聚铝碳硅烷溶液及其沉淀性能的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由先驱体高分子转化制备高性能陶瓷材料的技术具有成型容易、反应温度低、分子结构可调等优点,目前已广泛应用于以SiC陶瓷纤维为代表的各种SiC陶瓷材料的制备。有机高分子先驱体可溶可熔的特点使得该法在低维陶瓷材料的制备工艺中具有其他制备方法无可比拟的优势。先驱体高分子可通过熔融和溶液两种方式成型,其中溶液成型不需高温操作和惰性气体保护,具有广泛的应用空间,因此有必要对先驱体溶液的性质进行研究。
     本文以含铝碳化硅纤维的先驱体聚铝碳硅烷(PACS)为研究对象,从基本热力学参数入手,探索了PACS的溶解性能,并采用浊点滴定法绘制三元相图来反映PACS/溶剂/非溶剂的相分离情况。在此基础上对PACS/四氢呋喃/乙醇体系的沉淀性能进行了深入研究。通过比较将沉淀剂加入溶液(Prec-Solu)和将溶液加入沉淀剂(Solu-Prec)两种沉淀方式对沉淀结果的影响,发现Solu-Prec方式操作简单,得到的PACS沉淀粒径小、颗粒分散性好、颗粒间分子量分布均匀,但采用此方式沉淀需要适当延长搅拌时间来实现体系的平衡。研究表明,PACS四氢呋喃溶液的沉淀过程可分为三个阶段:首先是线性大分子的沉淀,随后支化大分子发生沉淀,在沉淀后期中小分子才能被沉淀出来。
     对PACS溶液沉淀性能的基础研究和工艺探索说明采用沉淀的方法对PACS粗料进行纯化是可行的。与减压蒸馏法得到的PACS精料(Dis-PACS)相比,沉淀纯化产物(Pre-PACS)具有低分子量部分含量较低,陶瓷产率较高等优点,更适合制备高性能的SiC陶瓷材料。
     对以上两种PACS精料流变性能的研究表明,由于两者分子量和分子量分布的不同,在相同温度下Dis-PACS的表观粘度比相同软化点的Pre-PACS要小。因此,要提高Pre-PACS的纺丝稳定性必须在传统Dis-PACS的基础上适当提高纺丝温度。Pre-PACS经熔融纺丝、空气不熔化和高温烧成可以制备性能优良的Si-C-Al-O纤维。
The polymer-derived technology has been widely used to prepare various advanced ceramic materials because it offers many advantages such as easy to shaping, low processing temperature and tailorable ceramic compositions. The preceramic polymer can be shaped by means of either melting or solution. The shaping with polymer solution can be carried out at room temperature without inert gases. It is necessary to study the properties of preceramic polymer solution because it has wide applications
     In this paper, polyaluminocarbosilane (PACS), precursor of SiC(Al) ceramic fiber, was considered as the starting point of the study. Basic thermodynamics parameters of PACS solution were determined to investigate the solubility of PACS in various solvents. The phase separation behavior of PACS / solvent / precipitant systems can be elucidated by ternary phase diagrams constructed by cloud point titration. Instead of using the conventional precipitation method (adding precipitant into solution, or Prec-Solu), PACS was precipitated by means of dropping PACS solution into precipitant (Solu-Prec). With the later method, PACS precipited in the form of fine dispersed white particles with small size. The molecular weight among these particles is relatively uniform. In the process of precipitation for PACS in THF solution, linear macromolecules precipitate at the beginning, followed by branched molecules and then low molecular weight species.
     Basic studies and technological investigations of the precipitation behavior of PACS solution indicate that the purification of PACS by precipitation is an effective method. Comparing with the conventional PACS purified by distillation (Dis-PACS), the PACS purified by precipitation (Pre-PACS) is composed of less low molecular weight species, that leads to a higher ceramic yield. This is an advantage to prepare SiC ceramic materials with higher properties.
     The rheological property of Pre-PACS was investigated with comparison of Dis-PACS. For both samples with similar melting temperature, the apparent viscosity of Pre-PACS is higher than that of Dis-PACS at any specific temperature because of the differences of the molecular weight and the distribution. Therefore, the spinning temperature of Pre-PACS should be higher than conventional Dis-PACS. Si-C-Al-O fiber with excellent properties can be prepared by melting spinning, air curing and pyrolysis with Pre-PACS.
