fertilizer application, Agric Hortic. 1985, 60:1385-1389
    89. Okuda A, Takahashi E. Studies on the physiological role of silicon in crop plant (Part1) On the method of silicon-free culture, J Soil Sci Manure. 1961, 32: 475-480
    90. Okuda A, Takahashi E. Studies on the physiological role of silicon in crop plant (Part8). Some examination on the specific behavior of low land rice in silicon uptake, J Soil Sci Manure. 1962, 33: 217-221
    91. Okuda A, Takahashi E. Studies on the physiological role of silicon in crop plant (Part9). Effect of various metabolic inhibitors on the silicon yptake by rice plant. 1962, 33: 453-455
    92. Ouerghi Z, Comic G, Roudani M, et al. Effect of NaCl on photosynthesis of two wheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt stress, Journal of Plant Physiol. 2000,156:335-340
    93. Parry D W, Hodson M J, Sangster A G Some recent advances in studies of silicon in higher plants, Phil Trans R SOC Lond B Biol Sci. 1984, 304: 537-549
    94. Paul R, Lucas B, Jan J. Cathrina draaisma potentials and drawbacks of chelate enhanced phytoremediation of soils, Environmental pollut. 2002, 116: 109-121
    95. Richman P G, Meister A. Regulation of γ-glutamylcysteine synthetase by non-allosteric feedback inhibition by hlutathione, J Bio Chem. 1975, 250: 1422-1426
    96. Rogalla H, Romheld V. Role of leaf apoplast in silicon - mediated' manganese tolerance of Cucumis sativus L,Plant Cell Environ.2002,25:549- 555
    97.Ruegsegger A,Brunold C.Effect of cadmium on γ-glutarnylcysteine synthesis in maize seedlings,Plant Physiol.1992,99:428-433
    98.Ruegsegger A,Schmutz D,Brunold C.Regulation of glutathione synthsis by cadmium in Pisum sativum L.,Plant Physiol.1990,93:1957-1584
    99.Rugh CL,Wilde liD,Stacck N M,et al.Mercuric ion reduction and resistance in trangenic A rabidopsia thaliana plants expressing modified bacterial merA gene,PNAS.1999,93:3182-3187
    100.Sahai N,Tossell J A.Si NMR shifts and relative stabilities calculated for hypercoordinated silicon-polyacohol complexes:role in sol-gel and biogenic silica synthesis,Inorg Chem.2002,41:748-756
    101.Salt D E,Prince RC,Pickering IJ,et al.Mechanisms of cadmium mobility and accumulation in Indian mustard,Plant Physiol.1995,109:14427-1433
    102.Sarant N K,Snyder G H,DatnoffL E.Silicon management and sustainable rice production,Adu Agro.1997,58:151-199
    103.Sav H,Christopher J.Intergrated in situ soil remediation technology:The Lasagna Process,Environ Sci Technol.1995,29:2528-2534
    104.Schafer H J,Greiner S,Ransch T,et al.In seedlings of the heavy metal accumulator Brassica juncea Cu~(2+) differentially affects transcripts amounts for γ-glutamylcysteine synthetase(γ-ECS) and metallothionein(MT2),FEBS Lett.1997,404:216-220
    105.Scheller H V,Huang B,Hatch E,et al.Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells,Plant Physiol.1987,85:1031-1035
    106.Shen Z G.Zhao F J,McGrath S P.Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum,Plant Cell and Envir.1997,20:898-906
    107.Shi X H,Zhang C C,Wang H,et al.Effect of Si on the distribution of Cd in rice seedlings,Plant Soil.2005,272:53-60
    108.Shimoyama S.Effect of silicon on lodging and wind damage in rice,Report for the Research Funds Granted by Ministry of Agriculture,Japan,1958
    109.Sillanpaa M,Virkutyte J.用电动纠正法去土壤金属研究.中国水土保持,2002,7:20
    110.Stohs S J,Bagchi D.Oxidative mechanisms in the toxicity of metal ions,Free Rad Biol Med.1995,18:321-336
    111.Strigel.Mineralstoff aufnahme verschiedener P flanzenarten aus ungedungtem Boden.Landwirtsch Jb.1912,43:349-371 112. Strohm M, Jouanin L, Kunert K-J, et al. Regulation of glutathione synthesis in leaves of transformed plplar (Populus tremula x P.alba) overexpressing glutathione synthetase, The Plant J. 1995, 7:141-145
    113. Sun Q, Ye Z H, Wang X R, et al. Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator, Phytochemistry. 2005, 66: 2549-2556
    114. Takahashi E. Effect of co-existing inorganic ions on silicon uptake by rice seedling, Comparative studies on silica nutrition in plants (Part20), J Soil Sci Plant Nutr. 1982, 53: 271-276
    115. Takahashi E, Matsumoto H, Syo S, et al. Effect of germanium on the growth of plants with special reference to the silicon nutrition (Part3), J Soil Sci Manure. 1976, 47: 217-221
    116. Takahashi E, Miyake Y. Distribution of silica accumulator plants in the plant kingdom (1) Monocotyledons, J Soil Sci Manure. 1976, 47: 296-300
    117. Takahashi E, Miyake Y. Distribution of silica accumulator plants in the plant kingdom (2) Dicoryledons. 1976, 47: 301-306
    118. Takahashi E, Miyake Y. Distribution of silica accumulator plants in the plant kingdom (3) Gymnospermae, Pteridophyta and Bryophyta. 1976c, 47: 333-337
    119. Takahashi E, Nishi T. Effects of nutritional conditions on the silicon uptake by rice plants. Comparative studies on silica nutrition in plants (Part21) J Soil Sci Plant Nutr. 1982,53: 395-401
    120. Takahashi E, Okuda A. Studies on the physiological role of silicon in crop plant (PartlO). Effect of some sugars and organic acids on silicon uptake by rice plant, J Soil Sci Plant Nutr. 1963, 34: 114-118