引文
[1] B. J. Aylett. In Special Ceramics 1964. Academic Press: London 1965: 105~113
    [2] P. G. Chantrell, P. Popper. In Special Ceramics 1964. Academic Press: London 1965: 87~103
    [3] S. Yajima, J. Hayashi, M. Omori, K. Okamura. Development of tensile strength silicon carbide fiber using organosilicon precursor. Nature. 1976, 261: 525~528
    [4] S. Yajima, K. Okamura, J. Hayashi. Structure analysis in continuous silicon carbide fiber of high tensile strength. Chem. Lett., 1975, 1209~1212
    [5] J. Lipowitz, H. A. Freeman, R. T. Chen, E. R. Prack. Composition and structure of ceramic fibers prepared from polymer precursors, Advan. Ceram. Mater., 1987, 2(2): 121~128.
    [6] A. R. Bunsell, M. H. Berger. Inorganic Fibers for Composite Materials, Compos. Sci. Technol., 1994, 51: 127~133.
    [7] S. Yajima, J. Hayashi, M. Omori. Continuous silicon carbide fiber of high tensile strength, Chem. Lett., 1975: 931.
    [8] 张长瑞, 陈朝晖, 张凌, 等. 碳纤维增强碳化硅复合材料的研究. 复合材料学报, 1994, 11(3): 25
    [9] 龙剑峰, 用有机硅聚合物制造陶瓷材料, 有机硅材料及应用, 1999, 6: 23~26
    [10] Ralf Riedel, Andreas Kienzle, Wolfgang Dressler, et al. Nature, 1996,382: 796~798
    [11] D. W. Johnson, A. G. Evans, R. W. Goettler. Ceramic fibers and coatings: advanced materials for the twenty-first century. National Academy Press: Washington D. C.1998: 1~49
    [12] 石南林, 高性能 CVD 法 SiC 纤维的研制, 材料导报, 2000, 14(7): 53~54
    [13] 连续碳化硅纤维研究课题组, 连续碳化硅纤维研究-技术报告系列, 2001.
    [14] L. Porte, A. Sartre, Evidence for a Silicon Oxycarbide Phase in the Nicalon Silicon Carbide Fiber, J. Mater. Sci., 1989, 24: 271~275
    [15] T. J. Clark, M. Jaffe, J. Rabe, N. R. Langley, Thermal Stability Characterization of SiC Fibers: I, Mechanical Property and Chemical Structure Effects, Ceram. Eng. Sci. Proc., 1986, 7(7-8): 901~913
    [16] L. C. Sawyer, R. T. Chen, F. Haimabch, P. J. Harget, Thermal Stability Characterization of SiC Fibers: II, Fractography and Structure, Ceram. Eng. Sci. Proc., 1986, 7(7-8): 914~930
    [17] O. Funayama, T. Aoki, T. Kato, M. Okoda, T. Isoda, Synthesis of Thermosetting Copolymer of Polycarbosilane and Perhydropolysilazane, J. Mater. Sci., 1996, 31: 6369~6373.
    [18] M. Narisawa, S. Oda, T. Iseki, K. Okamura, K. Oka, T. Dohmaru, Synthesis of Fibrous Shape Ceramics from Blended Precursors of Organosilicon Polymers Containing Polymethylsilane, J. Ceram. Soc. Japan., 1998, 106(2): 220~223.
    [19] M. Takeda, A. Saeki, J. I. Sakamoto, Y. Imai, H. Ichikawa, Effect of Hydrogen Atmosphere on Pyrolysis of Cured Polycarbosilane Fibers, J. Am. Ceram. Soc., 2000, 83(5): 1063~1069.
    [20] R. M. Laine, F. Babonneau, K. Y. Blohowiak, R. A. Kennish, J. A. Rahn, G. J. Exharos, The Evolutionary Process during Pyrolytic Transformation of Poly(n-methylsilazane) from a PreceramicPolymer into an Amorphous Silicon Nitride/Carbon Composite, J. Am. Ceram. Soc., 1995, 78: 137~145
    [21] 楚增勇, 宋永才, 冯春祥, 许云书, 傅依备. 电子束辐射交联制备低氧含量 SiC 纤维的研究, 复合材料学报, 2002, 19(5): 22~27
    [22] Y. Hasegawa, New Curing Method for Polycarbosilane with Unsaturated Hydrocarbos and Application to Thermally Stable SiC Fiber, Compos. Sci. Technol., 1994, 51: 161~166
    [23] 李伟(导师宋永才), 化学气相交联法制备低氧含量碳化硅纤维, 硕士学位论文, 长沙: 国防科技大学, 2003.
    [24] 王亦菲(导师李效东), 连续碳化硅纤维高温性能及基于热交联的改进工艺研究, 博士学位论文, 长沙: 国防科技大学, 2004
    [25] 郑春满, 朱冰, 李效东, 王亦菲, 聚碳硅烷纤维的热交联研究, 高分子学报, 2004, 22(2): 246~250
    [26] W. Toreki, C. D. Batich, M. D. Sacks, M. Saleem, G. J. Choi, A. Morrone, Polymer-derived Silicon Carbide Fibers with low Oxygen Content and Improved Thermomechanical Stability, Compos. Sci. Technol., 1994, 51: 145~159.
    [27] W. Toreki, Polymer-drivered silicon carbide fibers with low oxygen content. Ceramic. Eng. Sci. Proc. 1992, 15(4): 115
    [28] S. Yajima, K. Okamura, J. Hayashi, M. Omori, Synthesis of Continuous SiC Fibers with High Tensile Strength, J. Am. Ceram. Soc., 1976, 59(7-8): 324~327.
    [29] F. Cao, D. P. Kim, X. D. Li, C. X. Feng, Synthesis of Polyaluminocarbosilane and Reaction Mechanism Study, J. Appl. Polym. Sci., 2002, 85(13): 2787~2792.
    [30] Y. Hasegawa, C. X. Feng, Y. C. Song, Z. L. Tan, Ceramic Fibres from Polymer Precursor Containing Si-O-Ti Bonds, J. Mater. Sci., 1991, 26: 3657~3664.
    [31] K. Kumagawa, H. Yamaoka, M. Shibuya, T. Yamamura, Thermal Stability and Chemical Corrosion Resistance of Newly Developed Continuous Si-Zr-C-O Tyranno fiber, Ceram. Eng. Sci. Proc., 1997, 18(3): 113~118.
    [32] R. Riedel, A. Kienzle, W. Dressler, A Siliconboron Carbonitride Ceramic Stable to 2000℃, Nature, 1996, 382: 796~798.
    [33] H. Yamaoka, T.Ishikawa, K.Kumagawa, Excellent Heat Resistance of Si-Zr-C-O Fibre, J. Mater. Sci., 1999, 34: 1333~1339.
    [34] P. Baldus, M. Jansen, D. Sporn, Ceramic Fibers for Matrix Composites in High-temperature Engine Applications, Science, 1999, 285: 699~703.
    [35] 范小琳, 宋永才, 李效东, 冯春祥. 耐高温 SiC 纤维的研究动态, 宇航材料工艺, 1998, 1: 15~18
    [36] T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura, T. Nagasawa, High-Strength Alkali- Resistant Sintered SiC Fibre Stable to 2200℃, Nature, 1998, 391: 773~774.
    [37] K. Okamura, M. Sato, High-Temperature Strength Improvement of Si-C-O Fiber by the Reduction of Oxygen Content, Proceedings of the 1th Japanese International SAMPE Symposium. 1989: 929~934.
    [38] M. Takeda, A. Urano, J. I. Sakamoto, Y. Imai, Microstructure and Oxidative Degradation Behavior ofSilicon Carbide Fiber Hi-Nicalon type S, J. Nuclear Mater., 1998, 263: 1594~1599
    [39] J. Lipowitz, T. Barnard, D. Bujalski, J. Rabe, G. Zank, Fine-Diameter Polycrystalline SiC Fibers, Compos. Sci. Technol., 1994, 51: 167~171.
    [40] K. E. Handrick. Manufacture and application of complex, high-temperature Cf/SiC composites via the LPI-process, 48th International Aeronautical Congress, October 6-10, 1997, Turin, Italy.