    121. Takahashi E, Hino K. Silica uptake by plant with special reference to the forms of dissolved silica, J Soil Sci Manure. 1978, 49: 357-360
    122. Tamai K, Ma J F. Characterization of Si uptake by rice roots, New Phytologist. 2003,158: 431-436
    123. Toppi LS, Gabbrielli R. Response to cadmium in higher plants, Environ Exp Bot. 1999, 41:105-130
    124. Van A F, Clijsters H. Effect of metal on enzyme activity in plants, Plant Cell Environ. 1990, 13: 195-206
    125. Vander Z B J, Neuteboom L W, Pinas J E, et al. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation, Plant Physiol. 1999,119: 1047-1055
    126. Verleij J A C, Koevoets P L M, Mechteld M A, et al. Evidence for an important role of the tonoplast in the mechanisms of naturally selected zinc tolerance in Silene vulgaris, J Plant Physiol. 1998, 153: 188-191
    127. Wang J, Naser N. Improved performance of carborn paste amperneric biosensors through the incorporation of fumed silica,Electaosnalysis.1994,6:571-575
    128.Wanger G J.Accumulation of cadmium in crop plants its consequences to human health,Adv Agron.1993,51:173-212
    129.White C N,Rixin C J.Characterization and expression of a cDNA encoding a seed-specific metallothionein in maize,Plant Physiol.1995,108:831-832
    130.Williams D E,Vlamis J.The effect of silicon on yield and manganese-54 uptake and distribution in the leaves of barley grown in culture solution,Plant Physiol.1957,32:404-409
    131.Yeo A R,Flowers S A,Rao G,et al.Silicon reduces sodium uptake in rice(Oryza sativa L.) in saline condition and this is accounted for by a reduction in the transpirational bypass flow,Plant Cell Environ.1999,22:559-565
    132.Yoshida S,Ohnishi Y,Kitagishi K.Chemical forms,mobility and deposition of silicon in rice plant.Soil Sci Plant Nutr.1962,8:15-21
    133.Yoshida S,Ohnishi Y,Kitagishi K.The chemical nature of silicon in rice plant,Soil and Plant Food.1959,5:23-27
    134.白宝璋,徐克章,赵景阳.植物生理学(上:理论教程).北京:中国农业科技出版社,2003:243-249,262-263
    135.蔡德龙,陈常友,小林均.硅肥对水稻镉吸收影响初探.地域研究与开发,2000,19:69-71
    136.蔡汉泉.为什么广州近郊土壤污染严重.环境.1984,9:20-21
    137.陈 涛,吴燕玉,孔庆新.农业镉污染与防治.生态学杂志,1985,2:24-30
    138.陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996,115-125
    139.陈怀满.我国土壤污染现状,发展趋势及其对策建议.土壤学进展,1990,18:53-56
    140.陈秀芳,赵秀兰,夏章菊等.硅缓解小麦镉毒害的效应研究.西南农业大学学报,2005,27:447-450
    141.陈玉成.土壤污染的生物修复.环境科学动态,1999,2:7-11
    142.陈志良,仇荣亮.重金属污染土壤的修复技术.环境保护,2001,8:17-19
    143.褚贵新,任 岗.重金属污染土壤的植物修复技术的研究进展.石河子大学学报(自然科学版),2001,5:342-346