    [41] A. Duran, M. Aparicio, K. Rebstock, Key Eng. Mater., 1997, 127~131: 287~294.
    [42] R. Jones, A. Szweda, D. Petrak. Composites: A, 1999, 30: 569~575.
    [43] 马青松(导师陈朝晖), 聚硅氧烷先驱体转化制备陶瓷基复合材料研究, 博士学位论文, 长沙: 国防科技大学, 2003
    [44] 张长瑞, 陈朝晖, 冯春祥. 纤维增强陶瓷基复合材料. 宇航材料工艺, 1989, 1:8~15.
    [45] 张长瑞, 陈朝晖, 张凌, 等. 碳纤维增强碳化硅复合材料的研究. 复合材料学报, 1994, 11(3): 25~29.
    [46] K.E.Gonsalves, R.Yazici, S.Han. Ceramic coating for graphite fabrics by metalorganic pyrolysis. J. Mater. Sci. Lett., 1991,10(14):834~837.
    [47] 谢茂浓, 彭志坚, 唐琳, 等. 一种制备 SiO2 膜的方法-氧等离子体处理聚硅烷涂层. 四川大学学报(自然科学版), 2000, 37(6): 873~878.
    [48] J.C.Pivin, P.Colombo, M.Tonidandel. Ion irradiation of preceramic polymer thin films. J. Am. Ceram. Soc., 1996,79(7): 1967~1970
    [49] 谢凯, 张长瑞, 陈朝辉, 等. 低分子聚碳硅烷气相热裂解制备 SiC 超微粉的研究. 无机材料学报, 1997, 12(3):291~296.
    [50] 谢凯, 张长瑞, 盘毅, 等. 低分子聚碳硅烷制备 Si-C-N 复合超细微粉. 硅酸盐学报, 1998, 26(5): 668~673.
    [51] 雍成钢, 谢凯, 盘毅, 等. 以聚硅氮烷为原料高温热解制备 Si/C/N 纳米微粉. 硅酸盐学报, 2000, 28(5): 491~493.
    [52] 张伟刚, 成会明, 沈祖, 等. 炭材料抗氧化研究进展, 炭素, 1997, (2): 1~6.
    [53] M. R. Mucalo, N. B. Milestone, I. C. Vickridge, et al. Preparation of ceramic coatings from preceramic precursors., J. Mater. Sci., 1994, 29: 5934~5946.
    [54] T.J.Fitzgerald, V.J.Michaud, A.Mortensen. Processing of microcellular SiC foams PartⅡ ceramic foam production. J. Mater. Sci., 1995, 30(4): 1037~1045.
    [55] P.Colombo, M.Modesti. Silicon oxycarbide ceramic foam from a preceramic polymer. J. Am. Ceram. Soc., 1999, 82(3): 573~578.
    [56] M.R.Nangrejo, X.Bao, M.J.Edirisinghe. Preparation of silicon carbide-silicon nitride composite foams from preceramic polymers. J. Eur. Ceram. Soc., 2000, 20: 1777~1785.
    [57] 舟山澈. et al. Ceram. Soc. Jpn. 1995, 103(5): 424.
    [58] 范小琳(导师冯春祥), 低氧含量碳化硅纤维的研制, 博士学位论文, 长沙: 国防科技大学, 1999
    [59] 彭善勇(导师王应德), 干法纺丝制备低氧含量碳化硅纤维, 硕士学位论文, 长沙: 国防科技大学, 2005
    [60] 所俊, 郑文伟, 肖加余, 陈朝辉. Cf / SiC 复合材料先驱体转化法浸渍工艺条件优化, 宇航材料工艺, 2000, 2: 29~32.
    [61] 简科, 陈朝辉, 马青松, 郑文伟. 浸渍工艺对先驱体转化制备 Cf /SiC 复合材料结构与性能的影响, 航空材料学报, 2005, 25(5): 38~41.
    [62] 李春华, 黄可龙, 李效东, 曹峰, 余煜玺, 聚碳硅烷先驱体转化法制备 SiC 涂层研究, 材料科学与工艺, 2005, 13(2): 221~223.
    [63] 付志强, 唐春和, 梁彤祥. PCS 先驱体转化法制备 SiC 涂层的浸渍工艺, 材料工程, 2003, 3: 28~30.
    [64] 胡海峰, 李彦武, 陈朝辉, 冯春祥, 张长瑞, 宋永才. 先驱体转化法制备陶瓷涂层, 材料工程, 1997, 3: 7~9.
    [65] H. G. Elias, Macromolecules, Plenum Press, New York, 1977.
    [66] P. J. Flory, Principles of polymer chemistry, Cornell University Press, New York, 1953.
    [67] F. W. Altena and C. A. Smoders, Macromolecules, 1982, 15: 1491.
    [68] L. Yilmaz, A. J. McHugh, J. Appl. Polym. Sci., 1986, 31:997.
    [69] M. Mulder. 膜技术基本原理(第二版). 清华大学出版社, 北京, 1996.
    [70] H. Tompa. Polymer solutions, Butterworths, London, 1956
    [71] 陈晓霞, 沈金玉, 曹竹安. 十三碳二元酸在乙酸丁酯中的溶解度相图及影响因素. 清华大学学报, 2001, 41(6) : 34~36
    [72] 成都科学技术大学物理化学教研组, 罗澄源等编, 物理化学实验, 高等教育出版社, 北京, 1983
    [73] 马礼敦, 高等结构分析, 复旦大学出版社, 上海, 2002.
    [74] H. Q. Ly, R. Taylor, R. J. Day, F. Heatley, Conversion of Polycarbosilane (PCS) to SiC-based Ceramic. Part I Characterisation of PCS and Curing Products, J. Meter. Sci., 2001, 36: 4037-4043.
    [75] H. Q. Ly, R. Taylor, R. J. Day, F. Heatley, Conversion of Polycarbosilane (PCS) to SiC-based Ceramic Part II. Pyrolysis and Characterization, J. Mater. Sci., 2001, 36: 4045-4057.
    [76] 余煜玺(导师李效东) , 含铝碳化硅纤维的连续化制备与研究, 博士学位论文, 长沙: 国防科技大学, 2005.
    [77] L. E. 尼尔生, 聚合物流变学, 科学出版社, 北京, 1983.
    [78] 郑春满(导师李效东) , 聚铝碳硅烷纤维的无机化及生成碳化硅纤维的连续化过程研究, 博士学位论文, 长沙: 国防科技大学, 2006.
    [79] 何曼君, 陈维孝, 董西侠编, 高分子物理, 复旦大学出版社, 上海, 2002.
    [80] 楚增勇, 刘辉, 冯春祥, 等. 沉淀分级法调制纺丝级高熔点聚碳硅烷, 国防科技大学学报, 2002, 24(1) :39.
    [81] 程祥珍(导师肖加余), 聚碳硅烷的高温高压合成与碳化硅纤维制备研究, 博士学位论文, 长沙: 国防科技大学, 2004.
    [82] George Wypych, 溶剂手册, 中国石化出版社, 北京, 2002.
    [83] 董履和主编, 南京大学高分子教研室译, 合成聚合物的分级原理和应用, 上海科学技术出版社, 上海, 1981.
    [84] P. W. O. Wijga, J van Schooten, and J. Boerma, Markromol. Chem., 1950, 36:115
    [85] S. W. Hawkins and H. Smith, J. Polym. Sci., 1958, 28: 341
    [86] 冯开才, 李谷, 符若文,刘振兴编,高分子物理实验,化学工业出版社,北京,2004
    [87] 曹峰(导师李效东),耐超高温 SiC 纤维先驱体的设计、合成及纤维的制备,博士学位论文,长沙:国防科学技术大学,2003
    [88] 楚增勇(导师冯春祥),先驱体法碳化硅纤维缺陷形成机理及性能提高研究,博士学位论文,长沙:国防科学技术大学,2003
    [89] Z. Y. Chu, Y. D. Wang, Ch. X, Feng, et al. Effect of spinning techniques on the mechanical-properties of polymer-derived silicon-carbide fiber. Key Engineering Materials, 2002, 224:651~656.
    [90] Ziabicki A. 华东纺织工学院化学纤维教研室编. 纤维成型基本原理. 上海科学技术出版社, 上海, 1983.
    [91] Z.塔得莫尔, C.G.戈戈斯, 聚合物加工原理, 化学工业出版社, 北京, 1990.