    144.丁海东,万延惠,齐乃敏,等.镉和锌对番茄幼苗抗氧化酶活性的影响.仲恺农业技术学院学报,2004,17:37-41
    145.段碧华,王红英,韩保平等.环境土壤学发展趋势及展望.北京农学院学报,1998,13:78-81
    146.冯东昕,李宝栋.可溶性硅在植物抵御病害中的作用.植物病理学报,1998,28:293-297
    147.高 粱.土壤污染及其防治措施.农业环境保护,1992,11:272-273
    148.高柳青,杨树杰.硅对小麦吸收镉锌的影响及其生理效应.农业环境科学,2004,20:246-249
    149.高太忠,李景印.土壤重金属污染研究与治理现状.土壤与环境,1999,8:137-140
    150.宫海军,陈坤明,陈国仓等.硅对小麦生长及其抗氧化酶系统的影响.土壤通报,2003,34:55-57
    151.郭书奎,赵可夫.NaCl胁迫抑制玉米幼苗光合作用的可能机理.植物生理学报,2001,27:461-467
    152.华珞,陈承慈,刘全义.土壤污染的治理方法研究.农业工程学报,1992,8(增刊):90-99
    153.华中一.纳米科学与技术。科学,2000,52:6-10
    154.蒋明义,郭少川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用.植物生理学通讯,1996,32:144-150
    155.客绍英.植物修复金属污染土壤的行为及应用前景.生物学教学,2001,26:2-3
    156.李惠英.铬污染土壤施入有机肥的改良效果.农业环境保护,1992,11:236-237
    157.李清芳,周秀杰,马成仓.硅对小麦幼苗几项生理生化性质的影响.淮北煤炭师院学报,2001,22:37-40
    158.李天杰.土壤环境学-土壤环境污染防治与土壤生态保护.北京:高等教育出版社,1995
    159.李永涛,吴启堂.土壤重金属污染治理措施综述.热带亚热带土壤科学,1997,6:134-139
    160.梁永超,张永春,马同生.植物的硅素营养.土壤学进展,1993,21:7-13
    161.林植芳,李双顺,林贵珠,等.水稻叶片衰老与超氧物歧化酶及脂质过氧化作用的关系.植物学报,1984,26:605-608
    162.刘 绮,宁晓宇.丹东地区农业土壤污染及防治研究.环境科学进展,1993,11:29-41
    163.刘彩云.不同硅源制剂对小麦白粉病的作用效果及机理研究.甘肃农业大学硕士论文,2002
    164.刘秀梅,聂均华,王庆仁.植物修复中金属污染土壤的研究进展.甘肃农业大学学报,2001,36:8-13
    165.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999
    166.罗立新,孙铁珩,靳月华.镉胁迫下小麦叶中超氧自由基的积累.环境科学学报,1998,18:495-499
    167.马同生.我国水稻土硅素养分与硅肥施用研究现况.土壤学进展,1990,18:1-5
    168.潘瑞炽,董愚得.植物生理学.第三版,高等教育出版社,北京,1995
    169.秦淑琴,黄庆辉.硅对水稻吸收镉的影响.新疆环境保护.1997,19:51-53
    170.秦天才,吴玉树,王焕校.镉、铅对小白菜生理生化特性的影响.生态学报,1994,14:46-49
    171.饶立华等.硅对杂交水稻形态结构和生理的效应,植物生理学通讯,1986,3:20-24
    172.桑伟莲,孔繁翔.植物修复研究进展.环境科学进展,1999,7:40-44
    173.邵胜国,Muhammad J H,章秀福等.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响.中国水稻科学,2004,18:239-244
    174.沈振国,陈怀满.土壤重金属污染生物修复的研究进展.农村生态环境,2000,16:39-44
    175.沈振国,刘友良,陈怀满.螯合剂对重金属超量积累植物Thlaspi caerulescens锌、铜、锰和铁吸收的影响.植物生理学报,1993,24:340-346
    176.施农农,贾秀英,陈志伟.镉中毒水稻苗期体内总蛋白量和POD、CAT活性的变化.土壤,2000,32:125-129
    177.史新慧,水稻硅结合蛋白的鉴定及功能研究.中国农业大学硕士学位论文,2005
    178.史新慧,王贺,张福锁.硅提高水稻抗镉毒害机制的研究.农业环境科学学报,2006,25:1112-1116
    179.束良佐,刘英惠.硅对盐胁迫下玉米幼苗叶片膜脂过氧化和保护系统的影响.厦门大学学报(自然科学版),2001,40:1295-1300
    180.宋菲,郭玉文,刘孝仪,等.镉、锌、铅复合污染对菠菜的影响.农业环境保护,1996,15:9-14
    181.孙吉林,将玉根.农艺措施治理重金属严重污染农田土壤效果初探.农业环境与发展,2002,1:32-33
    182.汤国林,卢荣,陶其骤等.力口快硅肥推广应用十分必要.江西农业科技,1999,1:39-41
    183.唐永康,曹一平.喷施不同形态硅对水稻生长与抗逆性的影响.土壤肥料,2003,2:16-20
    184.万云兵,仇荣亮,陈志良,等.重金属污染土壤中提高植物提取修复功效的探讨.环境污染治理技术与设备,2002,3:56-59
    185.汪雅各.客土改良蔬菜区重金属污染土壤.上海农业学报,1990,3:50-55
    186.王 果,陈建斌.稻草和紫云英对土壤外源铜的形态及生态效应的影响.生态学报,1999,19:551-556
    187.王爱国,邵从未,罗广华.丙二醛作为植物脂质过氧化指标的探讨.植物生理学通讯,1986,2:55-57
    188.王宏树,窦争霞,剑树范.日本土壤的重金属污染及其对策.农业环境保护,1987,6:33-36
    189.王凯荣,陈朝明.镉污染农田农业生态整治与安全利用模式.中国环境科学,1998,1:97-101
    190.王荔军,郭中满,李铁津,李敏生物矿化纳米结构材料与植物硅营养.化学进展,1999,11:119-127
    191.王荔军,王运华,周益林,等.纳米结构SiO_2与植物真菌病害发生的关系.华中农业大学学报,2001,20:593-397
    192.王新,吴燕玉.改性措施对复合污染土壤重金属行为影响的研究.应用生态学报,1995,6:289-298
    193.王新,吴燕玉.重金属在土壤一水稻系统中的行为特性.生物学杂志,1997,16:10-14
    194.王忠主编.植物生理学.第一版,高等教育出版社,北京,2000
    195.魏国强.硅提高黄瓜白粉病抗性和耐盐性的生理机理研究.浙江大学博士学位论文,2004
    196.魏岚,陈亚华,钱猛,等.可降解螯合剂EDDS诱导植物修复重金属污染土壤的潜力.南京农业大学学报,2006,29:33-38
    197.吴燕玉,陈 涛,李书鼎.张士灌区镉污染综合防治技术研究.中国环境科学,1985,5:1-7
    198.吴燕玉,余国营,王新等.Cd Pb Cu Zn As 复合污染对水稻的影响.农业环境保护,1998,17:49-54
    199.武正华.土壤重金属污染植物修复研究进展.盐城工学院学报,2002,15:53-57
    200.夏立江,华 珞,李向东.重金属污染生物修复机制及研究进展.核农学报,1998,12:59-64
    201.夏圣益,王岐山,黄胜海.小麦、水稻叶面喷施硅肥的增产作用研究.土壤肥料,1999,1:36-38
    202.夏星辉,陈静生.土壤重金属污染治理方法研究进展.环境科学,1997,3:72-75
    203.熊礼明.施肥与植物的重金属吸收.农业环境保护,1993,12:217-222
    204.徐 克.张士灌区镉污染综合治理及镉米利用.环境管理,1984,4:18-19
    205.徐呈祥,刘兆普,刘友良.硅在植物中的生理功能.植物生理学通讯,2004,40:753-757
    206.徐呈祥.库拉索芦荟对盐害的响应和硅对其盐害的缓解效应.南京农业大学博士学位论文,2006
    207.徐红宁,许嘉琳.土壤环境中重金属污染对小麦的影响.中国环境科学,1993,13:367-371
    208.许祥明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报,2000,6:379-387
    209.杨超光,豆 虎,梁永超,等.硅对土壤外源镉活性和玉米吸收镉的影响.中国农业科学,2005,38:116-121
    210.杨竟辉.土壤污染与防治.北京:科学出版社,1995
    211.杨居荣,黄翌.植物对重金属的耐性机理.生态学杂志,1994,13:20-26.
    212.杨居荣,贺舰群,张国祥等.农作物对Cd毒害的耐性机理探讨.应用生态学报,1995,6:87-91
    213.叶岱夫.郊区农业铅污染及其治理.农村生态环境,1986,2:37-42
    214.余贵芬,蒋新,孙磊.有机物质对土壤镉有效性的影响研究综述.生态学报,2002,22:770-776
    215.张杰,梁永超,娄运生,等.镉胁迫对两个水稻品种幼苗光合参数、可溶性糖和植株生长的影响.植物营养与肥料学报,2005,11:774-780
    216.张立德,牟季美.纳米材料与纳米结构.科学出版社,1998
    217.张玲,王焕校.镉胁迫下小麦根系分泌物的变化.生态学报,2002,22:496-502
    218.张清东,伍 均.重金属污染土壤的治理.绵羊经济高等专科学校学报,1997,14:13-18
    219.张秋芳.泥 炭、猪粪对红壤和潮土中铜、镉形态及其生物有效性的影响研究.福州:福建农业大学,2000
    220.张秋芳.土壤重金属污染治理方法概述.福建农业学报,2000,15(增刊):200-203
    221.张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应.士壤学报,2001,38:212-218
    222.张志良.植物生理学实验指导(第二版).北京:高等教育出版社,2000:88-91
    223.赵世杰,许长成,邹琦。植物组织中丙二醛测定方法的改进.植物生理学通讯,1994,30:207-210
    224.赵英铭,李震坤.工业区土壤重金属污染的防治对策.内蒙古科技与经济,2001,3:33-34
    225.郑春荣,陈怀满.土壤-水份体系中污染重金属的迁移及其对水稻的影响.环境科学学报,1990,10:145-151
    226.郑喜坤,鲁安怀.土壤重金属污染现状与防治方法.土壤与环境,2002,11:79-84
    227.中国大百科全书编委会.中国大百科全书·环境科学.北京:中国大百科全书出版社,1983,11-71
    228.周启星,高拯民.沈阳张士灌区镉循环的分室模型与污染防治对策研究.环境科学学报,1995,15:273-281
    229.周启星,吴燕玉,熊先哲.重金属Cd、Zn对水稻的复合污染和生态效应.应用生态学报,1994,5:438-441
    230.周泽义.中国蔬菜重金属污染及控制.资源生态环境网络研究动态,1999,10:21-27
    231.朱为民,丁海东,齐乃敏,等.Cd~(2+)胁迫对番茄幼苗抗坏血酸-谷胱甘肽循环代谢的影响.华北农学报,2005,20:50-53
    232.邹邦基,何雪晖.植物营养.农业出版社,北京.1985:276-279
    233.邹春琴,高霄鹏,刘颖杰,等.硅对向日葵水分利用率的影响.植物营养与肥料学报,2005,11:547-550